ON THE RANK OF INCIDENCE MATRICES IN PROJECTIVE HJELMSLEV SPACES

Ivan Landjev
New Bulgarian University

1. Preliminaries

Theorem. (Folklore) Let X be a finite set with |X| = n and let $1 \le s \le t \le n - s$ be integers. The incidence matrix $M_{s,t}$ of all s-element subsets versus all t-element subsets spaces of X is of rank $\binom{n}{s}$.

Theorem. (Kantor, 1972) Let $0 \le e < f \le d - e + 1$, and let $M_{e,f}$ be an incidence matrix of all e-spaces versus all f-spaces of $\mathrm{PG}(d,q)$ or $\mathrm{AG}(d,q)$. Then the rank over $\mathbb R$ of $M_{e,f}$ is the number of e-spaces in the geometry.

2. Finite Chain Rings

Definition. A ring (associative, $1 \neq 0$, ring homomorphisms preserving 1) is called a **left (right) chain ring** if the lattice of its left (right) ideals forms a chain.

A. Nechaev, Mat. Sbornik 20(1973).

$$R > \operatorname{rad} R > (\operatorname{rad} R)^2 > \dots > (\operatorname{rad} R)^{m-1} > (\operatorname{rad} R)^m = (0).$$

- m the **length** of R;
- ullet \mathbb{F}_q the **residue field** of R;
- p^s the characteristic of R.

Theorem. Let R be a finite chain ring of length m, characteristic p^s , and residue field of order q. Let $S = \operatorname{GR}(q^s, p^s)$. Then there exist unique integers k, t satisfying m = (s-1)k + t, $1 \le t \le k$ (k = t = m if s = 1), an automorphism $\sigma \in \operatorname{Aut} S$ and an Eisenstein polynomial (not necessarily unique) $g(X) \in S[X; \sigma]$ of degree k such that

$$R \cong S[X; \sigma]/(g(X), p^{s-1}X^t).$$

By an Eisenstein polynomial we mean a polynomial g(X) from the skew polynomial ring $S[X;\sigma]$ which is of the form $g(X)=X^k+p(g_{k-1}X^{k-1}+\ldots+g_0)$, with $g_0\in S\setminus pS=S^*$.

A. Nechaev, Mat. Sbornik **20**(1973).

W.E. Clark, D. A. Drake, Abh. Math. Sem. der Univ. Hamburg **39**(1974), 364–382.

3. Modules over Finite Chain Rings

Theorem. Let R be a finite chain ring of length m. For any finite module $_RM$ there exists a uniquely determined partition

$$\lambda = (\lambda_1, \dots, \lambda_k) \vdash \log_q |M|,$$

 $0 \le \lambda_i \le m$, such that

$$_{R}M \cong R/(\operatorname{rad} R)^{\lambda_{1}} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_{k}}.$$

The partition λ is called the **shape** of $_RM$.

The number k is called the **rank** of $_RM$.

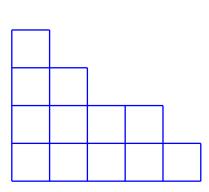
$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$$

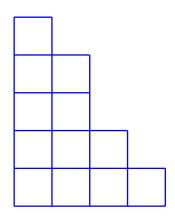
$$N = \lambda_1 + \lambda_2 + \ldots + \lambda_n$$

the conjugate partition: $\lambda' = (\lambda'_1, \lambda'_2, ...)$

 $\lambda_i'=$ number of parts in λ that are greater or equal to i

$$N = \lambda_1' + \lambda_2' + \dots,$$





$$\lambda = (4, 3, 2, 2, 1)$$
 $\lambda' = (5, 4, 2, 1)$

$$\lambda' = (5, 4, 2, 1)$$

Theorem. Let $_RM$ be a module of shape $\lambda=(\lambda_1,\ldots,\lambda_n)$. For every sequence $\mu=(\mu_1,\ldots,\mu_n)$, $\mu_1\geq\ldots\geq\mu_n\geq0$, satisfying $\mu\preceq\lambda$ the module $_RM$ has exactly

$$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} = \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$

submodules of shape $\mu.$ In particular, the number of free rank s submodules of $_RM$ equals

$$q^{s(\lambda'_1-s)+\ldots+s(\lambda'_{m-1}-s)}\cdot \begin{bmatrix} \lambda'_m \\ s \end{bmatrix}_q$$

Here

$${n \brack k}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}.$$

are the Gaussian coefficients.

4. $\mathcal{G}_R(n,\kappa)$

Let R be a chain ring with $|R|=q^m$, $R/\operatorname{rad} R\cong \mathbb{F}_q$.

Let
$$\kappa = (\kappa_1, \dots, \kappa_n)$$
, $m \ge \kappa_1 \ge \kappa_2 \ge \dots \ge \kappa_n \ge 0$.

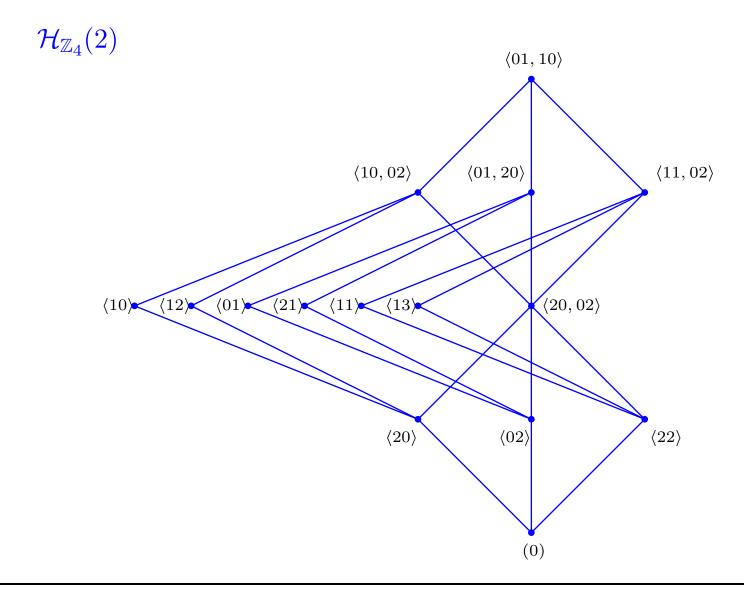
 $\mathcal{G}_R(n,\kappa)$ – the set of all submodules of $_RR^n$ of shape κ .

 $\mathcal{H}_R(\kappa)$ – the lattice of all submodules of

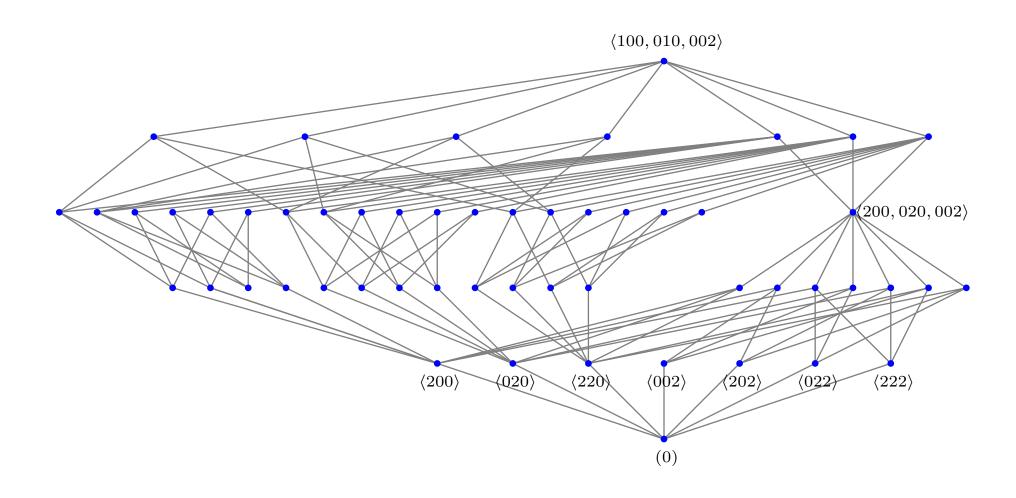
$$R/(\operatorname{rad} R)^{\kappa_1} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\kappa_n},$$

ordered by inclusion.

 $\mathcal{H}_R(n)$ - the lattice of all submodules of $_RR^n$.



$\mathcal{H}_R(\kappa)$, $\kappa=(2,2,1)$



4. The Theorem

R – a finite chain ring with $|R|=q^m$, $R/\operatorname{rad} R\cong \mathbb{F}_q$

$$\Omega = \mathrm{PHG}(_RR^n)$$

 $\sigma=(\sigma_1,\ldots,\sigma_n)$ and $\tau=(\tau_1,\ldots,\tau_n)$: non-increasing sequences of non-negative integers $m\geq\sigma_1\geq\ldots\geq\sigma_n\geq0$, $m\geq\tau_1\geq\ldots\geq\tau_n\geq0$, with $\sigma\preceq\tau$

 $\operatorname{Supp}(\sigma)$ – the set of indices j for which $\sigma_j \neq 0$.

 $M_{\sigma,\tau}$: a (0,1)-matrix in which the rows are indexed by the elements $\mathcal{G}(n,\sigma)$ and columns are indexed by the elements of $\mathcal{G}(n,\tau)$. The element m(S,T) which is in the row indexed by $S\in\mathcal{G}(n,\sigma)$ and the column indexed by $T\in\mathcal{G}(n,\tau)$ is defined by

$$m(S,T) = \begin{cases} 1 & \text{if } S \subset T, \\ 0 & \text{if } S \not\subset T. \end{cases}$$

An Important Special Case

The case when $\sigma=(m,0,\ldots,0)$ and $\tau=(m,\ldots,m,0)$ uses the following lemma.

Lemma. Let m be a positive integer, let k_0, k_1, \ldots, k_m be positive integers with $k_0 = 1$, $k_1 | k_2, \ldots, k_{m-1} | k_m$. Let a_0, a_1, \ldots, a_m be arbitrary elements of a field F and let $A = (a_{ij})$ be the $k_m \times k_m$ matrix over F given by $a_{ij} = a_{\min\left\{t: \left\lfloor \frac{i}{k_t} \right\rfloor = \left\lfloor \frac{j}{k_t} \right\rfloor\right\}}$, where the rows and columns are labeled from 0 up to $k_m - 1$. Then

$$\det(A) = \prod_{i=0}^{m} \left(\sum_{j=0}^{i} k_j (a_j - a_{j+1}) \right)^{\frac{k_m}{k_i} - \frac{k_m}{k_{i+1}}},$$

where by convention $a_{m+1} = 0$ and $k_{m+1} = +\infty$.

The General Case

Lemma. Let R be a chain ring with $|R| = q^m$, $R/\operatorname{rad} R \cong \mathbb{F}_q$, and let $\Omega = \operatorname{PHG}(_RR^n)$. Let further s and t be integers with $1 \leq s \leq t \leq n-s$ and $\sigma = m^s$, $\tau = m^t$. Then the rank of $M_{\sigma,\tau}(\Omega)$ is equal to the number of free Hjelmslev subspaces of Ω of dimension s-1 i.e. the rank is equal to $\begin{bmatrix} m^n \\ m^s \end{bmatrix}_q$.

Lemma. Let $\tau = m^t$ and let σ be an arbitrary sequence with $\sigma \leq \tau \leq m_n - \sigma$. Then $M_{\sigma,\tau}$ is of full rank.

Main Theorem. Let $\sigma = (\sigma_1, \dots, \sigma_n)$ and $\tau = (\tau_1, \dots, \tau_n)$ be two non-increasing sequences of non-negative integers with

$$\sigma \preceq \tau$$
 and $m{m}^{|\operatorname{Supp}(au)|} \preceq m{m}^n - \sigma.$

Then the rank of $M_{\sigma,\tau}(\Omega)$ is equal to the number of shape σ subspaces of Ω , i.e. $\begin{bmatrix} \boldsymbol{m}^n \\ \sigma \end{bmatrix}_{q^m}$.

Remark. The theorem covers the most important cases when $\sigma=m^s$, or $au=m^t$, or both.

It does not cover the case where there is no k with $\sigma \leq m^k \leq \tau$. This case will require an additional argument.