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Tail-Biting Trellises

C =


000000
111010
011111
100101


Symbol alphabet: F2

- - - label 0; — label 1

State Space Realization:

State Spaces:

S0 = {00, 01}, S1 = {00, 10}, . . .

Constraint Codes:

C0 ={(00|0|00), (00|1|10), (01|1|00), (01|0|10)}=〈(00|1|10), (01|1|00)〉,



Why Tail-Biting Trellises?

Codes on Graphs:

Tanner, Koetter, Loeliger, Wiberg, Kschischang, Forney, Mao,
Kashyap, . . .

LDPC codes

Decoding with message-passing algorithms (sum-product algorithm)
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How to Construct Tail-Biting Trellises?

(Calderbank/Forney/Vardy ’99, Koetter/Vardy ’03)

Product Trellis

C = 〈111010, 100101〉
[0, 4] [3, 0] (conventional and circular)

Simple rule for fixing the state spaces and constraint codes.
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Conventional Trellis: trivial state space at time 0

A product trellis is conventional iff all spans are conventional.

These trellises are well understood, e.g. unique minimal trellis.

Tail-biting trellises can be better (smaller) than conventional ones.
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How to Construct Tail-Biting Trellises?

(Calderbank/Forney/Vardy ’99, Koetter/Vardy ’03)

Product Trellis

C = 〈111010, 100101〉
[0, 4] [3, 0] (conventional and circular)

“The shorter the spans, the smaller the state space sizes.”



Construction of Tail-Biting Trellises

Characteristic Spans (Koetter/Vardy ’03, GL/Weaver ’11)

Let C ⊆ Fn be a code with support {0, 1, . . . , n − 1}.
For each i let

[i , bi ] = shortest span starting at i attained by any codeword.

Then
the spans [0, b0], . . . , [n − 1, bn−1] are uniquely determined by C,
called characteristic spans,

b0, . . . , bn−1 are distinct,

exactly k = dim(C) spans are conventional.

k conventional spans: −→ the unique minimal conventional trellis.



KV-Trellises

Definition

A KV-trellis of C is a product trellis based on

linearly independent generators with characteristic spans.

. . . natural generalization of minimal conventional trellises.

Theorem (Koetter/Vardy ’03)

Every minimal trellis is a KV-trellis. But not every KV-trellis is minimal.

Minimality:

w.r.t. a given complexity measure (state space or constraint code sizes)
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Intrinsic characterization of minimality or KV?

Conventional Trellises:

Theorem (Muder ’88, McEliece ’96, Vardy ’98)

A given code has a unique minimal conventional trellis.

A conventional trellis is minimal iff it is trim and proper.

A non-minimal conventional trellis can be reduced to the unique
minimal conventional trellis by trimming and merging.

Mergeability:
states can be merged without
changing the code.

Not trim Not proper

Theorem (Forney/GL ’12)

The same is true for general cycle-free graphs.



Intrinsic characterization of minimality or KV?

C = 〈(01110), (10010), (01101)〉 ⊆ F5
2

KV-trellis non-KV-trellis

Intrinsic Differences?

both are trim, proper and non-mergeable,

both are state- and edge-trim: all states and edges belong to cycles,

both are observable: each codeword appears on exactly one cycle,

both are controllable: connected graphs.

Look at the dual trellis. . .



Dualization of Trellises

Normal Realization Dualization (Forney ’01)

Given trellis T for C.
Dualization procedure:

(1) same state spaces,

(2) orthogonal E⊥i of each constraint code (edge space) Ei ,

(3) sign inverters.

If T is a trellis of the code C, then T⊥ is a trellis of C⊥.



Properties of the Dual

KV-trellis and its dual:

dual←→

well-behaved!

Non-KV-trellis and its dual:

dual←→

not edge-trim!



Properties of the Dual

Theorem (GL/Weaver ’11, ∼ former conjecture of Koetter/Vardy ’03)

The dual of a KV-trellis of C is a KV-trellis of C⊥, thus

state- and edge-trim, observable, controllable, and non-mergeable.

Fact (GL/Weaver ’11)

There exist well-behaved non-KV-trellises whose duals are equally
well-behaved.

Questions:

Intrinsic characterization of trellis classes:

KV-trellises, minimal trellises?

Can one constructively reduce a non-minimal trellis?



Intrinsic Characterizations / Local Reductions

Theorem – Simple Version (Forney/GL’12)

Let the characteristic spans of C and C⊥ have length > 2. Then{
minimal trellises

}
(
{
KV-trellises

}
(
{

2-SO/2-SC,

trim, proper

}
=

{
2-irreducible

trellises

}
All classes are invariant under dualization.

C = im

(
1 1 1 1 1 0
1 1 0 1 1 1
0 1 0 1 0 1

)

not 2-strictly observable

2-strictly observable: no zero run of length ≥ n − 2.
2-strictly controllable: every state can be reached in n − 2 steps.
2-reducible: Constructive reduction based on a 2-fragment.
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Intrinsic Characterizations / Local Reductions

Theorem – Simple Version (Forney/GL’12)

Let the characteristic spans of C and C⊥ have length > 2. Then{
minimal trellises

}
(
{
KV-trellises

}
(
{

2-SO/2-SC,

trim, proper

}
=

{
2-irreducible

trellises

}
All classes are invariant under dualization.

Theorem

Result can be generalized to parameter t.

Open

Can every trellis be reduced to a minimal one?



Thank You!
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