Tail-Biting Trellis Realizations and Local Reductions

Heide Gluesing-Luerssen

University of Kentucky

WCC, Bergen, April 2013

^{*}Based on joint work with Dave Forney and Elizabeth Weaver.

1 What is a Tail-Biting Trellis?

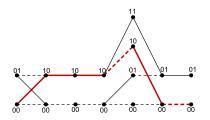
2 Construction of (Good) Tail-Biting Trellises

(3) Intrinsic Characterizations

1 What is a Tail-Biting Trellis?

2 Construction of (Good) Tail-Biting Trellises

Tail-Biting Trellises



$$\mathcal{C} = \begin{cases} 000000\\ 111010\\ 011111\\ 100101 \end{cases}$$

Symbol alphabet: \mathbb{F}_2 - - - label 0; — label 1

State Space Realization:

State Spaces:

 $\mathcal{S}_0 = \{00,01\}, \quad \mathcal{S}_1 = \{00,10\}, \, \ldots$

Constraint Codes:

 $\mathcal{C}_0 \!=\! \{(00|0|00), (00|1|10), (01|1|00), (01|0|10)\} \!=\! \langle (00|1|10), (01|1|00)\rangle,$

Codes on Graphs:

- Tanner, Koetter, Loeliger, Wiberg, Kschischang, Forney, Mao, Kashyap, . . .
- LDPC codes
- **Decoding** with message-passing algorithms (sum-product algorithm)

(1) What is a Tail-Biting Trellis?

2 Construction of (Good) Tail-Biting Trellises

Intrinsic Characterizations

(Calderbank/Forney/Vardy '99, Koetter/Vardy '03)

Product Trellis

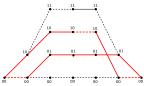
 $\mathcal{C} = \langle \underline{11101}0, \ \underline{1}00\underline{101} \rangle \\ [0,4] \quad [3,0] \quad (\text{conventional and circular})$



Simple rule for fixing the state spaces and constraint codes.

(Calderbank/Forney/Vardy '99, Koetter/Vardy '03)

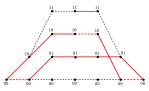
Product Trellis



Conventional Trellis: trivial state space at time 0 A product trellis is conventional iff all spans are conventional. These trellises are well understood, e.g. unique minimal trellis.

(Calderbank/Forney/Vardy '99, Koetter/Vardy '03)

Product Trellis



Conventional Trellis: trivial state space at time 0 A product trellis is conventional iff all spans are conventional. These trellises are well understood, e.g. unique minimal trellis.

Tail-biting trellises can be better (smaller) than conventional ones.

(Calderbank/Forney/Vardy '99, Koetter/Vardy '03)

Product Trellis

 $\mathcal{C} = \langle \underline{11101}0, \ \underline{1}00\underline{101} \rangle \\ [0,4] \quad [3,0] \quad (\text{conventional and circular})$

"The shorter the spans, the smaller the state space sizes."

Construction of Tail-Biting Trellises

Characteristic Spans (Koetter/Vardy '03, G_L /Weaver '11)

Let $\mathcal{C} \subseteq \mathbb{F}^n$ be a code with support $\{0, 1, \dots, n-1\}$. For each *i* let

 $[i, b_i]$ = shortest span starting at *i* attained by any codeword.

Then

- the spans [0, b₀], ..., [n − 1, b_{n−1}] are uniquely determined by C, called characteristic spans,
- b_0, \ldots, b_{n-1} are distinct,
- exactly $k = \dim(\mathcal{C})$ spans are conventional.

k conventional spans: \longrightarrow the unique minimal conventional trellis.

KV-Trellises

Definition

A KV-trellis of ${\mathcal C}$ is a product trellis based on

linearly independent generators with characteristic spans.

... natural generalization of minimal conventional trellises.

Theorem (Koetter/Vardy '03)

Every minimal trellis is a KV-trellis. But not every KV-trellis is minimal.

Minimality:

w.r.t. a given complexity measure (state space or constraint code sizes)

(1) What is a Tail-Biting Trellis?

2 Construction of (Good) Tail-Biting Trellises

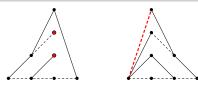
(3) Intrinsic Characterizations

Intrinsic characterization of minimality or KV?

Conventional Trellises:

Theorem (Muder '88, McEliece '96, Vardy '98)

- A given code has a unique minimal conventional trellis.
- A conventional trellis is minimal iff it is trim and proper.
- A non-minimal conventional trellis can be reduced to the unique minimal conventional trellis by trimming and merging.



Mergeability:

states can be merged without changing the code.

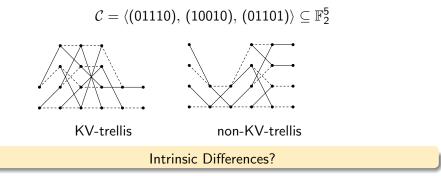
Not trim

Not proper

Theorem (Forney/ G_L '12)

The same is true for general cycle-free graphs.

Intrinsic characterization of minimality or KV?



- both are trim, proper and non-mergeable,
- both are state- and edge-trim: all states and edges belong to cycles,
- both are observable: each codeword appears on exactly one cycle,
- both are **controllable**: connected graphs.

Look at the dual trellis...

Dualization of Trellises

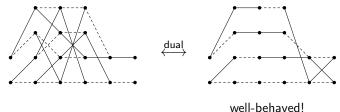
Normal Realization Dualization (Forney '01)

Given trellis T for C.

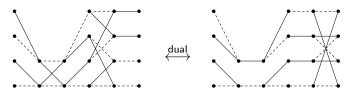
- Dualization procedure:
 - (1) same state spaces,
 - (2) orthogonal E_i^{\perp} of each constraint code (edge space) E_i ,
 - (3) sign inverters.
- If T is a trellis of the code C, then T^{\perp} is a trellis of C^{\perp} .

Properties of the Dual

KV-trellis and its dual:



Non-KV-trellis and its dual:



not edge-trim!

Properties of the Dual

Theorem (GL/Weaver '11, \sim former conjecture of Koetter/Vardy '03)

The dual of a KV-trellis of C is a KV-trellis of C^{\perp} , thus

state- and edge-trim, observable, controllable, and non-mergeable.

Fact (G_I /Weaver '11)

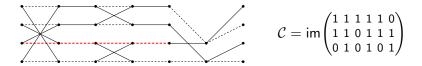
There exist well-behaved non-KV-trellises whose duals are equally well-behaved.

Questions:

- Intrinsic characterization of trellis classes: KV-trellises, minimal trellises?
- Can one constructively reduce a non-minimal trellis?

Theorem – Simple Version (Forney/GL'12)

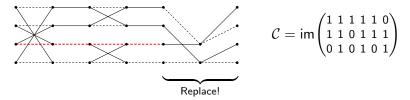
Let the characteristic spans of C and C^{\perp} have length > 2. Then $\left\{ \begin{array}{l} \text{minimal trellises} \\ \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \text{KV-trellises} \\ \text{KV-trellises} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} 2\text{-SO/2-SC,} \\ \text{trim, proper} \end{array} \right\} = \left\{ \begin{array}{l} 2\text{-irreducible} \\ \text{trellises} \end{array} \right\}$ All classes are invariant under dualization.



not 2-strictly observable

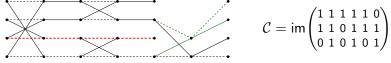
Theorem – Simple Version (Forney/G₁ '12)

Let the characteristic spans of C and C^{\perp} have length > 2. Then $\left\{ \begin{array}{l} \text{minimal trellises} \\ \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \text{KV-trellises} \\ \text{KV-trellises} \end{array} \right\} \subsetneq \left\{ \begin{array}{l} 2\text{-SO/2-SC,} \\ \text{trim, proper} \end{array} \right\} = \left\{ \begin{array}{l} 2\text{-irreducible} \\ \text{trellises} \end{array} \right\}$ All classes are invariant under dualization.



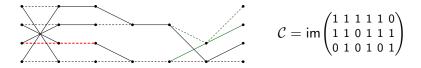
Theorem – Simple Version (Forney/G₁ '12)

Let the characteristic spans of C and C^{\perp} have length > 2. Then $\left\{ \begin{array}{l} \text{minimal trellises} \\ \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \text{KV-trellises} \\ \end{array} \right\} \subsetneq \left\{ \begin{array}{l} 2\text{-SO/2-SC,} \\ \text{trim, proper} \end{array} \right\} = \left\{ \begin{array}{l} 2\text{-irreducible} \\ \text{trellises} \end{array} \right\}$ All classes are invariant under dualization.



Theorem – Simple Version (Forney/G₁ '12)

Let the characteristic spans of C and C^{\perp} have length > 2. Then $\left\{ \begin{array}{l} \text{minimal trellises} \\ \end{array} \right\} \subsetneq \left\{ \begin{array}{l} \text{KV-trellises} \\ \text{trim, proper} \end{array} \right\} = \left\{ \begin{array}{l} 2\text{-irreducible} \\ \text{trellises} \end{array} \right\}$ All classes are invariant under dualization.



Theorem – Simple Version (Forney/G₁ '12)

Let the characteristic spans of C and C^{\perp} have length > 2. Then $\begin{cases} \min \text{imimal trellises} \\ & \subsetneq \\ & \text{trellises} \\ & \text$

Theorem

Result can be generalized to parameter t.

Open

Can every trellis be reduced to a minimal one?

Thank You!