Relations between pseudorandomness measures Correlation dominates DFT, Ambiguity, Hamming AC

Gottlieb Isabel Pirsic and Arne Winterhof, Johannes Kepler University, Linz and RICAM, Linz

Setup (as usual):

We consider:

- Periodic sequences with period length T,
- over the finite alphabet $\mathbb{T}_{m}:=\{\exp (2 \pi i j / m): j=1, \ldots, m\}$,
- and show results of the form: $A \ll B$, meaning

$$
\exists C: A \leq C \cdot B
$$

PR measures: Correlation

- (Period.) Correlation Measure of order $\ell:\left(e_{i} \in \mathbb{T}_{m}, i \geq 0\right)$

$$
\Gamma_{\ell}\left(e_{0}, \ldots, e_{T-1}\right)=\max _{\phi, D}\left|\sum_{n=0}^{T-1} \varphi_{1}\left(e_{n+d_{1}}\right) \varphi_{2}\left(e_{n+d_{2}}\right) \cdots \varphi_{\ell}\left(e_{n+d_{\ell}}\right)\right|,
$$

max over all ℓ-tuples of bijections and lags/shifts. ($\Gamma \rightarrow$ small)

- Motivation: modelling signal stream distortions, \{reflect.s, Doppler effects\} $\leftrightarrow\{$ time shifts, phase dist.s $\}$
- Very general! \rightsquigarrow not easily tractable. Simplifications:
- phase shifts (i.e., mult. of $e_{n+d_{i}}$ with an m-th unit root)
- conjugation
- ℓ usually small, e.g., $\ell \in\{1,2,4\}$
- Example: Autocorrelation ($\ell=2$, conjugation only)

$$
C\left(E_{T}\right)=\max _{1 \leq t<T}\left|\sum_{n=0}^{T-1} e_{n} \overline{e_{n+t}}\right| \leq \Gamma_{2}
$$

PR measures: DFT, Ambiguity

- Maximum discrete Fourier transform:

$$
D\left(E_{T}\right)=\max _{0 \leq k<T}\left|\sum_{n=0}^{T-1} e_{n} \omega_{T}^{-k n}\right|
$$

Note: usually $e_{n} \notin \mathbb{T}_{T}$. Otherwise: correlation term with $\ell=1$ and phase shifts only

- Maximum ambiguity:

$$
A\left(E_{T}\right)=\max _{1 \leq t, k<T}\left|\sum_{n=0}^{T-1} e_{n} \overline{e_{n+t}} \omega_{T}^{-k n}\right| .
$$

Again: usually $e_{n} \notin \mathbb{T}_{T}$. Otherwise: correlation term with $\ell=2$, phase shifts and conjugation only

- Motivations/Applications:
- D : orthogonal frequency division multiplexing
- A : relevant in radar systems signal processing

PR measures: Hamming AC

- Hamming Autocorrelation:

$$
\begin{aligned}
H\left(E_{T}\right) & =\max _{1 \leq t<T} \sum_{n=0}^{T-1} \delta\left(e_{n}, e_{n+t}\right) \\
& =\max _{1 \leq t<T} \sum_{n=0}^{T-1} \frac{1}{m} \sum_{j=0}^{m-1}\left(e_{n} \overline{e_{n+t}}\right)^{j}
\end{aligned}
$$

- Measures the maximum congruity between the sequence and its shifts \rightsquigarrow will be high, e.g., for subperiodic sequences

Relations: $\Gamma_{2}\left(E_{T}\right) \ll T^{1 / 2} \Gamma_{4}^{1 / 2}\left(E_{T}\right)$

- Binary, finite case previously by [Cassaigne, Mauduit, Sarközy: MR 1904866]
- (Our proof idea: Cauchy-Schwarz and resolving $|z|^{2}=z \bar{z}$.)

For any $d_{i}, \varphi_{i},(i=1,2)$ and positive integer J we have
$J\left|\sum_{n=0}^{T-1} \varphi_{1}\left(e_{n+d_{1}}\right) \varphi_{2}\left(e_{n+d_{2}}\right)\right| \leq \sum_{n=0}^{T-1}\left|\sum_{j=0}^{J-1} \varphi_{1}\left(e_{n+j+d_{1}}\right) \varphi_{2}\left(e_{n+j+d_{2}}\right)\right|=: W$.
Cauchy-Schwarz implies

$$
W^{2} \leq T \sum_{n=0}^{T-1}\left|\sum_{j=0}^{J-1} \varphi_{1}\left(e_{n+j+d_{1}}\right) \varphi_{2}\left(e_{n+j+d_{2}}\right)\right|^{2}
$$

$$
=T \sum_{j, l=0}^{J-1} \sum_{n=0}^{T-1} \varphi_{1}\left(e_{n+j+d_{1}}\right) \varphi_{2}\left(e_{n+j+d_{2}}\right) \overline{\varphi_{1}}\left(e_{n+l+d_{1}}\right) \overline{\varphi_{2}}\left(e_{n+l+d_{2}}\right) .
$$

Cancellations occur for $l=j, l=j+d_{2}-d_{1}$, and $l=j+d_{1}-d_{2}$ \rightsquigarrow estimate sum for those (l, j) by T, rest by $\Gamma_{4}\left(E_{T}\right)$, we get:

$$
W^{2} \leq T\left(3 J T+J^{2} \Gamma_{4}\left(E_{T}\right)\right)
$$

Choosing J such as to balance the two terms,

$$
J=\left\lceil\frac{T}{\Gamma_{4}\left(E_{T}\right)}\right\rceil
$$

we obtain

$$
\left|\sum_{n=0}^{T-1} \varphi_{1}\left(e_{n+d_{1}}\right) \varphi_{2}\left(e_{n+d_{2}}\right)\right| \leq 2 T^{1 / 2} \Gamma_{4}\left(E_{T}\right)^{1 / 2}
$$

Main Results (More Relations)

-

$$
D\left(E_{T}\right) \ll T^{1 / 2} C\left(E_{T}\right)^{1 / 2} \ll T^{1 / 2} \Gamma_{2}\left(E_{T}\right)^{1 / 2} \ll T^{3 / 4} \Gamma_{4}\left(E_{T}\right)^{1 / 4}
$$

- Use basically the same proof strategy.
- $A\left(E_{T}\right) \ll T^{1 / 2} \Gamma_{4}\left(E_{T}\right)^{1 / 2}$
- Again same strategy ...
-

$$
\begin{aligned}
H\left(E_{T}\right) & \leq \frac{T}{m}+\frac{m-1}{m} \max _{1 \leq j \leq m} C\left(E_{T}^{j}\right) \\
& \ll \frac{T}{m}+\frac{m-1}{m} \max _{1 \leq j \leq m} \Gamma_{2}\left(E_{T}\right) \ll \frac{T}{m}+T^{1 / 2} \Gamma_{4}\left(E_{T}\right)^{1 / 2}
\end{aligned}
$$

- Proof idea: m prime \rightsquigarrow power maps are permutations
- $m=4$: special knowledge about square power map, representation as linear combination of permutations (specific to $m=4$)

An Example (Some Honesty)

- Let $e_{n}=\chi(\bar{n}), n \in \mathbb{N}_{0}, \chi:(\mathbb{Z} /(p))^{*} \rightarrow \mathbb{T}_{m}, \chi(\overline{0}):=1$ be a character sequence (\rightsquigarrow period $T=p$). Then, with power maps as perm.s the corr. term becomes at best $\ll p^{1 / 2}$ where estimate obtained by the Weil bound cannot be improved.
- With the (hybrid) Weil bound (and another relation), we can however give better direct estimates:

$$
\begin{array}{lr}
C\left(E_{p}\right) \leq 3 & <p^{3 / 4} \\
D\left(E_{p}\right) \ll p^{1 / 2} & <p^{7 / 8} \\
A\left(E_{p}\right) \ll p^{1 / 2} & <p^{3 / 4} \\
H\left(E_{p}\right) \leq \frac{p}{m}+3 & <\frac{p}{m}+p^{3 / 4}
\end{array}
$$

- Note 1: Here, C, D, A can also be bounded by $\Gamma_{2}, \Gamma_{1}, \Gamma_{2}$.
- Note 2: D, A also considered with arbitrary ω_{R} in place of ω_{T} \rightsquigarrow Weil bound not applicable!

Two-prime gen.: high Γ_{4}, low $C / D / A / H$

- Let $e_{n}=\chi(\bar{n}) \psi(\tilde{n}), n \in \mathbb{N}_{0}, \chi, \psi$ characters $\bmod p$ and q of order m, i.e., multiplicative group homomorphisms $\chi:(\mathbb{Z} /(p))^{*} \rightarrow \mathbb{T}_{m}, \psi:(\mathbb{Z} /(q))^{*} \rightarrow \mathbb{T}_{m} ; \overline{0}, \tilde{0} \mapsto 1$. We get $T=p q$.
- With the specific lags and permutations

$$
0, p, q, p+q \quad \text { and } \quad i d, c o n j, c o n j, i d
$$

we get many cancellations in the corr. term and the worst possible $\Gamma_{4}=p q$.

- We can however show

$$
\begin{array}{ll}
C \ll p \wedge q, & D \ll p^{1 / 2} q^{1 / 2}, \\
A \ll p^{1 / 2} \wedge q^{1 / 2}, & H \ll \frac{p q}{m}+p \vee q .
\end{array}
$$

- Hence, Γ_{4} is a more exact figure to detect 'pseudo-non-randomness'!

Developments

- Investigate the aperiodic and finite case (length N): need to restrict the lags further, similar techniques applicable

$$
\Gamma_{2}\left(E_{N}\right) \ll N^{1 / 2} \Gamma_{4}^{1 / 2}, \text { if } \Gamma_{4} \gg N^{1 / 3}
$$

- Hamming AC: treat composite cases, interesting question but perhaps not very relevant ...
- Find more cases of high/low Γ_{4} vs. high/low $C / D / A / H$

Developments

- Investigate the aperiodic and finite case (length N): need to restrict the lags further, similar techniques applicable

$$
\Gamma_{2}\left(E_{N}\right) \ll N^{1 / 2} \Gamma_{4}^{1 / 2}, \text { if } \Gamma_{4} \gg N^{1 / 3}
$$

- Hamming AC: treat composite cases, interesting question but perhaps not very relevant ...
- Find more cases of high/low Γ_{4} vs. high/low $C / D / A / H$

Thank you for your Patience/Attention!

