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Setup (as usual):

We consider:

Periodic sequences with period length T ,

over the finite alphabet Tm := {exp(2πij/m) : j = 1, . . . ,m},

and show results of the form: A≪ B, meaning

∃C : A ≤ C ·B.
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PR measures: Correlation

(Period.) Correlation Measure of order ℓ: (ei ∈ Tm, i ≥ 0)

Γℓ(e0, . . . , eT−1) = max
φ,D
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ϕ1(en+d1)ϕ2(en+d2) · · ·ϕℓ(en+dℓ)
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,

max over all ℓ-tuples of bijections and lags/shifts. (Γ → small)

Motivation: modelling signal stream distortions,
{reflect.s, Doppler effects} ↔ {time shifts, phase dist.s }
Very general!  not easily tractable. Simplifications:

phase shifts (i.e., mult. of en+di
with an m-th unit root)

conjugation
ℓ usually small, e.g., ℓ ∈ {1, 2, 4}

Example: Autocorrelation (ℓ = 2, conjugation only)

C(ET ) = max
1≤t<T
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PR measures: DFT, Ambiguity

Maximum discrete Fourier transform:

D(ET ) = max
0≤k<T
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Note: usually en 6∈ TT . Otherwise: correlation term with
ℓ = 1 and phase shifts only

Maximum ambiguity:

A(ET ) = max
1≤t,k<T
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Again: usually en 6∈ TT . Otherwise: correlation term with
ℓ = 2, phase shifts and conjugation only
Motivations/Applications :

D : orthogonal frequency division multiplexing
A : relevant in radar systems signal processing
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PR measures: Hamming AC

Hamming Autocorrelation:

H(ET ) = max
1≤t<T

T−1
∑

n=0

δ(en, en+t)

= max
1≤t<T

T−1
∑

n=0

1

m

m−1
∑

j=0

(enen+t)
j

Measures the maximum congruity between the sequence and
its shifts  will be high, e.g., for subperiodic sequences
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Relations: Γ2(ET ) ≪ T 1/2Γ
1/2
4 (ET )

Binary, finite case previously by
[Cassaigne, Mauduit, Sarközy: MR 1904866 ]

(Our proof idea: Cauchy-Schwarz and resolving |z|2 = z z̄.)

For any di, ϕi, (i = 1, 2) and positive integer J we have

J
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ϕ1(en+j+d1)ϕ2(en+j+d2)
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=:W.

Cauchy-Schwarz implies

W 2 ≤ T
T−1
∑

n=0

∣

∣

∣

∣

∣

∣

J−1
∑

j=0

ϕ1(en+j+d1)ϕ2(en+j+d2)

∣

∣

∣

∣

∣

∣

2



Relations between pseudorandomness measures

= T
J−1
∑

j,l=0

T−1
∑

n=0

ϕ1(en+j+d1)ϕ2(en+j+d2)ϕ1(en+l+d1)ϕ2(en+l+d2).

Cancellations occur for l = j, l = j + d2 − d1, and l = j + d1 − d2
 estimate sum for those (l, j) by T , rest by Γ4(ET ), we get:

W 2 ≤ T (3JT + J2Γ4(ET )).

Choosing J such as to balance the two terms,

J =

⌈

T

Γ4(ET )

⌉

we obtain
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T−1
∑

n=0

ϕ1(en+d1)ϕ2(en+d2)

∣
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∣

≤ 2T 1/2Γ4(ET )
1/2.
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Main Results (More Relations)

D(ET ) ≪ T 1/2C(ET )
1/2 ≪ T 1/2Γ2(ET )

1/2 ≪ T 3/4Γ4(ET )
1/4

Use basically the same proof strategy.

A(ET ) ≪ T 1/2Γ4(ET )
1/2

Again same strategy ...

H(ET ) ≤
T

m
+
m− 1

m
max

1≤j≤m
C(Ej

T )

≪
T

m
+
m− 1

m
max

1≤j≤m
Γ2(ET ) ≪

T

m
+ T 1/2Γ4(ET )

1/2

Proof idea: m prime  power maps are permutations

m = 4: special knowledge about square power map,
representation as linear combination of permutations
(specific to m = 4)
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An Example (Some Honesty)

Let en = χ(n̄), n ∈ N0, χ : (Z/(p))∗ → Tm, χ(0̄) := 1 be a
character sequence ( period T = p). Then, with power

maps as perm.s the corr. term becomes at best ≪ p1/2 where
estimate obtained by the Weil bound cannot be improved.

With the (hybrid) Weil bound (and another relation), we can
however give better direct estimates:

C(Ep) ≤ 3 < p3/4

D(Ep) ≪ p1/2 < p7/8

A(Ep) ≪ p1/2 < p3/4

H(Ep) ≤
p

m
+ 3 <

p

m
+ p3/4

Note 1: Here, C,D,A can also be bounded by Γ2,Γ1,Γ2.

Note 2: D,A also considered with arbitrary ωR in place of ωT

 Weil bound not applicable !
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Two-prime gen.: high Γ4, low C/D/A/H

Let en = χ(n̄)ψ(ñ), n ∈ N0, χ, ψ characters mod p and q of
order m, i.e., multiplicative group homomorphisms
χ : (Z/(p))∗ → Tm, ψ : (Z/(q))∗ → Tm; 0̄, 0̃ 7→ 1.
We get T = pq.

With the specific lags and permutations

0, p, q, p+ q and id, conj, conj, id

we get many cancellations in the corr. term and the
worst possible Γ4 = pq.

We can however show

C ≪ p ∧ q, D ≪ p1/2q1/2,

A≪ p1/2 ∧ q1/2, H ≪
pq

m
+ p ∨ q.

Hence, Γ4 is a more exact figure to detect
‘pseudo-non-randomness’ !
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Developments

Investigate the aperiodic and finite case (length N):
need to restrict the lags further, similar techniques applicable

Γ2(EN ) ≪ N1/2Γ
1/2
4
, if Γ4 ≫ N1/3

Hamming AC: treat composite cases, interesting question —
but perhaps not very relevant ...

Find more cases of high/low Γ4 vs. high/low C/D/A/H
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Thank you for your Patience/Attention !


