Type 1.x Generalized Feistel Structures

Shingo Yanagihara and Tetsu Iwata
Nagoya University, Japan
WCC 2013,
April 15-19, 2013, Bergen (Norway)

Generalized Feistel Structure (GFS)

Encryption

ciphertext y

N bits

merge into N bits

- Poor diffusion property
 - It requires many rounds to be secure.

• Generally, GFS has the sub-block-wise cyclic shift (π_s) .

• Generally, GFS has the sub-block-wise cyclic shift (π_s) .

Previous work [FSE 2010, Suzaki, Minematsu]

- Changing the permutation of Type 2 GFS from π_s
- There are permutations such that
 - the diffusion property and
 - the security against several attacks

are better than π_s .

The diffusion property and the security improve.

Previous work [IEICE 2013, Yanagihara, Iwata]

- FD (full diffusion): every output sub-blocks depend on all input sub-blocks
- For Type 1 GFS
 - $-\pi_s$: the worst permutation in terms of the diffusion property among permutations archive FD.
 - The construction of the best permutation

Previous work [IEICE 2013, Yanagihara, Iwata]

- For Type 3 GFS,
 - The condition of a permutation which cannot archive FD with any number of rounds.
- For Source-Heavy and Target-Heavy GFSs
 - $-\pi_s$: the best permutation in terms of the diffusion property.

Example of unclassified types of GFS

- Key schedule function of TWINE [SAC 2012]
 - Two nonlinear functions in ${\mathcal F}$ -Layer

Our work

- Propose Type 1.x GFS
 - covers Type 1 and Type 2 GFSs as special cases
- Propose a construction of a permutation for Type 1.x GFS with two nonlinear functions in F-Layer
- Present analysis of Type 1.x GFS with π_s
 - compare proposed construction with π_s
- Show experimental results for Type 1.x GFS for $3 \le d \le 8$

Type 1.x (d, η) GFS

d sub-blocks $(d \ge 3)$

- Type 1.x (d, 1) GFS \Leftrightarrow Type 1 GFS
- Type 1.x (d, d/2) GFS (d is even) \Leftrightarrow Type 2 GFS

Notation

- $\pi_s = (d-1, 0, 1, ..., d-2)$ (\leftarrow left cyclic shift)
- $\pi(i)$: the sub-block after applying π to the i-th sub-block.
- r_{ij} : the smallest number r such that $\pi^r(i) = j$.

DRmax [Suzaki, Minematsu, FSE 2010]

• DRmax $^{(d,\eta)}(\pi)$: The smallest round such that every output sub-blocks depend on all input sub-blocks.

DRmax [Suzaki, Minematsu, FSE 2010]

• DRmax $^{(d,\eta)}(\pi)$: The smallest round such that every output sub-blocks depend on all input sub-blocks.

Proposed construction for $\eta = 2$

Let $d \geq 5$ and a be an integer

such that $1 \le a \le d-3$

$$\pi_p = \begin{cases} (1, 3, 4, 2, 5, 6, \dots, d - 1, 0) & \text{if } a = 1\\ (1, 4, 0, 2, 5, 6, \dots, d - 1, 3) & \text{if } a = d - 3\\ (1, 4, a + 3, 2, 5, 6, \dots, a + 2, 3, a + 4, a + 5, \dots, d - 1, 0) & \text{otherwise} \end{cases}$$

Type 1.x (9,2) GFS with π_p when a=1

Properties of the proposed construction π_p

$$r_{01} = r_{32} = 1, r_{13} = a, r_{20} = d - 2 - a$$

DRmax of the proposed construction

Lemma Let $d \geq 5$. Then we have $DRmax^{(d,2)}(\pi_p) = 2d - 4$.

- Brief overview of the proof:
 Using the property,
 - The largest DRmax for encryption is $DRmax_{E,\pi_p(2)}^{(d,2)}(\pi_p) = 2(r_{13} + r_{20}) = 2d 4$
 - The largest DRmax for decryption is 2d-4, because the structures of encryption and decryption are equivalent.

DRmax with π_s

Lemma : For any $d \ge 3$ and $1 \le \eta \le \lfloor d/2 \rfloor$, we have $DRmax_{D,2\eta-3}^{(d,\eta)}(\pi_s) = max\{DRmax_{D,2\eta-3}^{(d,\eta)}(\pi_s), DRmax_{D,2\eta-1}^{(d,\eta)}(\pi_s)\}, where$

$$\operatorname{DRmax}_{D,2\eta-3}^{(d,\eta)}(\pi_s) = \begin{cases} \left(\frac{d-2}{\eta}\right)(d-\eta) + 2 & \text{if } (d-2) \bmod \eta = 0\\ \left\lfloor \frac{d-2}{\eta} \right\rfloor (d-2\eta) + 2(d-\eta) & \text{otherwise} \end{cases}$$

$$\operatorname{DRmax}_{D,2\eta-1}^{(d,\eta)}(\pi_s) = \begin{cases} \left(\frac{d-1}{\eta}\right)(d-\eta) + 1 & \text{if } (d-1) \bmod \eta = 0\\ \left\lfloor \frac{d-1}{\eta} \right\rfloor (d-2\eta) + 2(d-\eta) & \text{otherwise.} \end{cases}$$

For decryption direction

 $DRmax_{D,2\eta-3}^{(d,\eta)}(\pi_s) \ge 2d - 2\eta$ $DRmax_{D,2\eta-1}^{(d,\eta)}(\pi_s) \ge 2d - 2\eta$

$$DRmax^{(d,\eta)}(\pi_s) = max\{DRmax^{(d,\eta)}_{D,2\eta-3}(\pi_s), DRmax^{(d,\eta)}_{D,2\eta-1}(\pi_s)\}$$

A comparison of two lemmas

Experimental results

- Compute $DRmax^{(d,\eta)}(\pi)$ for all $3 \le d \le 8$ and $1 \le \eta \le \lfloor d/2 \rfloor$.
- List π_s and all optimum permutations in terms of the diffusion property.
- Present only the lexicographically first permutations in the equivalent classes.
- Result for $\eta=1$ is analyzed in [IEICE 2013]

Result for $\eta = 2$

d	π DRmax			
	$(1,3,0,2)_{p}^{1}$	4		
4	$(3,0,1,2)_s$	4		
		6		
	$(1,3,4,2,0)_p^1$			
5	$(1,4,0,2,3)_p^2$	6		
	$(3,0,4,2,1)_s$	7		
	$(1,3,4,2,5,0)_p^1$	8		
	$(1,4,0,2,5,3)_p^3$	8		
6	$(1,4,5,2,3,0)_p^2$	8		
	$(3,0,4,2,5,1)_s$	12		
	(3,4,5,0,2,1)	8		
	$(1,3,4,2,5,6,0)_p^1$	10		
	$(1,4,0,2,5,6,3)_p^4$	10		
7	$(1,4,5,2,3,6,0)_p^2$	10		
	$(1,4,5,2,6,0,3)_p^3$	10		
	$(3,0,4,2,5,6,1)_s$	16		
	$(1,3,4,2,5,6,7,0)_p^1$	12		
	$(1,4,0,2,5,6,7,3)_p^5$	12		
8	$(1,4,5,2,3,6,7,0)_p^2$	12		
0	$(1,4,5,2,6,0,7,3)_p^4$	12		
	$(1,4,5,2,6,7,3,0)_p^3$	12		
	$(3,0,4,2,5,6,7,1)_s$	24		

Subscript

- s: it is equivalent to π_s .
- p: it is equivalent to π_p .
- Superscript
 - the integer a for π_p .

• For $d \geq 5$, there are better permutations than π_s .

Result for $\eta = 3$

d	π	DRmax	d	π	DRmax
6	(1, 2, 5, 0, 3, 4)	5 [FSE 2010]	8	(1,6,0,5,7,4,3,2)	9
	$(3,0,5,2,1,4)_s$	6		(1,6,0,7,2,4,3,5)	9
7	(1, 2, 4, 0, 5, 6, 3)	7		(1,6,0,7,3,2,5,4)	9
	(1, 2, 6, 0, 5, 3, 4)	7		(1,6,5,0,7,4,2,3)	9
	(2,0,5,6,3,4,1)	7		(2,0,5,4,6,7,3,1)	9
	(3,0,1,5,6,4,2)	7		(2,0,5,6,3,4,7,1)	9
	$(3,0,5,2,6,4,1)_s$	9		(2,0,5,6,3,7,4,1)	9
8	(1, 2, 4, 0, 5, 6, 7, 3)	9		(2,4,5,6,3,0,7,1)	9
	(1, 2, 6, 0, 5, 3, 7, 4)	9		(3,0,1,5,6,4,7,2)	9
	(1, 2, 6, 0, 5, 7, 4, 3)	9		(3,0,1,6,7,4,5,2)	9
	(1, 2, 6, 7, 3, 4, 5, 0)	9		$(3,0,5,2,6,4,7,1)_s$	13
	(1,3,5,4,6,7,0,2)	9		(3, 2, 6, 5, 7, 4, 1, 0)	9
	(1,3,6,4,7,2,5,0)	9		(3,4,1,5,6,0,7,2)	9
	(1,3,6,5,7,4,0,2)	9		(3,4,1,6,7,2,0,5)	9
	(1,3,6,7,2,4,0,5)	9		(3,4,5,6,7,0,2,1)	9
	(1,6,0,4,7,2,5,3)	9		(3,5,1,6,7,4,0,2)	9

Permutations in green are analyzed in [FSE 2010].

Result for $\eta = 4$

d	π	DRmax
	(1, 2, 4, 0, 7, 6, 5, 3)	6
	(1, 2, 5, 0, 3, 6, 7, 4)	6 [FSE 2010]
	(1, 2, 5, 6, 7, 4, 3, 0)	6 [FSE 2010]
	(1, 2, 5, 7, 3, 0, 4, 6)	6
8	(1,3,5,6,7,4,0,2)	6
	(1,3,5,7,0,2,4,6)	6
	(2,4,7,5,1,0,3,6)	6
	(3,0,1,4,7,2,5,6)	6 [FSE 2010]
	$(3,0,5,2,7,4,1,6)_s$	8

- Some permutations do not exist in [FSE 2010] results.
 - Because [FSE 2010] paper observed "even-odd shuffles". (instead of all permutations)

Conclusion

- Proposed Type 1.x GFS
 - covers Type 1 and Type 2 GFSs
- Proposed a construction π_p for Type 1.x GFS
- Analysis of Type 1.x GFS with π_s
 - compared π_p to π_s in terms of the diffusion property
- Showed experimental results for Type 1.x GFS for $3 \le d \le 8$

Future work

- Analyze the security against various attacks
 - differential, linear, impossible differential, and saturation attacks
- Design optimum permutations for $\eta \geq 3$.