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Linear Codes

Linear Code
A linear [n, k] code C of length n is a k-dimensional subspace of the finite
vector space Fn

q and its n-bit elements are called codewords

Generator Matrix
• A k × n matrix G over Fq, is called a generator matrix for C if the rows
of G form a basis for C , so that C = {xG | x ∈ Fk

q}

Hamming Space
• The Hamming distance (metric) on Fn

q is the following mapping,

d : Fn
q × Fn

q → N : (x , y) 7→ d(x , y) :=| {i ∈ {1, 2, . . . , n} | xi 6= yi} |

• The pair (Fn
q, d) is a metric space, called the Hamming space of

dimension n over Fq, denoted by H(n, q)
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Equivalence of Linear Codes

Notion of Equivalence
What it means for codes to be essentially “different” but being of the same
quality?

The Celebrated MacWilliams Theorem (1961)

1. Any (linear) mapping between linear codes preserving the weight of the
codewords induces an equivalence for codes

2. Two codes C ,C ′ are of the same quality if there exists a mapping
ι : Fn

q 7→ Fn
q with ι(C) = C ′ which preserves the Hamming distance, i.e.

d(υ, υ′) = d(ι(υ), ι(υ′)), for all υ, υ′ ∈ Fn
q

3. These distance-preserving mappings are called isometries and the codes
C and C ′ will be called isometric
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Which are the Isometries of H(n, q)?

Permutation Equivalence: When Fq, q = 2
• Permutation of codeword coordinates
• C PE∼ C ′, if ∃ σ ∈ Sn: C ′ = σ(C) = {σ(x) | x = (x1, . . . , xn) ∈ C} where
σ(x) = σ(x1, . . . , xn) := (xσ−1(1), . . . , xσ−1(n))

Monomial or Linear Equivalence: When Fq, q is a prime
• Permutation of codeword coordinates and scaling of coordinate values

• C LE∼ C ′, if ∃ ι = (υ;σ) ∈ F∗q n o Sn:
C ′ = (υ;σ)(C) = {(υ;σ)(x) | (x1, . . . , xn) ∈ C} where
(υ;σ)(x1, . . . , xn) := (υ1xσ−1(1), . . . , υnxσ−1(n))
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Which are the Isometries of H(n, q)?

Semi-Linear Equivalence: When Fq, q = pr is a prime power
• Permutation of codeword coordinates and scaling of coordinate values
• Application of field automorphisms in each coordinate position

• C SLE∼ C ′, if (υ; (α, σ)) ∈ F∗q n o (Aut(Fq)× Sn) :
C ′ = (υ; (α, σ))(C) = {(υ; (α, σ))(x) | (xi )i∈In ∈ C} where
(υ; (α, σ))(x1, . . . , xn) = (υ1α(xσ−1(1)), . . . , υnα(xσ−1(n)))

The Linear Code Equivalence problem
• Parameters: n, k, q.
• Instance: two matrices G ,G ′ ∈ Fk×n

q such that C = 〈G〉, C ′ = 〈G ′〉

• Decisional: are 〈G〉 LE∼ 〈G ′〉?
• Computational: Find (υ;σ) ∈ F∗q n o Sn such that 〈G ′〉 = (υ;σ)(〈G〉)
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Importance of Code Equivalence

Relation to Error-Correcting Capability
Equivalent codes have the same error-correction properties
(i.e. decoding)

Relation of the Hardness of Code Equivalence in Cryptography
• The public key of the McEliece cryptosystem is a randomly permuted
matrix G ′ of the generator matrix G of a binary Goppa code [McEliece,
1978]

• Identification schemes from error-correcting codes
I Zero-knowledge protocols [Girault, 1990, Sendrier and Simos, 2013]
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What is known about Code Equivalence?

Complexity
PCE over F2 is difficult to decide in the worst case:
1. not NP-complete
2. at least as hard as Graph Isomorphism [Petrank and Roth, 1997]
3. Recent result for Fq: GI � PCE [Grochow, 2012]
4. PCE over Fq resists quantum Fourier sampling; Reduction of PCE to

the Hidden Subgroup Problem [Dinh, Moore and Russell, 2011]

Plan of this Talk
Exploit the average and worst-case hardness of the Linear Code
Equivalence problem over Fq
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What is known about Code Equivalence?

Recent Algorithms
• Mapping codes to graphs for PCE, LCE, SLCE over F2,F3,F4,
respectively [Östergård, 2002]

• Classification of ELC orbits of bipartite graphs for PCE over F2
[Danielsen and Parker, 2008]

• Adaptation of Hypergraph Isomorphism algorithms for PCE over Fq
[Babai, Codenotti and Grochow, 2011]

• Computation of canonical forms of linear codes for LCE over Fq
[Feulner, 2009, 2011]

• Support splitting algorithm for PCE over Fq [Sendrier, 2000]
• No efficient algorithm for LCE or SLCE is known

Important
Can we develop a polynomial-time algorithm for settling the Linear Code
Equivalence problem on the average case?
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The Support Splitting Algorithm (I)

SSA
• Solves the PCE problem (decisional and computational versions)
• Partition the support In of a code C ⊆ Fn

2 into small sets that are fixed
under operations of PAut(C)

Signatures and Invariants
• A mapping S is a signature if S(σ(C), σ(i)) = S(C , i)
• Property of the code and one of its positions (local property)
• S is called discriminant for C if there exist i , j ∈ In such that

S(C , i) 6= S(C , j) and fully discriminant if this holds ∀ i , j ∈ In

• A mapping V is an invariant if C ∼ C ′ ⇒ V(C) = V(C ′) (global
property, “∼” is w.r.t. to PCE but can be defined for LCE or SLCE)
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The Support Splitting Algorithm (II)

The Procedure [Sendrier, 2000]
• From given signature S and code C , we wish to build a sequence

S0 = S, S1, . . . , Sr of signatures of increasing “discriminancy” such that
Sr is fully discriminant for C (by succesive refinements of S)

• The idea is to label positions with different signature values; what
remains in the end reveals a matching between codeword coordinates

Fundamental Properties of SSA
1. SSA(C) returns a labeled partition P(S,C) of In = {1, . . . , n}
2. Assuming the existence of a fully discriminant signature, SSA(C)

recovers the desired permutation σ of C ′ = σ(C) (∀ i ∈ In ∃ unique
j ∈ In such that S(C , i) = S(C ′, j) and σ(i) = j)

3. If C ′ = σ(C) then P ′(S,C ′) = σ(P(S,C))

4. The output of SSA(C) where C =< G > is independent of G
11/25



The Support Splitting Algorithm (III)

Dual Code
C⊥ = {x ∈ Fn

q | 〈x , y〉 = 0 for all y ∈ C} where:
1. 〈x , y〉E =

∑n
i=1 〈xi , yi〉E =

∑n
i=1 xi yi = x1y1 + . . .+ xnyn ∈ Fq

2. 〈x , y〉H =
∑n

i=1 〈xi , yi〉H =
∑n

i=1 xi y i = x1y 2
1 + . . .+ xny 2

n ∈ F4

A Good Signature
The mapping (C , i) 7→ WH(Ci )(X), where H(C) = C ∩ C⊥ is the hull of a
code, is a signature which for random codes,
• commutes with permutations σ(H(C)) = H(σ(C)); Hence, any invariant
applied to H(C) still remains an invariant

• easy to compute because of the small dimension [Sendrier, 1997]
• discriminant, i.e. WH(Ci )(X) and WH(Cj )(X) are “often” different
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Heuristic Complexity of SSA

Complexity of Auxiliary Functions
• Gaussian Elimination for computing k × n generator matrices: O(n3)

• Cost for computing WC (X) for [n, h] code C : O(n2h)

Algorithmic Cost of SSA
Let C be a binary code of length n, and let h = dim(H(C)):
• First step: O(n3) +O(n2h)

• Each refinement: O(hn2) +O(n2h)

• Number of refinements: ≈ log n
Total (heuristic) complexity: O(n3 + 2hn2 log n)

• When h = O(1) =⇒ SSA runs in polynomial time
41.94% of codes over F2 have h = 0, 41.94% have h = 1, 13.98% have h = 2,
0.02% have h = 3 and so on..
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Computational vs. Decisional Code Equivalence

How are Computational and Decisional Problems Related?
• If one can explicitly solve the computational problems of code
equivalence then one can also solve its corresponding decisional versions

• The other direction is also possible (Sendrier and Simos, 2012)
• Provided that for the PCE problem we have access to an oracle; An
abstract version of SSA denoted by OrPCE(G ,G ′) ∈ {True,False}

Computational and Decisional PCE are equally hard
• Let G and G ′ span two [n, k] linear codes C and C ′ over Fq

• If OrPCE(G ,G ′) is True and OrPCE(Gi ,G ′j ) is True for some i , j ∈ In
then there exists σ ∈ Sn such that C ′ = σ(C) and j = σ(i)

• Building block of an algorithm that retrieves the permutational part of a
(semi)-linear isometry for the computational (S)LCE problems
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The Closure of a Linear Code (I)

Approach for the Generalization of SSA
• Reduce LCE or SLCE to PCE (similar approach by [Skersys, 1999])
• Recall that SSA solves PCE in O(n3) (for “several” instances)

Closure of a Code
Let Fq = {a0, a1, . . . , aq−1}, with a0 = 0, and a linear code C ⊆ Fn

q. Define
I(n)

q−1 as the cartesian product of Iq−1 × In where In = {1, . . . , n}. The
closure C̃ of the code C is a code of length (q − 1)n over Fq where,

C̃ = {(akxi )(k,i)∈I(n)
q−1
| (xi )i∈In ∈ C}

• C̃ contains every possible multiplication of the coordinate xi of a
codeword x = (xi )i∈In ∈ C with all nonzero elements of Fq
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The Closure of a Linear Code (II)

Dependance from a Lexicographical Ordering on F∗q = Fq\{0}
For example, the ordering (a1, 1) < . . . < (a1, n) < (a2, 1) < . . . (a2, n) <
. . . < (aq−1, 1) < . . . < (aq−1, n) gives a total order for Iq−1 × In, and gives
rise to the following closure,

C̃ = {(a1x1, . . . , a1xn, . . . , aq−1x1, . . . , aq−1xn) | (x1, . . . , xn) ∈ C}

Systematic Form of the Closure (Sendrier and Simos, 2012)

• Let p a primitive element of Fq = {0, p, p2, . . . , pq−2, pq−1 = 1}
• Define an ordering according to a cyclic shift of a power of p
• C̃sys = {(x1, px1 . . . , pq−2x1, . . . , xn, pxn . . . , pq−2xn) | (xi )i∈In ∈ C}
• Systematic form is unique

• Let C ,C ′ ⊆ Fn
q. Then C LE∼ C ′, if and only if C̃ PE∼ C̃ ′
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The Closure of a Linear Code (III)

The Closure is a Weakly Self-Dual Code (C ⊂ C⊥)

∀ x̃ , ỹ ∈ C̃ the Euclidean inner product is

x̃ · ỹ =

(
q−1∑
j=1

p2j

)
︸ ︷︷ ︸

=0 over Fq , q≥5

(∑
i xi yi

)
= 0

• Clearly dim(H(C̃)) = dim(C̃) and SSA runs in O(2dim(H(̃C)))

• The closure reduces LCE to the hard instances of SSA for PCE
• Exceptions are for q = 3 and q = 4 with the Hermitian inner product

Building Efficient Invariants from the Closure

• For any invariant V the mapping C 7−→ V(H(C̃)) is an invariant
• The dimension of the hull over Fq is on average a small constant 17/25



The Reduction of LCE to PCE
Illustration of the Reduction
• Ψ a linear isometry of the Hamming space H(n, q)

• τ a block-wise permutation of the generalized symmetric group
S(q − 1, n) := Cq−1 on Sn (The semidirect product of n copies of Cq−1
and Sn)

C Ψ−−−−−→ C ′y y
C̃ τ−−−−−→ C̃ ′y y
H(C̃)

τ−−−−−→ H(C̃ ′)

• The Linear Code Equivalence problem can be solved if we can
retrieve Ψ from τ

18/25



An Extension of SSA

A Good Signature for F3 and F4

• H̃(C) = H(C̃) (valid only for these fields)
• S(C̃ , i) =W

H(C̃i )
(X)

An Efficient Algorithm for Solving LCE
• Input: C ,C ′,S
1. Compute C̃ and C̃ ′

2. P(S, C̃)←− SSA(C̃) and P ′(S, C̃ ′)←− SSA(C̃ ′)

3. If P ′(S, C̃ ′) = τ(P(S, C̃)) return τ ; else C � C ′ w.r.t. LCE

4. C̃ ′ = τ(C̃) and a Gaussian elimination (GE) on the permuted generator
matrices of the closures will reveal the scaling coefficients

• Note: For SLCE we only have to consider an additional GE
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Heuristic Complexity for SSA and its Extension

Polynomial extension of SSA
• For F3 and F4 but still exponential for all other cases..

Algorithm Field Random codes Weakly self-dual codes
(alphabet) (average-case) (worst-case)

SSA F2 O(n3) O(2kn2 log n)
SSA extension F3 O(n3) O(3kn2 log n)
SSA extension F4 O(n3) O(22kn2 log n)
SSA extension Fq, q ≥ 5 O(qkn2 log n) O(qkn2 log n)

Remark
The hardness of Linear Code Equivalence arises from the absence of an
easy computable invariant not the inexistence of an algorithm!
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Can we Do Better?

What about Fq, q ≥ 5?
• If C ∼ C ′ w.r.t. LCE or SLCE =⇒ H(C) ∼ H(C ′) w.r.t. LCE or

SLCE is not true
• The hull is not an invariant for LCE or SLCE over Fq, q ≥ 5
• (The weight enumerator) of the hull of the closure is not an easy
computable invariant over Fq, q ≥ 5 (closure is weakly self-dual)

Conjecture (Sendrier and Simos, 2012)
The Linear Code Equivalence problem seems to be hard for all instances
over Fq, q ≥ 5
• Supported by some impossibility results on the Tutte polynomial of a
graph which corresponds to the weight enumerator of a code

• Evaluation of weight enumerator is always hard except for a handful of
points which correspond to Fq for q ∈ {2, 3, 4} (Vertigan, 1998)
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Research Problems

Related to Invariants
• Are all invariants related to the weight enumerator of a code?
• Do we already know all easy computable invariants?

Related to the Closure
• Other reductions of LCE or SLCE to PCE?

Related to Code-based Cryptography
• LCE or SLCE seems to be hard over Fq, q ≥ 5
• Can we build zero-knowledge protocols or other cryptographic schemes
based on the hardness of LCE or SLCE?
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Summary

Highlights
1. We defined the closure of a linear code
2. We presented a generalization of the support splitting algorithm for

solving the Linear Code Equivalence problem for F3 and F4
3. We conjectured that the Linear Code Equivalence problem over Fq,

q ≥ 5 is hard for almost all instances

Future Work
Solve (some) of the research problems..!
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Questions - Comments

Thanks for your Attention!

{nicolas.sendrier,dimitrios.simos}@inria.fr
dsimos@sba-research.org
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