Covering Sets for Limited-Magnitude Errors

Torleiv Kløve and Moshe Schwartz

Channel model

Let μ, λ be integers such that $0 \leq \mu \leq \lambda$, and let q be a positive integer.

In the $(\lambda, \mu ; q)$ limited-magnitude error channel an element $a \in \mathbb{Z}_{q}$ can be changed into any element in the set

$$
\{(a+e) \bmod q \mid-\mu \leq e \leq \lambda\}
$$

Some notations

For integers a, b, where $a \leq b$, we let

$$
\begin{gathered}
{[a, b]=\{a, a+1, a+2, \ldots, b\},} \\
{[a, b]^{*}=[a, b] \backslash\{0\} .}
\end{gathered}
$$

In particular, for $0 \leq \mu \leq \lambda$,

$$
M=[-\mu, \lambda]^{*}=\{-\mu,-\mu+1,-\mu+2, \ldots,-1\} \cup\{1,2, \ldots, \lambda\}
$$

For any $S \subseteq \mathbb{Z}_{q}$ we define

$$
M S=\left\{x s \in \mathbb{Z}_{q} \mid x \in M, s \in S\right\}
$$

Packing sets and error correcting codes

If $|M S|=(\mu+\lambda)|S|$, then S is packing set.
A packing set S where $0 \notin M S$ is a $B[-\mu, \lambda](q)$ set.
If $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, where $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a $B[-\mu, \lambda](q)$ set, then

$$
\left\{\mathbf{x} \in \mathbb{Z}_{q}^{n} \mid \mathbf{x} \cdot \mathbf{s} \equiv 0 \quad(\bmod q)\right\}
$$

is a code that can correct a single limited-magnitude error from the set $[-\mu, \lambda]$.
Such codes have been studied in a number of papers by a number of people; see references in the proceedings.

Covering sets and covering codes

A set S is called a $(\lambda, \mu ; q)$ covering set if $M S=\mathbb{Z}_{q}$. The corresponding code is a covering code.

For packing sets, we want to pack as many disjoint translates Ms, $s \in S$ as possible into \mathbb{Z}_{q}.

For the covering set, we are interested in having the union of Ms, $s \in S$, cover \mathbb{Z}_{q} entirely with S being as small as possible.

Covering sets

Covering sets is the topic for this talk.
Goal: determine or estimate $\omega(q)=\omega_{\lambda, \mu}(q)$, the smallest size of a $(\lambda, \mu ; q)$ covering set.

Two bounds

- A Hamming type bound:

$$
\omega_{\lambda, \mu}(q) \geq\left\lceil\frac{q}{\lambda+\mu}\right\rceil
$$

Two bounds

- A Hamming type bound:

$$
\omega_{\lambda, \mu}(q) \geq\left\lceil\frac{q}{\lambda+\mu}\right\rceil
$$

- A BCH type bound:

Let p be a prime, and let g be a primitive element in \mathbb{Z}_{p}. If $[-\mu, \lambda]^{*}$ contains δ consecutive powers of g then

$$
\omega_{\lambda, \mu}(p) \leq\left\lceil\frac{p-1}{\delta}\right\rceil+1
$$

Simple examples

Example

For $\mu=0$ and $\lambda=1$ we clearly have $M S=S$ for all sets S. Hence, $\omega_{1,0}(q)=q$.

Example

Let $\mu=\lambda=1$. Clearly $|M S| \leq 2|S|$. Hence

$$
\omega_{1,1}(q) \geq\left\lceil\frac{q}{2}\right\rceil .
$$

On the other hand

$$
M\left[1,\left[\frac{q}{2}\right]\right]=\mathbb{Z}_{q} .
$$

Hence

$$
\omega_{1,1}(q)=\left\lceil\frac{q}{2}\right\rceil .
$$

On the general situation

For $\lambda \geq 2$, it seems to be quite complicated to determine and ω in many cases.

Here, we consider $\omega_{2,0}(q)$ and $\omega_{2,1}(q)$.

$\omega_{2,0}(q)$ for odd q

If $p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{s}^{t_{s}}$ is the prime factorization of q, let

$$
q_{0}=\prod_{\substack{1 \leq i \leq s \\ p_{i} \in \mathcal{P}_{0}}} p_{i}^{t_{i}}
$$

where P_{o} is the set of odd primes p such that $\operatorname{ord}_{p}(2)$ is odd. Then

$$
\omega_{2,0}(q)=\frac{q+1}{2}+\sum_{d \mid q_{0}, d>1} \frac{\varphi(d)}{2 \operatorname{ord}_{d}(2)} .
$$

$\omega_{2,0}(q)$ for $q \equiv 2(\bmod 4)$

- For $m \geq 0$ we have $\omega_{2,0}(4 m+2)=2 m+1$.

$\omega_{2,0}(q)$ for $q \equiv 2(\bmod 4)$

- For $m \geq 0$ we have $\omega_{2,0}(4 m+2)=2 m+1$.
- Proof:

$\omega_{2,0}(q)$ for $q \equiv 2(\bmod 4)$

- For $m \geq 0$ we have $\omega_{2,0}(4 m+2)=2 m+1$.
- Proof:
- By the upper bound, $\omega_{2,0}(4 m+2) \geq 2 m+1$.

$\omega_{2,0}(q)$ for $q \equiv 2(\bmod 4)$

- For $m \geq 0$ we have $\omega_{2,0}(4 m+2)=2 m+1$.
- Proof:
- By the upper bound, $\omega_{2,0}(4 m+2) \geq 2 m+1$.
- On the other hand, $\{1,3,5, \ldots, 4 m+1\}$ is a covering set of size $2 m+1$.

$\omega_{2,0}(q)$ for $q \equiv 0(\bmod 4)$

- For all $m \geq 1$ we have $\omega_{2,0}(4 m)=2 m+\omega_{2,0}(m)$.
$\omega_{2,0}(q)$ for $q \equiv 0(\bmod 4)$
- For all $m \geq 1$ we have $\omega_{2,0}(4 m)=2 m+\omega_{2,0}(m)$.
- Let D be an optimal $(2,0 ; m)$ covering set. The set

$$
\{2 a+1 \mid a \in[0,2 m-1]\} \cup\{4 d \mid d \in D\}
$$

is easily seen to be a $(2,0 ; 4 m)$ set of size $2 m+\omega_{2,0}(m)$. Hence,

$$
\omega_{2,0}(4 m) \leq 2 m+\omega_{2,0}(m) .
$$

$\omega_{2,0}(q)$ for $q \equiv 0(\bmod 4)$

- For all $m \geq 1$ we have $\omega_{2,0}(4 m)=2 m+\omega_{2,0}(m)$.
- Let D be an optimal $(2,0 ; m)$ covering set. The set

$$
\{2 a+1 \mid a \in[0,2 m-1]\} \cup\{4 d \mid d \in D\}
$$

is easily seen to be a $(2,0 ; 4 m)$ set of size $2 m+\omega_{2,0}(m)$. Hence,

$$
\omega_{2,0}(4 m) \leq 2 m+\omega_{2,0}(m) .
$$

- To show that $\omega_{2,0}(4 m) \geq 2 m+\omega_{2,0}(m)$ is also relatively easy.

$\omega_{2,1}(q)$ for q odd

- For all $m \geq 1$ we have $\omega_{2,1}(2 m+1)=m+1$.

$\omega_{2,1}(q)$ for q odd

- For all $m \geq 1$ we have $\omega_{2,1}(2 m+1)=m+1$.
- The set $[0, m]$ is clearly a $(1,1 ; 2 m+1)$ covering set. Hence $\omega_{1,1}(2 m+1)=m+1$.

$\omega_{2,1}(q)$ for q odd

- For all $m \geq 1$ we have $\omega_{2,1}(2 m+1)=m+1$.
- The set $[0, m]$ is clearly a $(1,1 ; 2 m+1)$ covering set. Hence $\omega_{1,1}(2 m+1)=m+1$.
- This implies that $\omega_{2,1}(2 m+1) \geq \omega_{1,1}(2 m+1)=m+1$.

$\omega_{2,1}(q)$ for q odd

- For all $m \geq 1$ we have $\omega_{2,1}(2 m+1)=m+1$.
- The set $[0, m]$ is clearly a $(1,1 ; 2 m+1)$ covering set. Hence $\omega_{1,1}(2 m+1)=m+1$.
- This implies that $\omega_{2,1}(2 m+1) \geq \omega_{1,1}(2 m+1)=m+1$.
- To show that $\omega_{2,1}(2 m+1)=\omega_{1,1}(2 m+1)$ is a little tricky.

$\omega_{2,1}(q)$ for $q \equiv 0(\bmod 4)$

- For all $m \geq 1$ we have $\omega_{2,1}(4 m)=m+\omega_{2,1}(m)$.
$\omega_{2,1}(q)$ for $q \equiv 0(\bmod 4)$
- For all $m \geq 1$ we have $\omega_{2,1}(4 m)=m+\omega_{2,1}(m)$.
- Let D be an optimal $(2,1 ; m)$ covering set. The set

$$
\{2 a+1 \mid a \in[0, m-1]\} \cup\{4 d \mid d \in D\}
$$

is easily seen to be a $(2,1 ; 4 m)$ set of size $m+\omega_{2,0}(m)$. Hence,

$$
\omega_{2,1}(4 m) \leq m+\omega_{2,1}(m)
$$

$\omega_{2,1}(q)$ for $q \equiv 0(\bmod 4)$

- For all $m \geq 1$ we have $\omega_{2,1}(4 m)=m+\omega_{2,1}(m)$.
- Let D be an optimal $(2,1 ; m)$ covering set. The set

$$
\{2 a+1 \mid a \in[0, m-1]\} \cup\{4 d \mid d \in D\}
$$

is easily seen to be a $(2,1 ; 4 m)$ set of size $m+\omega_{2,0}(m)$. Hence,

$$
\omega_{2,1}(4 m) \leq m+\omega_{2,1}(m)
$$

- To show that $\omega_{2,1}(4 m) \geq m+\omega_{2,1}(m)$ is also relatively easy.

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

- This case is harder.
$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$
- This case is harder.
- Optimal sets for $q \geq 18$:

$4 m+2$	$\omega_{2,1}(4 m+2)$	an optimal $(2,1 ; 4 m+2)$ covering set
2	1	$\{1\}$
6	3	$\{1,3,5\}$
10	4	$\{1,3,4,5\}$
14	6	$\{1,3,4,5,7,12\}$
18	8	$\{1,3,4,5,7,8,9,12\}$

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

- A lower bound:

For all $m \geq 1$ we have

$$
\omega_{2,1}(4 m+2) \geq \frac{3 m}{2}+1
$$

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

- A lower bound:

For all $m \geq 1$ we have

$$
\omega_{2,1}(4 m+2) \geq \frac{3 m}{2}+1
$$

- For an upper bound:

Let v_{2} denote the 2-ary evaluation, that is $n=2^{v_{2}(n)} n_{1}$, where n_{1} is odd.

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

- For $m \geq 0$, let $S=X \cup Y \cup Z$, where

$$
\begin{aligned}
& X=\{2 a+1 \mid a \in[0, m]\} \\
& Y=\left\{\left.c \in\left[1,4\left\lfloor\frac{m}{3}\right\rfloor+2\right] \right\rvert\, v_{2}(c)=1\right\}, \\
& Z=\left\{\left.c \in\left[1,8\left\lfloor\frac{m}{3}\right\rfloor\right] \right\rvert\, v_{2}(c) \text { is odd and } v_{2}(c) \geq 3\right\} .
\end{aligned}
$$

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

- For $m \geq 0$, let $S=X \cup Y \cup Z$, where

$$
\begin{aligned}
& X=\{2 a+1 \mid a \in[0, m]\} \\
& Y=\left\{\left.c \in\left[1,4\left\lfloor\frac{m}{3}\right\rfloor+2\right] \right\rvert\, v_{2}(c)=1\right\} \\
& Z=\left\{\left.c \in\left[1,8\left\lfloor\frac{m}{3}\right\rfloor\right] \right\rvert\, v_{2}(c) \text { is odd and } v_{2}(c) \geq 3\right\} .
\end{aligned}
$$

- S is a $(2,1 ; 4 m+2)$ covering set.

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

$$
\begin{aligned}
& |X|=m+1, \\
& |Y|=\left\lfloor\frac{m}{3}\right\rfloor+1, \\
& |Z|=\sum_{j \geq 1}\left\lfloor 2^{1-2 j}\left\lfloor\frac{m}{3}\right\rfloor+\frac{1}{2}\right\rfloor<\frac{2}{3}\left\lfloor\frac{m}{3}\right\rfloor+\left\lceil\left.\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right) \right\rvert\, .\right.
\end{aligned}
$$

$\omega_{2,1}(q)$ for $q \equiv 2(\bmod 4)$

$$
\begin{aligned}
& |X|=m+1, \\
& |Y|=\left\lfloor\frac{m}{3}\right\rfloor+1, \\
& |Z|=\sum_{j \geq 1}\left\lfloor 2^{1-2 j}\left\lfloor\frac{m}{3}\right\rfloor+\frac{1}{2}\right\rfloor<\frac{2}{3}\left\lfloor\frac{m}{3}\right\rfloor+\left\lceil\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right)\right\rceil .
\end{aligned}
$$

$$
\frac{3 m+2}{2} \leq \omega_{2,1}(4 m+2)<\frac{14 m+18}{9}+\left\lceil\frac{1}{2} \log _{2}\left(\left\lfloor\frac{m}{3}\right\rfloor+1\right)\right\rceil .
$$

A recursive construction

- Let $S^{\prime} \subseteq \mathbb{Z}_{2 m+1}$ be a $(2,2 ; 2 m+1)$ covering set such that $S^{\prime} \subseteq[0, m]$.

A recursive construction

- Let $S^{\prime} \subseteq \mathbb{Z}_{2 m+1}$ be a $(2,2 ; 2 m+1)$ covering set such that $S^{\prime} \subseteq[0, m]$.
- Let $S=X \cup Y$, where the sets $X, Y \subseteq \mathbb{Z}_{4 m+2}$ are defined by

$$
X=\{2 a+1 \mid a \in[0, m]\}, Y=\left\{2 s^{\prime} \mid s^{\prime} \in S^{\prime}\right\} \backslash\{0\}
$$

A recursive construction

- Let $S^{\prime} \subseteq \mathbb{Z}_{2 m+1}$ be a $(2,2 ; 2 m+1)$ covering set such that $S^{\prime} \subseteq[0, m]$.
- Let $S=X \cup Y$, where the sets $X, Y \subseteq \mathbb{Z}_{4 m+2}$ are defined by

$$
X=\{2 a+1 \mid a \in[0, m]\}, Y=\left\{2 s^{\prime} \mid s^{\prime} \in S^{\prime}\right\} \backslash\{0\}
$$

- S is a $(2,1 ; 4 m+2)$ covering set.

A recursive construction

- Let $S^{\prime} \subseteq \mathbb{Z}_{2 m+1}$ be a $(2,2 ; 2 m+1)$ covering set such that $S^{\prime} \subseteq[0, m]$.
- Let $S=X \cup Y$, where the sets $X, Y \subseteq \mathbb{Z}_{4 m+2}$ are defined by

$$
X=\{2 a+1 \mid a \in[0, m]\}, Y=\left\{2 s^{\prime} \mid s^{\prime} \in S^{\prime}\right\} \backslash\{0\}
$$

- S is a $(2,1 ; 4 m+2)$ covering set.
- $\omega_{2,1}(4 m+2) \leq m+\omega_{2,2}(2 m+1)$.

Optimal $(2,1)$ sets

- If $v_{2}\left(\operatorname{ord}_{p}(2)\right) \geq 2$ for any prime p dividing $2 m+1$, then

$$
\omega_{2,1}(4 m+2)=\frac{3 m}{2}+1
$$

Optimal $(2,1)$ sets

- If $v_{2}\left(\operatorname{ord}_{p}(2)\right) \geq 2$ for any prime p dividing $2 m+1$, then

$$
\omega_{2,1}(4 m+2)=\frac{3 m}{2}+1 .
$$

- Of the first 1000 even $m, 390$ satisfy the condition, the first ten are $2,6,8,12,14,18,20,26,30,32$.

Optimal $(2,1)$ sets

- If $v_{2}\left(\operatorname{ord}_{p}(2)\right) \geq 2$ for any prime p dividing $2 m+1$, then

$$
\omega_{2,1}(4 m+2)=\frac{3 m}{2}+1 .
$$

- Of the first 1000 even $m, 390$ satisfy the condition, the first ten are $2,6,8,12,14,18,20,26,30,32$.
- Of the 5000 even m below 10000, 1745 satisfy the condition.

Some new results - not in proceedings

- Expression for $\omega_{2,2}(2 m+1)$ (somewhat complicated).

Some new results - not in proceedings

- Expression for $\omega_{2,2}(2 m+1)$ (somewhat complicated).
- $\omega_{2,2}(4 m+2)=m+1$.

Some new results - not in proceedings

- Expression for $\omega_{2,2}(2 m+1)$ (somewhat complicated).
- $\omega_{2,2}(4 m+2)=m+1$.
- $\omega_{2,2}(4 m)=m+\omega_{2,2}(m)$

Some new results - not in proceedings

- Expression for $\omega_{2,2}(2 m+1)$ (somewhat complicated).
- $\omega_{2,2}(4 m+2)=m+1$.
- $\omega_{2,2}(4 m)=m+\omega_{2,2}(m)$
- $\omega_{2,1}(4 m+2)=m+\omega_{2,2}(2 m+1)$.

THANK YOU

