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Binary codes

What is a code?

@ Let F ={0,1}.
@ A subset C of 7" is called a (binary) code of length n.
@ An element of a code C is called a codeword.

v

Minimum distance of a code

@ Hamming distance between two vectors u, v € F", denoted by d(u, v),
is the number of coordinates where they differ.

@ Minimum distance of a code C is defined by

min{d(u, v)|u,v € C,u # v}.
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A fundamental problem in coding theory

A fundamental problem in coding theory

Definition

Given n and d, define

A(n,d) = maximum number of codewords
in any code of length n and
minimum distance > d.

@ Determining the exact values of A(n, d) is an extremely difficult problem
(for large n).

@ Since A(n,d) = A(n+1,d + 1) if d is odd, we can always assume that
d is even.

@ When d is even, all values of A(n, d) are known for n < 16.

@ For an unknown A(n, d), one may try to find its lower and upper bound.
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Distance distribution of a code

Let C be a code of length n. The distance distribution {A;}_, of C is defined
by
1

Ai:@

{(u,v) € C® | d(u,v) = i}

fori=0,1,...,n.

@ By definition, Ay=1 and Y[ A =IC|

Delsarte’s linear programming bound

@ For upper bounds on A(n, d), Delsarte’s linear programming bound is a
powerful bound.

@ Delsarte’s linear programming bound is based on the fact that the
following linear combinations of the distance distribution {A;}7_, are
nonnegative (as follows).
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Theorem (Delsarte)

Let C be a code with distance distribution {A;}/L,. Fork =1,2,...,n,

n
Z Px(n; )Ai > 0,

i=0

where Pk(n; x) is the Krawtchouk polynomial given by

Pi(n; x) = i(‘”i <)](> (7(_—)/() .
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

A(n,d) <1+ [max(As +Ax + - + An)],

where the maximization is taken over all (A1, Az, ..., Ap) satisfying A; > 0 for
i=1,2,...,nand satisfying the above linear constraints.

Theorem (Delsarte’s linear programming bound)

v

@ If dis even, then A(n, d) is attained by a code with all vectors having
even weights.

@ Hence, if d is even, then we can put A; = 0 if / is odd.
@ Also, by definition, A; =0if 0 </ < d.

A
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Theorem (Delsarte’s linear programming bound and its improvements)
Let C be a code with distance distribution {A;}7.,. Fork =1,2,...,n,

> Pu(m; A > 0.

i=0
If M = |C| is odd, then
L , 1/n
;Pk(n, DA > 7 (k) :

If M = |C| = 2 (mod 4), then there exists t € {0, 1,...,n} such that
! n

;Pk(n; NA; > % [(k) + Pi(m; t)] )
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Result 1

@ We prove simultaneously Delsarte’s linear programming bound and its
well known improvements.

@ The proof is based on counting the number of 2 x k submatrices of C,
where C is considered as a |C| x n matrix (each codeword in C is a row).

Foreach k =1,2,..., n, we introduce polynomials
k k
X n—x X n—x
P_(n; x) = ) . and Pl(n;x) = ()( )
() ;(J(k—/) i) ,Z:; i) \k=j
jodd j even

It follows that P}/ (n; x) + P, (n; x) = (). The polynomial
Pi(n; x) := P (n; x) — P, (n; x) is called the Krawtchouk polynomial.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

The proof immediately follows from the following lemma.

Lemma

Let C be a code with size M and distance distribution {A;}7_, and let  be the
number of columns of C containing an odd number of ones. For each

k=1,2,....n,
é P (mi)A < % [N (Z) — 6P (m; t)] ()

and
_izn;Pk*(n;i)A;<—(M—1)(Z)+A2/I[N(Z)—apk*(n;r)], )

where N and ¢ are given by
M if Mis even 1 if M=2(mod 4)
and ¢ =

4
# if M is odd 0 otherwise

N =
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma

@ Write C = (Cmi), 1 < m<|C|,1 < i< n. Let Si(k) be the number of
2 x k matrices
A— Cmiy  Cmiy, -+ Cmi,
Cii; Ci, -+ Ci

suchthatm# 1, iy < b < --- < Iy, and A contains an odd number of 1’s.
@ The entries of A are on the intersection of two rows and k columns of C. |
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ For an ordered pair (u, v) of different rows of C, to get such a matrix A
choose j coordinates (j odd) where u and v are differ and choose k — j
coordinates where u and v are the same.

d(u,v) n—dlu,v)

u

choose j columns chocse k — j

(7 odd) from here columns from here
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ Hence, an ordered pair (u, v) will contribute

§ (440) (799 -t

jodd

to Si(k). Therefore, )
Sik) = D Po(md(u,v))=>" > Po(ni)

u,veC i=1 u,veC
u#v d(u,v)=i
n
= 2 Pclmi) >
i=1 u,veC
d(u,v)=i

n
= MY P (mi)A.
i=1
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ Let uj, us, ..., up,be the ncolumns of C.
1{';1 u';,g u;g‘- E:’:l u;.g;
1
in Foowt(3n, u:i\ )
1
0
'L.‘ - i
P M= w3 ug)
0
@ For k columns u;, uj,, ..., u; , to get such a matrix A choose one row
such that the intersection of this row with the k columns has an odd
number of 1’s and choose another row such that the intersection of that
row with the k columns has an even number of 1’s.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ Hence,

Sik)y=2 > wi(up + -+ UM — wi(ui + -+ up)].

iy <ip<+--<ig
@ If Mis odd, then § = 0 by definition. Forall i1 < b < - - < i,

M—1M+1 M —1

2 2 = 4 N:

wi(ui +- -+ up ) [M—wt(u, +- -+ u; )] <

@ So
n

Siky<2 > N:ZN(Z) :Q[N(k) 75P;r(n;t)].

it <lp<---<lk

@ Therefore, (1) is proved if M is odd.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ If M =0 (mod 4), then 6 = 0 by definition. Forall iy < b < - -+ < ik,

) MM _ M
Wt(U,q +...+u;k)[M— wt(uj, + +U,k)] S 292 4 = i

@ So n n
Si(k) < 2N(k) =2 [N(k) — 6P (m; t)} .

@ Therefore, (1) is proved if M = 0 (mod 4).
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ If M =2 (mod 4), then § = 1 by definition.

@ Let / be the collection of coordinates i such that the column u; contains
an odd number of 1’s.

@ If [{i1,b,...,ix} NI is odd, then

, p ; MM M
Wt(ui1+...+u;k)[M_Wt(ui1+...+uik)]§EE:T:N.
@ However, if [{ii, i2,..., ik} N | is even, then
M—-2M+2
wt(ui, + -+ U )M — wit(uj, + - - + uj )] < - T+:N_1'

IA

Si(k)

2( > N + > N1>

[{i1,i2,---»ix 31| odd {it i, 301 €VEN

= 2 [N(Z) — 5P (m; t)].

@ Hence, (1) is proved if M = 2 (mod 4).
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Proof of Lemma (continued)

@ For (2), one can count (two times of) the number of 2 x k submatrices A
such that A contains an even number of 1’s or just use the equality

Zn: P~ (m; i)A; +2n: PH(n; i)A = (M — 1) (Z) :




Results on binary codes
0000000000000 0e

Delsarte’s linear programming bound for binary codes

Counting the number of 2 x kK submatrices

Theorem (Delsarte’s linear programming bound and its improvements)
Let C be a code with distance distribution {A;}/L,. Fork =1,2,...,n,

Zn:Pk(n;i)A,-z -(4)-

If M =|C| is odd, then
> min> - (7) + 4 (1):

i=1
If M = |C| = 2 (mod 4), then there exists t € {0, 1, ..., n} such that
n
: n 2 1/n
;Pk(n, NA; > — (k) I Vi [(k) + Pr(m; t)] .

Proof of Theorem

Take sum of inequalities (1) and (2) in the above lemma.
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New upper bounds for binary constant-weight codes

Upper bounds for A(n, d, w)

Definition

Given n, d, and w, define

A(n,d,w) = maximum number of codewords
in any code of length n and
minimum distance > d such that
each codeword has exactly w ones.
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New upper bounds for binary constant-weight codes

Counting the number of 1 x kK submatrices

Proposition (1-row k-column formula)

Let C be a code of length n and constant-weight w. Foreach k =1,2,...,n,

> owt(up + -+ up) = MP (n;w),

i1<"'<ik

where the sum is taken over all (i, iz, . .., i) such that iy < ip < - -+ < ik.

Sketch of proof

Count the number of 1 x k submatrices of C containing an odd number of 1’s.
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New upper bounds for binary constant-weight codes

Counting the number of 2 x kK submatrices

Result 2 (2-row k-column formula)

Let C be a code of length n and constant-weight w. Foreach k =1,2,...,n,

> vzt < 5 [((7) ) i -a)

i=d/2
+c(Q +1)(M — g — 1)]
and

-3 Aozt < [((7) - %) - a

i=d/2

g+ DM = age— D= M—1) (7)),

where gk and ri are the quotient and the remainder, respectively, when
dividing MP, (n; w) by (1), i.e., MP, (m;w) = g« (}) + e, with 0 < re < () .
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New upper bounds for binary constant-weight codes

New upper bounds on A(n,d, w)

Sketch of proof

Count (two times of) the number of 2 x k submatrices of C containing an odd
(even) number of 1’s.

Result 2 gives the following new upper bounds for A(n,d, w), n < 28.

A(18,6,8) < 427 (428)
A(18,6,9) < 424 (425)
A(20,6,10) < 1420  (1421)
A(27,6,11) < 66078  (66079)
A(27,6,12) < 84573 (84574)
A(27,6,13) < 91079  (91080)
A(28,6,11) < 104230 (104231)
A(28,6,13) < 164219 (164220)
A(28,6,14) < 169739 (169740)
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New upper bounds for binary constant-weight codes

New upper bounds on A(n,d, w)

New upper bounds

A(24,10,10) < 170 (171)
A(24,10,11) < 222 (223)
A(24,10,12) < 246 (247)
A(26,10,9) < 213 (214)
A(27,10,9) < 298 (299)
A(28,10,14) < 2628 (2629)
A(26,12,10) < 47  (48)
A(27,12,12) < 139  (140)
A(27,12,13) < 155 (156)
A(28,12,11) < 148  (149)
A(28,12,12) < 198  (199)
A(28,12,13) < 244  (245)
A(28,12,14) < 264 (265)
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g-ary codes

g-ary codes

Generalizations to g-ary codes

@ Results 1 and 2 appeared in [B. G. Kang, H. K. Kim, and P. T. Toan,
“Delsarte’s linear programming bound for constant-weight codes," IEEE
Trans. Inf. Theory, vol. 58, no. 9, pp. 5956-5962, Sep. 2012].

@ In the remaining, we generalize Results 1 and 2 to g-ary codes.
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g-ary codes

Definition

Definition
Let Fq be a finite field with g elements. A subset C of Fg is called a g-ary
code of length n.

Definition
Given n and d, define

Aq(n,d) = maximum number of codewords
in any g-ary code of length n and
minimum distance > d.

Given n, d, and w, define

Ag(n,d,w) = maximum number of codewords
in any g-ary code of length n and
minimum distance > d such that
each codeword has weight w.
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Delsarte’s linear programming bound for g-ary codes

Delsarte’s linear programming bound for g-ary codes

We prove simultaneously Delsarte’s linear programming bound and its well
known improvements for g-ary codes.

Theorem (Delsarte’s linear programming bound and its improvements)

Let C be a g-ary code with distance distribution {A;}/_,. Let M = |C|. For
k=1,2,...,n,

n
p 1 k—1 (N
Y i > = - - )
> Pu(miA > gyr(@=r)(a=1) (%)
where r is the remainder when dividing M by q and

Pi(n; x) = Zk:(*”j(q* R (/I) (Z :D

j=0

is the Krawtchouk polynomial.
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Delsarte’s linear programming bound for g-ary codes

Delsarte’s linear programming bound for g-ary codes

Idea of proof
@ WriteC = (cmi), 1 <m<|C|,1<i<n.
@ Consider all 2 x k matrices

A— Cmiy  Cmi, -+ Cmi,
Ciiy Ci, -+ Ci
suchthat m# 1, iy < i < --- < ix and all vectors

a=(a,as,...,ak) € (F5),

where F; = Fq \ {0}.
@ Count the number of pairs (A, ) such that

Q1 Cmiy + ++* + QkCmi, # Q1Cliy + -+ + kCij -
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New inequalities for g-ary constant-weight codes

Inequalities for g-ary constant-weight codes

Using the same idea in the proof, we get the following new inequalities for
g-ary constant-weight codes.

Theorem

Suppose that {A;}[., is the distance distribution of a g-ary constant-weight
code C of length n and constant-weight w. Let M = |C|. Then for each
k=1,2,...,n,

> PulmiA = (M= 1)@= 1" () = =y TR

=i

where T(k) = Ti(k) + T2(k) + Ts(k).

A
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New inequalities for g-ary constant-weight codes

Inequalities for g-ary constant-weight codes

Ti(k) = [(@ =1 (1) = ] (M = G)ae + M — g — 1)(ac + 1),

nk = [a-0 () -] [(TT5 %)

+(qf 1 7tk)tkSk(Sk+1)+ (g) (Sk+1)2:| )

T = | (9757 s @1 - ttisicsi+ )+ () (s 10

where
o gk and rk are the quotient and the remainder, respectively, when
dividing 292 P~ (n; w) by (g — 1)* (7).
o Sk and are the quotient and the remainder, respectively, when dividing
gk by (g —1),
o s; and t; are the quotient and the remainder, respectively, when dividing
gk + 1 by (g —1).
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New inequalities for g-ary constant-weight codes

Inequalities for g-ary constant-weight codes

Foreach k=1,2,... n,

k

Prmn =33 la- Y- -0 () (325 @

j=0

and

PE(mx) =(@-1D*(}) = P (mx). )
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New inequalities for g-ary constant-weight codes

Inequalities for g-ary constant-weight codes

For k = 1, the new inequalities give the following corollary, which was shown
by P. R. J. Ostergard and M. Svanstréom in [Ternary constant weight codes,
Electron. J. Combin., vol. 9, no. 1, 2002].

Corollary

If there exists a g-ary code of length n, constant-weight w, and minimum
distance > d, then

q—2 q—1 q—2 g-—1

MM —1)d <2t) > MM +2(n—1)>" > MM;, (5)
=0 j=i+1 i=0 j=i+1
where
o k and f are the quotient and the remainder, respectively, when dividing
Mw by n,

o My=M—k—1,My=M—k, M; = |(k +1i)/(q— 1)}, and
M = [(k+i—1)/(q—1)].
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New upper bounds for g-ary constant-weight codes

New upper bounds for g-ary constant-weight codes

@ Suppose that g =3 and (n,d, w) = (9,3,7).
@ The best known upper bound for A3(9, 3,7) is As(9,3,7) < 576.

@ Suppose that A3(9,3,7) = 576. Let C be a code whose size attains the
upper bound and let {A;}7_, be the distance distribution of C.

@ The above theorem gives the following inequalities.

9A3 + 6A4 + 3As —3A7 — 643 —9A; > 270

27A3 + 6As — 6As — 9As — 3A7 + 12A3 + 364 > —108

15A; — 24A, — 18As + 6As +21A7 —84A;, > 294
—72A;3 — 39A4 + 21As + 27As — 21A7 — 42As + 126A; > —1890
—108A3 + 42A4 + 39As — 36As — 21A7 + 84As — 126A9 > —3969
48As + 72A4 — 48As — 15A6 + 63A7 — 84As + 84A > —4942
144A; — 48A; — 24As5 + 54As — 57A7 + 48Ag —36A; > —4194
—48A4 + 48As — 36As + 24A7 — 15As + 943 > —2160

—64A; + 32A; — 16As + 8As —4A7 +2As — Ay > —1480/3
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New upper bounds for g-ary constant-weight codes

New upper bounds for g-ary constant-weight codes

Example (continued)

@ SinceAy=1and A; = A, =0,

9 9

1+ A=) A=|c|=576.

i=3 i=0

@ Consider the following linear programming (where the A; are considered

as variables)
©
max (1 e Z Ai>
i=3

subjectto A; > 0, i = 3,4,...,9 and subject to the above inequalities.

@ Solving this linear programming, we get the maximum value of
1437 4 Aiis 12094 /21, which is less than 576.

@ This contradiction shows that such a code C does not exist. Therefore,

As(9,3,7) < 575.
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