Hyun Kwang Kim<sup>\*1</sup> Phan Thanh Toan<sup>1</sup>

<sup>1</sup>Department of Mathematics, POSTECH

International Workshop on Coding and Cryptography

April 15-19, 2013, Bergen (Norway)

### Outline

### **Results on binary codes**

- Binary codes
- A fundamental problem in coding theory
- Delsarte's linear programming bound for binary codes
- New upper bounds for binary constant-weight codes

### Generalizations to *q*-ary codes

- q-ary codes
- Delsarte's linear programming bound for q-ary codes
- New inequalities for q-ary constant-weight codes
- New upper bounds for q-ary constant-weight codes

Binary codes

### What is a code?

#### Binary code

• Let  $\mathcal{F} = \{0, 1\}$ .

- A subset C of  $\mathcal{F}^n$  is called a *(binary) code* of length *n*.
- An element of a code C is called a codeword.

#### Minimum distance of a code

- Hamming distance between two vectors u, v ∈ F<sup>n</sup>, denoted by d(u, v), is the number of coordinates where they differ.
- Minimum distance of a code C is defined by

 $\min\{d(u,v)|u,v\in\mathcal{C},u\neq v\}.$ 

A fundamental problem in coding theory

### A fundamental problem in coding theory

#### Definition

#### Given n and d, define

A(n, d) =maximum number of codewords in any code of length *n* and minimum distance  $\geq d$ .

#### Remarks

- Determining the exact values of A(n, d) is an extremely difficult problem (for large n).
- Since A(n, d) = A(n + 1, d + 1) if d is odd, we can always assume that d is even.
- When *d* is even, all values of A(n, d) are known for  $n \le 16$ .
- For an unknown A(n, d), one may try to find its lower and upper bound.

### Delsarte's linear programming bound

#### Distance distribution of a code

Let C be a code of length n. The *distance distribution*  $\{A_i\}_{i=0}^n$  of C is defined by

$$A_{i} = \frac{1}{|\mathcal{C}|} |\{(u, v) \in \mathcal{C}^{2} \mid d(u, v) = i\}|$$

for *i* = 0, 1, ..., *n*.

#### Remark

• By definition,  $A_0 = 1$  and  $\sum_{i=0}^{n} A_i = |\mathcal{C}|$ .

#### Delsarte's linear programming bound

- For upper bounds on *A*(*n*, *d*), Delsarte's linear programming bound is a powerful bound.
- Delsarte's linear programming bound is based on the fact that the following linear combinations of the distance distribution {A<sub>i</sub>}<sup>n</sup><sub>i=0</sub> are nonnegative (as follows).

Generalizations to *q*-ary codes

Delsarte's linear programming bound for binary codes

### Delsarte's linear programming bound

#### **Theorem (Delsarte)**

Let C be a code with distance distribution  $\{A_i\}_{i=0}^n$ . For k = 1, 2, ..., n,

$$\sum_{i=0}^{n} P_k(n;i)A_i \geq 0,$$

where  $P_k(n; x)$  is the Krawtchouk polynomial given by

$$P_k(n; x) = \sum_{j=0}^k (-1)^j \binom{x}{j} \binom{n-x}{k-j}.$$

### Delsarte's linear programming bound

#### Theorem (Delsarte's linear programming bound)

 $A(n,d) \leq 1 + \lfloor \max(A_1 + A_2 + \cdots + A_n) \rfloor,$ 

where the maximization is taken over all  $(A_1, A_2, ..., A_n)$  satisfying  $A_i \ge 0$  for i = 1, 2, ..., n and satisfying the above linear constraints.

#### Remark

- If d is even, then A(n, d) is attained by a code with all vectors having even weights.
- Hence, if *d* is even, then we can put  $A_i = 0$  if *i* is odd.
- Also, by definition,  $A_i = 0$  if 0 < i < d.

### Delsarte's linear programming bound

#### Theorem (Delsarte's linear programming bound and its improvements)

Let C be a code with distance distribution  $\{A_i\}_{i=0}^n$ . For k = 1, 2, ..., n,

$$\sum_{i=0}^n P_k(n;i)A_i \geq 0.$$

If  $M = |\mathcal{C}|$  is odd, then

$$\sum_{i=0}^{n} P_k(n;i) A_i \geq \frac{1}{M} \binom{n}{k}.$$

If  $M = |\mathcal{C}| \equiv 2 \pmod{4}$ , then there exists  $t \in \{0, 1, \dots, n\}$  such that  $\sum_{i=0}^{n} P_k(n; i) A_i \ge \frac{2}{M} \left[ \binom{n}{k} + P_k(n; t) \right].$ 

### Counting the number of $2 \times k$ submatrices

#### **Result 1**

- We prove simultaneously Delsarte's linear programming bound and its well known improvements.
- The proof is based on counting the number of 2 × k submatrices of C, where C is considered as a |C| × n matrix (each codeword in C is a row).

#### Definition

For each 
$$k = 1, 2, ..., n$$
, we introduce polynomials  
 $P_k^-(n; x) = \sum_{\substack{j=0 \ j \text{ odd}}}^k {\binom{x}{j} \binom{n-x}{k-j}}$  and  $P_k^+(n; x) = \sum_{\substack{j=0 \ j \text{ even}}}^k {\binom{x}{j} \binom{n-x}{k-j}}.$ 

#### Remark

It follows that  $P_k^+(n; x) + P_k^-(n; x) = \binom{n}{k}$ . The polynomial  $P_k(n; x) := P_k^+(n; x) - P_k^-(n; x)$  is called the *Krawtchouk polynomial*.

### Counting the number of $2 \times k$ submatrices

The proof immediately follows from the following lemma.

#### Lemma

Let C be a code with size M and distance distribution  $\{A_i\}_{i=0}^n$  and let t be the number of columns of C containing an odd number of ones. For each k = 1, 2, ..., n,

$$\sum_{i=1}^{n} P_{k}^{-}(n;i)A_{i} \leq \frac{2}{M} \left[ N \binom{n}{k} - \delta P_{k}^{+}(n;t) \right]$$

$$\tag{1}$$

and

$$-\sum_{i=1}^{n} P_{k}^{+}(n;i)A_{i} \leq -(M-1)\binom{n}{k} + \frac{2}{M}\left[N\binom{n}{k} - \delta P_{k}^{+}(n;t)\right], \qquad (2)$$

where N and  $\delta$  are given by

 $N = \begin{cases} \frac{M^2}{4} & \text{if } M \text{ is even} \\ \frac{M^2 - 1}{4} & \text{if } M \text{ is odd} \end{cases} \text{ and } \delta = \begin{cases} 1 & \text{if } M \equiv 2 \pmod{4} \\ 0 & \text{otherwise} \end{cases}$ 

### Counting the number of $2 \times k$ submatrices

#### **Proof of Lemma**

• Write  $C = (c_{mi})$ ,  $1 \le m \le |C|$ ,  $1 \le i \le n$ . Let  $S_1(k)$  be the number of  $2 \times k$  matrices

$$A = \begin{pmatrix} c_{mi_1} & c_{mi_2} & \cdots & c_{mi_k} \\ c_{li_1} & c_{li_2} & \cdots & c_{li_k} \end{pmatrix}$$

such that  $m \neq l$ ,  $i_1 < i_2 < \cdots < i_k$ , and A contains an odd number of 1's.

• The entries of *A* are on the intersection of two rows and *k* columns of *C*.

### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

For an ordered pair (u, v) of different rows of C, to get such a matrix A choose j coordinates (j odd) where u and v are differ and choose k - j coordinates where u and v are the same.



### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

• Hence, an ordered pair (u, v) will contribute

$$\sum_{\substack{j=0\\j \text{ odd}}}^{n} \binom{d(u,v)}{j} \binom{n-d(u,v)}{k-j} = P_k^-(n;d(u,v))$$

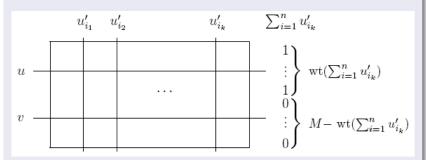
to  $S_1(k)$ . Therefore,

$$S_{1}(k) = \sum_{\substack{u,v \in C \\ u \neq v}} P_{k}^{-}(n; d(u, v)) = \sum_{i=1}^{n} \sum_{\substack{u,v \in C \\ d(u,v)=i}} P_{k}^{-}(n; i)$$
$$= \sum_{i=1}^{n} P_{k}^{-}(n; i) \sum_{\substack{u,v \in C \\ d(u,v)=i}} 1$$
$$= M \sum_{i=1}^{n} P_{k}^{-}(n; i) A_{i}.$$

### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

• Let  $u'_1, u'_2, \ldots, u'_n$  be the *n* columns of C.



For k columns u'<sub>i1</sub>, u'<sub>i2</sub>, ..., u'<sub>k</sub>, to get such a matrix A choose one row such that the intersection of this row with the k columns has an odd number of 1's and choose another row such that the intersection of that row with the k columns has an even number of 1's.

### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

Hence,

$$S_1(k) = 2 \sum_{i_1 < i_2 < \cdots < i_k} wt(u'_{i_1} + \cdots + u'_{i_k})[M - wt(u'_{i_1} + \cdots + u'_{i_k})].$$

• If *M* is odd, then  $\delta = 0$  by definition. For all  $i_1 < i_2 < \cdots < i_k$ ,

$$wt(u'_{i_1}+\cdots+u'_{i_k})[M-wt(u'_{i_1}+\cdots+u'_{i_k})] \leq \frac{M-1}{2}\frac{M+1}{2} = \frac{M^2-1}{4} = N.$$

So

$$S_1(k) \leq 2 \sum_{i_1 < i_2 < \cdots < i_k} N = 2N \binom{n}{k} = 2 \left[ N \binom{n}{k} - \delta P_k^+(n;t) \right].$$

• Therefore, (1) is proved if *M* is odd.

### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

• If  $M \equiv 0 \pmod{4}$ , then  $\delta = 0$  by definition. For all  $i_1 < i_2 < \cdots < i_k$ ,

$$Mt(u'_{i_1} + \cdots + u'_{i_k})[M - Mt(u'_{i_1} + \cdots + u'_{i_k})] \leq \frac{M}{2}\frac{M}{2} = \frac{M^2}{4} = N.$$

So

$$S_1(k) \leq 2N\binom{n}{k} = 2\left[N\binom{n}{k} - \delta P_k^+(n;t)\right].$$

• Therefore, (1) is proved if  $M \equiv 0 \pmod{4}$ .

### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

- If  $M \equiv 2 \pmod{4}$ , then  $\delta = 1$  by definition.
- Let *I* be the collection of coordinates *i* such that the column u<sub>i</sub><sup>'</sup> contains an odd number of 1's.

• If 
$$|\{i_1, i_2, \dots, i_k\} \cap I|$$
 is odd, then  
 $wt(u'_{i_1} + \dots + u'_{i_k})[M - wt(u'_{i_1} + \dots + u'_{i_k})] \le \frac{M}{2}\frac{M}{2} = \frac{M^2}{4} = N.$ 

• However, if  $|\{i_1, i_2, \dots, i_k\} \cap I|$  is even, then  $wt(u'_{i_1} + \dots + u'_{i_k})[M - wt(u'_{i_1} + \dots + u'_{i_k})] \le \frac{M-2}{2}\frac{M+2}{2} = N-1.$ 

$$S_1(k) \leq 2\left(\sum_{|\{i_1,i_2,\ldots,i_k\}\cap I| \text{ odd}} N + \sum_{|\{i_1,i_2,\ldots,i_k\}\cap I| \text{ even }} N-1\right)$$
$$= 2\left[N\binom{n}{k} - \delta P_k^+(n;t)\right].$$

• Hence, (1) is proved if  $M \equiv 2 \pmod{4}$ .

Results on binary codes

Generalizations to *q*-ary codes

Delsarte's linear programming bound for binary codes

### Counting the number of $2 \times k$ submatrices

#### Proof of Lemma (continued)

• For (2), one can count (two times of) the number of 2 × k submatrices A such that A contains an even number of 1's or just use the equality

$$\sum_{i=1}^{n} P^{-}(n;i)A_{i} + \sum_{i=1}^{n} P^{+}(n;i)A_{i} = (M-1)\binom{n}{k}.$$

### Counting the number of $2 \times k$ submatrices

#### Theorem (Delsarte's linear programming bound and its improvements)

Let C be a code with distance distribution  $\{A_i\}_{i=0}^n$ . For k = 1, 2, ..., n,

$$\sum_{i=1}^{n} P_k(n;i) A_i \geq -\binom{n}{k}.$$

If 
$$M = |\mathcal{C}|$$
 is odd, then  

$$\sum_{i=1}^{n} P_k(n; i) A_i \ge -\binom{n}{k} + \frac{1}{M} \binom{n}{k}.$$

If  $M = |\mathcal{C}| \equiv 2 \pmod{4}$ , then there exists  $t \in \{0, 1, \dots, n\}$  such that  $\sum_{i=1}^{n} P_k(n; i) A_i \ge -\binom{n}{k} + \frac{2}{M} \left[\binom{n}{k} + P_k(n; t)\right].$ 

#### **Proof of Theorem**

Take sum of inequalities (1) and (2) in the above lemma.

Results on binary codes

Generalizations to *q*-ary codes

New upper bounds for binary constant-weight codes

Upper bounds for A(n, d, w)

#### Definition

Given *n*, *d*, and *w*, define

$$A(n, d, w) =$$
 maximum number of codewords  
in any code of length *n* and  
minimum distance  $\geq d$  such that  
each codeword has exactly *w* ones.

New upper bounds for binary constant-weight codes

### Counting the number of $1 \times k$ submatrices

#### Proposition (1-row *k*-column formula)

Let C be a code of length n and constant-weight w. For each k = 1, 2, ..., n,

$$\sum_{i_1 < \cdots < i_k} wt(u'_{i_1} + \cdots + u'_{i_k}) = MP_k^-(n; w),$$

where the sum is taken over all  $(i_1, i_2, \ldots, i_k)$  such that  $i_1 < i_2 < \cdots < i_k$ .

#### Sketch of proof

Count the number of  $1 \times k$  submatrices of C containing an odd number of 1's.

New upper bounds for binary constant-weight codes

### Counting the number of $2 \times k$ submatrices

#### Result 2 (2-row k-column formula)

Let C be a code of length n and constant-weight w. For each k = 1, 2, ..., n,

$$\sum_{i=d/2}^{w} P_{k}^{-}(n;2i)A_{2i} \leq \frac{2}{M} \left[ \left( \binom{n}{k} - r_{k} \right) q_{k}(M-q_{k}) + r_{k}(q_{k}+1)(M-q_{k}-1) \right]$$

and

$$-\sum_{i=d/2}^{w} P_k^+(n;2i)A_{2i} \leq \frac{2}{M} \left[ \left( \binom{n}{k} - r_k \right) q_k(M-q_k) \right. \\ \left. + r_k(q_k+1)(M-q_k-1) \right] - (M-1)\binom{n}{k},$$

where  $q_k$  and  $r_k$  are the quotient and the remainder, respectively, when dividing  $MP_k^-(n; w)$  by  $\binom{n}{k}$ , i.e.,  $MP_k^-(n; w) = q_k \binom{n}{k} + r_k$ , with  $0 \le r_k < \binom{n}{k}$ .

New upper bounds for binary constant-weight codes

### New upper bounds on A(n, d, w)

#### Sketch of proof

Count (two times of) the number of  $2 \times k$  submatrices of C containing an odd (even) number of 1's.

#### Result 2 gives the following new upper bounds for A(n, d, w), $n \le 28$ .

| . A(18, 6, 8)  | $\leq$ | 427    | (428)    |
|----------------|--------|--------|----------|
| A(18, 6, 9)    | $\leq$ | 424    | (425)    |
| . A(20, 6, 10) | $\leq$ | 1420   | (1421)   |
| . A(27, 6, 11) | $\leq$ | 66078  | (66079)  |
| . A(27, 6, 12) | $\leq$ | 84573  | (84574)  |
| . A(27, 6, 13) | $\leq$ | 91079  | (91080)  |
| . A(28, 6, 11) | $\leq$ | 104230 | (104231) |
| . A(28, 6, 13) | $\leq$ | 164219 | (164220) |
| . A(28, 6, 14) | $\leq$ | 169739 | (169740) |

Results on binary codes

Generalizations to *q*-ary codes

New upper bounds for binary constant-weight codes

### New upper bounds on A(n, d, w)

#### New upper bounds

| • A(24, 10, 10) | $\leq$ | 170  | (171)  |
|-----------------|--------|------|--------|
| . A(24, 10, 11) | $\leq$ | 222  | (223)  |
| . A(24, 10, 12) | $\leq$ | 246  | (247)  |
| . A(26, 10, 9)  | $\leq$ | 213  | (214)  |
| . A(27, 10, 9)  | $\leq$ | 298  | (299)  |
| . A(28, 10, 14) | $\leq$ | 2628 | (2629) |
| • A(26, 12, 10) | $\leq$ | 47   | (48)   |
| . A(27, 12, 12) | $\leq$ | 139  | (140)  |
| . A(27, 12, 13) | $\leq$ | 155  | (156)  |
| . A(28, 12, 11) | $\leq$ | 148  | (149)  |
| . A(28, 12, 12) | $\leq$ | 198  | (199)  |
| . A(28, 12, 13) | $\leq$ | 244  | (245)  |
| . A(28, 12, 14) | $\leq$ | 264  | (265)  |

q-ary codes



#### Generalizations to q-ary codes

- Results 1 and 2 appeared in [B. G. Kang, H. K. Kim, and P. T. Toan, "Delsarte's linear programming bound for constant-weight codes," *IEEE Trans. Inf. Theory*, vol. 58, no. 9, pp. 5956–5962, Sep. 2012].
- In the remaining, we generalize Results 1 and 2 to *q*-ary codes.

#### q-ary codes

### Definition

#### Definition

Let  $\mathbb{F}_q$  be a finite field with q elements. A subset C of  $\mathbb{F}_q^n$  is called a q-ary code of length n.

#### Definition

#### Given n and d, define

$$A_q(n, d) = \max_{i \in I} \max_{j \in I} \max_{j \in I} \sum_{i \in I} \max_{j \in I} \sum_{j \in I} \sum_{i \in I} \sum_{i \in I} \sum_{j \in I} \sum_{i \in I} \sum_$$

#### Definition

Given n, d, and w, define

 $A_q(n, d, w) =$  maximum number of codewords in any *q*-ary code of length *n* and minimum distance  $\geq d$  such that each codeword has weight *w*.

### Delsarte's linear programming bound for *q*-ary codes

#### **Result 3**

We prove simultaneously Delsarte's linear programming bound and its well known improvements for *q*-ary codes.

Theorem (Delsarte's linear programming bound and its improvements)

Let C be a *q*-ary code with distance distribution  $\{A_i\}_{i=0}^n$ . Let M = |C|. For k = 1, 2, ..., n,

$$\sum_{i=0}^{n} P_k(n;i) A_i \geq \frac{1}{M} r(q-r)(q-1)^{k-1} \binom{n}{k},$$

where r is the remainder when dividing M by q and

$$P_k(n;x) = \sum_{j=0}^k (-1)^j (q-1)^{k-j} \binom{i}{j} \binom{n-i}{k-j}$$

is the Krawtchouk polynomial.

### Delsarte's linear programming bound for *q*-ary codes

#### Idea of proof

- Write  $C = (c_{mi}), 1 \le m \le |C|, 1 \le i \le n$ .
- Consider all 2 × k matrices

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{C}_{mi_1} & \boldsymbol{C}_{mi_2} & \cdots & \boldsymbol{C}_{mi_k} \\ \boldsymbol{C}_{li_1} & \boldsymbol{C}_{li_2} & \cdots & \boldsymbol{C}_{li_k} \end{pmatrix}$$

such that  $m \neq I$ ,  $i_1 < i_2 < \cdots < i_k$  and all vectors

$$\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k) \in (\mathbb{F}_q^*)^k,$$

where  $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$ .

• Count the number of pairs  $(A, \alpha)$  such that

$$\alpha_1 \mathbf{C}_{mi_1} + \dots + \alpha_k \mathbf{C}_{mi_k} \neq \alpha_1 \mathbf{C}_{li_1} + \dots + \alpha_k \mathbf{C}_{li_k}$$

### Inequalities for *q*-ary constant-weight codes

#### **Result 4**

Using the same idea in the proof, we get the following new inequalities for q-ary constant-weight codes.

#### Theorem

Suppose that  $\{A_i\}_{i=0}^n$  is the distance distribution of a *q*-ary constant-weight code C of length *n* and constant-weight *w*. Let M = |C|. Then for each k = 1, 2, ..., n,

$$\sum_{i=1}^{n} P_k(n;i) A_i \ge (M-1)(q-1)^k \binom{n}{k} - \frac{2q}{(q-1)M} T(k),$$

where  $T(k) = T_1(k) + T_2(k) + T_3(k)$ .

### Inequalities for *q*-ary constant-weight codes

#### Notations

$$T_1(k) = \left[ (q-1)^k \binom{n}{k} - r_k \right] (M-q_k) q_k + r_k (M-q_k-1)(q_k+1),$$

$$\begin{split} T_2(k) &= \left[ (q-1)^k \binom{n}{k} - r_k \right] \left[ \binom{q-1-t_k}{2} s_k^2 \\ &+ (q-1-t_k) t_k s_k (s_k+1) + \binom{t_k}{2} (s_k+1)^2 \right], \\ T_3(k) &= r_k \left[ \binom{q-1-t'_k}{2} s_k'^2 + (q-1-t'_k) t_k' s_k' (s_k'+1) + \binom{t'_k}{2} (s_k'+1)^2 \right], \end{split}$$

where

- $q_k$  and  $r_k$  are the quotient and the remainder, respectively, when dividing  $\frac{2(q-1)M}{q}P_k^-(n;w)$  by  $(q-1)^k\binom{n}{k}$ ,
- $s_k$  and  $t_k$  are the quotient and the remainder, respectively, when dividing  $q_k$  by (q-1),
- $s'_k$  and  $t'_k$  are the quotient and the remainder, respectively, when dividing  $q_k + 1$  by (q 1).

### Inequalities for *q*-ary constant-weight codes

#### Notations

For each k = 1, 2, ..., n,

$$P_{k}^{-}(n;x) = \frac{1}{2} \sum_{j=0}^{k} [(q-1)^{j} - (-1)^{j}](q-1)^{k-j} {\binom{x}{j}} {\binom{n-x}{k-j}}$$
(3)

and

$$P_{k}^{+}(n;x) = (q-1)^{k} {n \choose k} - P_{k}^{-}(n;x).$$
(4)

### Inequalities for *q*-ary constant-weight codes

For k = 1, the new inequalities give the following corollary, which was shown by P. R. J. Östergård and M. Svanström in [Ternary constant weight codes, *Electron. J. Combin.*, vol. 9, no. 1, 2002].

#### Corollary

If there exists a *q*-ary code of length *n*, constant-weight *w*, and minimum distance  $\geq d$ , then

$$M(M-1)d \leq 2t\sum_{i=0}^{q-2}\sum_{j=i+1}^{q-1}M_iM_j + 2(n-t)\sum_{i=0}^{q-2}\sum_{j=i+1}^{q-1}M_i'M_j',$$
(5)

#### where

• *k* and *t* are the quotient and the remainder, respectively, when dividing *Mw* by *n*,

• 
$$M_0 = M - k - 1$$
,  $M'_0 = M - k$ ,  $M_i = \lfloor (k + i)/(q - 1) \rfloor$ , and  $M'_i = \lfloor (k + i - 1)/(q - 1) \rfloor$ .

New upper bounds for q-ary constant-weight codes

### New upper bounds for *q*-ary constant-weight codes

#### Example

- Suppose that q = 3 and (n, d, w) = (9, 3, 7).
- The best known upper bound for  $A_3(9,3,7)$  is  $A_3(9,3,7) \le 576$ .
- Suppose that A<sub>3</sub>(9,3,7) = 576. Let C be a code whose size attains the upper bound and let {A<sub>i</sub>}<sup>n</sup><sub>i=0</sub> be the distance distribution of C.
- The above theorem gives the following inequalities.

 $9A_3 + 6A_4 + 3A_5 - 3A_7 - 6A_8 - 9A_9 \geq 270$ 

$$27 \textit{A}_3 + 6 \textit{A}_4 - 6 \textit{A}_5 - 9 \textit{A}_6 - 3 \textit{A}_7 + 12 \textit{A}_8 + 36 \textit{A}_9 \hspace{0.1in} \geq \hspace{0.1in} -108$$

$$15A_3 - 24A_4 - 18A_5 + 6A_6 + 21A_7 - 84A_9 \geq -294$$

$$-72 \textit{A}_3 - 39 \textit{A}_4 + 21 \textit{A}_5 + 27 \textit{A}_6 - 21 \textit{A}_7 - 42 \textit{A}_8 + 126 \textit{A}_9 \hspace{0.1in} \geq \hspace{0.1in} -1890$$

- $-108 \textit{A}_3 + 42 \textit{A}_4 + 39 \textit{A}_5 36 \textit{A}_6 21 \textit{A}_7 + 84 \textit{A}_8 126 \textit{A}_9 \hspace{0.1in} \geq \hspace{0.1in} -3969$ 
  - $48 \textit{A}_3 + 72 \textit{A}_4 48 \textit{A}_5 15 \textit{A}_6 + 63 \textit{A}_7 84 \textit{A}_8 + 84 \textit{A}_9 \hspace{2mm} \geq \hspace{2mm} -4942$
  - $144 \textit{A}_3 48 \textit{A}_4 24 \textit{A}_5 + 54 \textit{A}_6 57 \textit{A}_7 + 48 \textit{A}_8 36 \textit{A}_9 \hspace{0.1in} \geq \hspace{0.1in} -4194$ 
    - $-48 \textit{A}_4 + 48 \textit{A}_5 36 \textit{A}_6 + 24 \textit{A}_7 15 \textit{A}_8 + 9 \textit{A}_9 \hspace{0.1in} \geq \hspace{0.1in} -2160$
    - $-64 \textit{A}_3 + 32 \textit{A}_4 16 \textit{A}_5 + 8 \textit{A}_6 4 \textit{A}_7 + 2 \textit{A}_8 \textit{A}_9 \hspace{0.1in} \geq \hspace{0.1in} -1480/3$

New upper bounds for q-ary constant-weight codes

### New upper bounds for *q*-ary constant-weight codes

#### Example (continued)

• Since  $A_0 = 1$  and  $A_1 = A_2 = 0$ ,

$$1 + \sum_{i=3}^{9} A_i = \sum_{i=0}^{9} A_i = |\mathcal{C}| = 576.$$

 Consider the following linear programming (where the A<sub>i</sub> are considered as variables)

$$\max\left(1+\sum_{i=3}^{9}A_{i}\right)$$

subject to  $A_i \ge 0, i = 3, 4, \dots, 9$  and subject to the above inequalities.

- Solving this linear programming, we get the maximum value of  $1 + \sum_{i=3}^{9} A_i$  is 12094/21, which is less than 576.
- This contradiction shows that such a code C does not exist. Therefore,

$$A_3(9,3,7) \leq 575.$$

## Thank you!