New Inequalities for q-ary Constant-Weight Codes

Hyun Kwang Kim*1 Phan Thanh Toan ${ }^{1}$

${ }^{1}$ Department of Mathematics, POSTECH
International Workshop on Coding and Cryptography
April 15-19, 2013, Bergen (Norway)

Outline

(1) Results on binary codes

- Binary codes
- A fundamental problem in coding theory
- Delsarte's linear programming bound for binary codes
- New upper bounds for binary constant-weight codes
(2) Generalizations to q-ary codes
- q-ary codes
- Delsarte's linear programming bound for q-ary codes
- New inequalities for q-ary constant-weight codes
- New upper bounds for q-ary constant-weight codes

What is a code?

Binary code

- Let $\mathcal{F}=\{0,1\}$.
- A subset \mathcal{C} of \mathcal{F}^{n} is called a (binary) code of length n.
- An element of a code \mathcal{C} is called a codeword.

Minimum distance of a code

- Hamming distance between two vectors $u, v \in \mathcal{F}^{n}$, denoted by $d(u, v)$, is the number of coordinates where they differ.
- Minimum distance of a code \mathcal{C} is defined by

$$
\min \{d(u, v) \mid u, v \in \mathcal{C}, u \neq v\}
$$

A fundamental problem in coding theory

Definition

Given n and d, define

$$
\begin{aligned}
A(n, d)= & \text { maximum number of codewords } \\
& \text { in any code of length } n \text { and } \\
& \text { minimum distance } \geq d .
\end{aligned}
$$

Remarks

- Determining the exact values of $A(n, d)$ is an extremely difficult problem (for large n).
- Since $A(n, d)=A(n+1, d+1)$ if d is odd, we can always assume that d is even.
- When d is even, all values of $A(n, d)$ are known for $n \leq 16$.
- For an unknown $A(n, d)$, one may try to find its lower and upper bound.

Delsarte's linear programming bound

Distance distribution of a code

Let \mathcal{C} be a code of length n. The distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$ of \mathcal{C} is defined by

$$
A_{i}=\frac{1}{|\mathcal{C}|}\left|\left\{(u, v) \in \mathcal{C}^{2} \mid d(u, v)=i\right\}\right|
$$

for $i=0,1, \ldots, n$.

Remark

- By definition, $A_{0}=1$ and $\sum_{i=0}^{n} A_{i}=|\mathcal{C}|$.

Delsarte's linear programming bound

- For upper bounds on $A(n, d)$, Delsarte's linear programming bound is a powerful bound.
- Delsarte's linear programming bound is based on the fact that the following linear combinations of the distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$ are nonnegative (as follows).

Delsarte's linear programming bound

Theorem (Delsarte)

Let \mathcal{C} be a code with distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$. For $k=1,2, \ldots, n$,

$$
\sum_{i=0}^{n} P_{k}(n ; i) A_{i} \geq 0
$$

where $P_{k}(n ; x)$ is the Krawtchouk polynomial given by

$$
P_{k}(n ; x)=\sum_{j=0}^{k}(-1)^{j}\binom{x}{j}\binom{n-x}{k-j} .
$$

Delsarte's linear programming bound

Theorem (Delsarte's linear programming bound)

$$
A(n, d) \leq 1+\left\lfloor\max \left(A_{1}+A_{2}+\cdots+A_{n}\right)\right\rfloor,
$$

where the maximization is taken over all ($A_{1}, A_{2}, \ldots, A_{n}$) satisfying $A_{i} \geq 0$ for $i=1,2, \ldots, n$ and satisfying the above linear constraints.

Remark

- If d is even, then $A(n, d)$ is attained by a code with all vectors having even weights.
- Hence, if d is even, then we can put $A_{i}=0$ if i is odd.
- Also, by definition, $A_{i}=0$ if $0<i<d$.

Delsarte's linear programming bound for binary codes

Delsarte's linear programming bound

Theorem (Delsarte's linear programming bound and its improvements)

Let \mathcal{C} be a code with distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$. For $k=1,2, \ldots, n$,

$$
\sum_{i=0}^{n} P_{k}(n ; i) A_{i} \geq 0
$$

If $M=|\mathcal{C}|$ is odd, then

$$
\sum_{i=0}^{n} P_{k}(n ; i) A_{i} \geq \frac{1}{M}\binom{n}{k} .
$$

If $M=|\mathcal{C}| \equiv 2(\bmod 4)$, then there exists $t \in\{0,1, \ldots, n\}$ such that

$$
\sum_{i=0}^{n} P_{k}(n ; i) A_{i} \geq \frac{2}{M}\left[\binom{n}{k}+P_{k}(n ; t)\right] .
$$

Counting the number of $2 \times k$ submatrices

Result 1

- We prove simultaneously Delsarte's linear programming bound and its well known improvements.
- The proof is based on counting the number of $2 \times k$ submatrices of \mathcal{C}, where \mathcal{C} is considered as a $|\mathcal{C}| \times n$ matrix (each codeword in \mathcal{C} is a row).

Definition

For each $k=1,2, \ldots, n$, we introduce polynomials
$P_{k}^{-}(n ; x)=\sum_{\substack{j=0 \\ j \text { odd }}}^{k}\binom{x}{j}\binom{n-x}{k-j}$ and $P_{k}^{+}(n ; x)=\sum_{\substack{j=0 \\ j \text { even }}}^{k}\binom{x}{j}\binom{n-x}{k-j}$.

Remark

It follows that $P_{k}^{+}(n ; x)+P_{k}^{-}(n ; x)=\binom{n}{k}$. The polynomial $P_{k}(n ; x):=P_{k}^{+}(n ; x)-P_{k}^{-}(n ; x)$ is called the Krawtchouk polynomial.

Delsarte's linear programming bound for binary codes

Counting the number of $2 \times k$ submatrices

The proof immediately follows from the following lemma.

Lemma

Let \mathcal{C} be a code with size M and distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$ and let t be the number of columns of \mathcal{C} containing an odd number of ones. For each $k=1,2, \ldots, n$,

$$
\begin{equation*}
\sum_{i=1}^{n} P_{k}^{-}(n ; i) A_{i} \leq \frac{2}{M}\left[N\binom{n}{k}-\delta P_{k}^{+}(n ; t)\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
-\sum_{i=1}^{n} P_{k}^{+}(n ; i) A_{i} \leq-(M-1)\binom{n}{k}+\frac{2}{M}\left[N\binom{n}{k}-\delta P_{k}^{+}(n ; t)\right] \tag{2}
\end{equation*}
$$

where N and δ are given by $N=\left\{\begin{array}{ll}\frac{M^{2}}{4} & \text { if } M \text { is even } \\ \frac{M^{2}-1}{4} & \text { if } M \text { is odd }\end{array} \quad\right.$ and $\quad \delta= \begin{cases}1 & \text { if } M \equiv 2(\bmod 4) \\ 0 & \text { otherwise }\end{cases}$

Counting the number of $2 \times k$ submatrices

Proof of Lemma

- Write $\mathcal{C}=\left(c_{m i}\right), 1 \leq m \leq|\mathcal{C}|, 1 \leq i \leq n$. Let $S_{1}(k)$ be the number of $2 \times k$ matrices

$$
A=\left(\begin{array}{cccc}
c_{m i_{1}} & c_{m i_{2}} & \cdots & c_{m i_{k}} \\
c_{l_{1}} & c_{l_{i}} & \cdots & c_{l_{l_{k}}}
\end{array}\right)
$$

such that $m \neq I, i_{1}<i_{2}<\cdots<i_{k}$, and A contains an odd number of 1 's.

- The entries of A are on the intersection of two rows and k columns of \mathcal{C}.

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- For an ordered pair (u, v) of different rows of \mathcal{C}, to get such a matrix A choose j coordinates (j odd) where u and v are differ and choose $k-j$ coordinates where u and v are the same.

Delsarte's linear programming bound for binary codes

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- Hence, an ordered pair (u, v) will contribute

$$
\sum_{\substack{j=0 \\ j \text { odd }}}^{n}\binom{d(u, v)}{j}\binom{n-d(u, v)}{k-j}=P_{k}^{-}(n ; d(u, v))
$$

to $S_{1}(k)$. Therefore,

$$
\begin{aligned}
S_{1}(k) & =\sum_{\substack{u, v \in \mathcal{C} \\
u \neq v}} P_{k}^{-}(n ; d(u, v))=\sum_{i=1}^{n} \sum_{\substack{u, v \in \mathcal{C} \\
d(u, v)=i}} P_{k}^{-}(n ; i) \\
& =\sum_{i=1}^{n} P_{k}^{-}(n ; i) \sum_{\substack{u, v \in \mathcal{C} \\
d(u, v)=i}} 1 \\
& =M \sum_{i=1}^{n} P_{k}^{-}(n ; i) A_{i} .
\end{aligned}
$$

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- Let $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ be the n columns of \mathcal{C}.

- For k columns $u_{i_{1}}^{\prime}, u_{i_{2}}^{\prime}, \ldots, u_{i_{k}}^{\prime}$, to get such a matrix A choose one row such that the intersection of this row with the k columns has an odd number of 1 's and choose another row such that the intersection of that row with the k columns has an even number of 1 's.

Delsarte's linear programming bound for binary codes

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- Hence,

$$
S_{1}(k)=2 \sum_{i_{1}<i_{2}<\cdots<i_{k}} w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\left[M-w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\right] .
$$

- If M is odd, then $\delta=0$ by definition. For all $i_{1}<i_{2}<\cdots<i_{k}$,

$$
w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\left[M-w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\right] \leq \frac{M-1}{2} \frac{M+1}{2}=\frac{M^{2}-1}{4}=N
$$

- So

$$
S_{1}(k) \leq 2 \sum_{i_{1}<i_{2}<\cdots<i_{k}} N=2 N\binom{n}{k}=2\left[N\binom{n}{k}-\delta P_{k}^{+}(n ; t)\right] .
$$

- Therefore, (1) is proved if M is odd.

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- If $M \equiv 0(\bmod 4)$, then $\delta=0$ by definition. For all $i_{1}<i_{2}<\cdots<i_{k}$,

$$
w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\left[M-w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\right] \leq \frac{M}{2} \frac{M}{2}=\frac{M^{2}}{4}=N
$$

- So

$$
S_{1}(k) \leq 2 N\binom{n}{k}=2\left[N\binom{n}{k}-\delta P_{k}^{+}(n ; t)\right] .
$$

- Therefore, (1) is proved if $M \equiv 0(\bmod 4)$.

Delsarte's linear programming bound for binary codes

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- If $M \equiv 2(\bmod 4)$, then $\delta=1$ by definition.
- Let I be the collection of coordinates i such that the column u_{i}^{\prime} contains an odd number of 1 's.
- If $\left|\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \cap I\right|$ is odd, then

$$
w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\left[M-w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\right] \leq \frac{M}{2} \frac{M}{2}=\frac{M^{2}}{4}=N
$$

- However, if $\left|\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \cap I\right|$ is even, then

$$
w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\left[M-w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)\right] \leq \frac{M-2}{2} \frac{M+2}{2}=N-1 .
$$

$$
\begin{aligned}
S_{1}(k) & \leq 2\left(\sum_{\substack{\left.i_{1}, i_{2}, \ldots, i_{k}\right\} \cap \| \mid \\
\text { odd }}} N+\sum_{\left|\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \cap\right| \mid \text { even }} N-1\right) \\
& =2\left[N\binom{n}{k}-\delta P_{k}^{+}(n ; t)\right] .
\end{aligned}
$$

- Hence, (1) is proved if $M \equiv 2(\bmod 4)$.

Counting the number of $2 \times k$ submatrices

Proof of Lemma (continued)

- For (2), one can count (two times of) the number of $2 \times k$ submatrices A such that A contains an even number of 1 's or just use the equality

$$
\sum_{i=1}^{n} P^{-}(n ; i) A_{i}+\sum_{i=1}^{n} P^{+}(n ; i) A_{i}=(M-1)\binom{n}{k}
$$

Counting the number of $2 \times k$ submatrices

Theorem (Delsarte's linear programming bound and its improvements)

Let \mathcal{C} be a code with distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$. For $k=1,2, \ldots, n$,

$$
\sum_{i=1}^{n} P_{k}(n ; i) A_{i} \geq-\binom{n}{k}
$$

If $M=|\mathcal{C}|$ is odd, then

$$
\sum_{i=1}^{n} P_{k}(n ; i) A_{i} \geq-\binom{n}{k}+\frac{1}{M}\binom{n}{k} .
$$

If $M=|\mathcal{C}| \equiv 2(\bmod 4)$, then there exists $t \in\{0,1, \ldots, n\}$ such that

$$
\sum_{i=1}^{n} P_{k}(n ; i) A_{i} \geq-\binom{n}{k}+\frac{2}{M}\left[\binom{n}{k}+P_{k}(n ; t)\right] .
$$

Proof of Theorem

Take sum of inequalities (1) and (2) in the above lemma.

Upper bounds for $A(n, d, w)$

Definition

Given n, d, and w, define

$$
\begin{aligned}
A(n, d, w)= & \text { maximum number of codewords } \\
& \text { in any code of length } n \text { and } \\
& \text { minimum distance } \geq d \text { such that } \\
& \text { each codeword has exactly } w \text { ones. }
\end{aligned}
$$

Counting the number of $1 \times k$ submatrices

Proposition (1-row k-column formula)

Let \mathcal{C} be a code of length n and constant-weight w. For each $k=1,2, \ldots, n$,

$$
\sum_{i_{1}<\cdots<i_{k}} w t\left(u_{i_{1}}^{\prime}+\cdots+u_{i_{k}}^{\prime}\right)=M P_{k}^{-}(n ; w)
$$

where the sum is taken over all $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ such that $i_{1}<i_{2}<\cdots<i_{k}$.

Sketch of proof

Count the number of $1 \times k$ submatrices of \mathcal{C} containing an odd number of 1 's.

New upper bounds for binary constant-weight codes

Counting the number of $2 \times k$ submatrices

Result 2 (2-row k-column formula)

Let \mathcal{C} be a code of length n and constant-weight w. For each $k=1,2, \ldots, n$,

$$
\begin{aligned}
\sum_{i=d / 2}^{w} P_{k}^{-}(n ; 2 i) A_{2 i} \leq \frac{2}{M} & {\left[\left(\binom{n}{k}-r_{k}\right) q_{k}\left(M-q_{k}\right)\right.} \\
& \left.+r_{k}\left(q_{k}+1\right)\left(M-q_{k}-1\right)\right]
\end{aligned}
$$

and

$$
\begin{array}{r}
-\sum_{i=d / 2}^{w} P_{k}^{+}(n ; 2 i) A_{2 i} \leq \frac{2}{M}\left[\left(\binom{n}{k}-r_{k}\right) q_{k}\left(M-q_{k}\right)\right. \\
\left.\quad+r_{k}\left(q_{k}+1\right)\left(M-q_{k}-1\right)\right]-(M-1)\binom{n}{k}
\end{array}
$$

where q_{k} and r_{k} are the quotient and the remainder, respectively, when dividing $M P_{k}^{-}(n ; w)$ by $\binom{n}{k}$, i.e., $M P_{k}^{-}(n ; w)=q_{k}\binom{n}{k}+r_{k}$, with $0 \leq r_{k}<\binom{n}{k}$.

New upper bounds on $A(n, d, w)$

Sketch of proof

Count (two times of) the number of $2 \times k$ submatrices of \mathcal{C} containing an odd (even) number of 1's.

Result 2 gives the following new upper bounds for $A(n, d, w), n \leq 28$.

$$
\begin{array}{lllr}
\text {. } & A(18,6,8) & \leq & 427 \\
\text {. } & A(18,6,9) & (428) \\
\text {. } & A(20,6,10) & 424 & (425) \\
\text {. } & A(27,6,11) & 1420 & (1421) \\
\text { - } & A(27,6,12) & 66078 & (66079) \\
\text {. } & A(27,6,13) & 84573 & (84574) \\
\text {. } & A(28,6,11) & 91079 & (91080) \\
\text {. } & A(28,6,13) \leq & 104230 & (104231) \\
\text {. } & A(28,6,14) \leq & 164219 & (164220) \\
\hline
\end{array}
$$

New upper bounds for binary constant-weight codes

New upper bounds on $A(n, d, w)$

New upper bounds

$$
\begin{array}{lllrr}
\text {. } & A(24,10,10) & \leq & 170 & (171) \\
\text {. } & A(24,10,11) & \leq & 222 & (223) \\
\text {. } & A(24,10,12) & \leq & 246 & (247) \\
\text { - } & A(26,10,9) & \leq & 213 & (214) \\
\text {. } & A(27,10,9) & \leq & 298 & (299) \\
\text {. } & A(28,10,14) & \leq & 2628 & (2629) \\
\text {. } & A(26,12,10) & \leq & 47 & (48) \\
\text {. } & A(27,12,12) & \leq & 139 & (140) \\
\text {. } & A(27,12,13) & \leq & 155 & (156) \\
\text {. } & A(28,12,11) & \leq & 148 & (149) \\
\text {. } & A(28,12,12) & \leq & 198 & (199) \\
\text {. } & A(28,12,13) & \leq & 244 & (245) \\
\text {. } & A(28,12,14) & \leq & 264 & (265)
\end{array}
$$

q-ary codes

Generalizations to q-ary codes

- Results 1 and 2 appeared in [B. G. Kang, H. K. Kim, and P. T. Toan, "Delsarte's linear programming bound for constant-weight codes," IEEE Trans. Inf. Theory, vol. 58, no. 9, pp. 5956-5962, Sep. 2012].
- In the remaining, we generalize Results 1 and 2 to q-ary codes.

Definition

Definition

Let \mathbb{F}_{q} be a finite field with q elements. A subset \mathcal{C} of \mathbb{F}_{q}^{n} is called a q-ary code of length n.

Definition

Given n and d, define

$$
\begin{aligned}
A_{q}(n, d)= & \text { maximum number of codewords } \\
& \text { in any } q \text {-ary code of length } n \text { and } \\
& \text { minimum distance } \geq d .
\end{aligned}
$$

Definition

Given n, d, and w, define

$$
\begin{aligned}
A_{q}(n, d, w)= & \text { maximum number of codewords } \\
& \text { in any } q \text {-ary code of length } n \text { and } \\
& \text { minimum distance } \geq d \text { such that } \\
& \text { each codeword has weight } w .
\end{aligned}
$$

Delsarte's linear programming bound for q-ary codes

Delsarte's linear programming bound for q-ary codes

Result 3

We prove simultaneously Delsarte's linear programming bound and its well known improvements for q-ary codes.

Theorem (Delsarte's linear programming bound and its improvements)

Let \mathcal{C} be a q-ary code with distance distribution $\left\{A_{i}\right\}_{i=0}^{n}$. Let $M=|\mathcal{C}|$. For $k=1,2, \ldots, n$,

$$
\sum_{i=0}^{n} P_{k}(n ; i) A_{i} \geq \frac{1}{M} r(q-r)(q-1)^{k-1}\binom{n}{k}
$$

where r is the remainder when dividing M by q and

$$
P_{k}(n ; x)=\sum_{j=0}^{k}(-1)^{j}(q-1)^{k-j}\binom{i}{j}\binom{n-i}{k-j}
$$

is the Krawtchouk polynomial.

Delsarte's linear programming bound for q-ary codes

Delsarte's linear programming bound for q-ary codes

Idea of proof

- Write $\mathcal{C}=\left(c_{m i}\right), 1 \leq m \leq|\mathcal{C}|, 1 \leq i \leq n$.
- Consider all $2 \times k$ matrices

$$
A=\left(\begin{array}{cccc}
c_{m i_{1}} & c_{m i_{2}} & \cdots & c_{m i_{k}} \\
c_{l_{1}} & c_{l_{i}} & \cdots & c_{l_{k}}
\end{array}\right)
$$

such that $m \neq I, i_{1}<i_{2}<\cdots<i_{k}$ and all vectors

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{k}
$$

where $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$.

- Count the number of pairs (A, α) such that

$$
\alpha_{1} c_{m i_{1}}+\cdots+\alpha_{k} c_{m i_{k}} \neq \alpha_{1} c_{l_{1}}+\cdots+\alpha_{k} c_{l_{k}}
$$

Inequalities for q-ary constant-weight codes

Result 4

Using the same idea in the proof, we get the following new inequalities for q-ary constant-weight codes.

Theorem

Suppose that $\left\{A_{i}\right\}_{i=0}^{n}$ is the distance distribution of a q-ary constant-weight code \mathcal{C} of length n and constant-weight w. Let $M=|\mathcal{C}|$. Then for each $k=1,2, \ldots, n$,

$$
\sum_{i=1}^{n} P_{k}(n ; i) A_{i} \geq(M-1)(q-1)^{k}\binom{n}{k}-\frac{2 q}{(q-1) M} T(k)
$$

where $T(k)=T_{1}(k)+T_{2}(k)+T_{3}(k)$.

New inequalities for q-ary constant-weight codes

Inequalities for q-ary constant-weight codes

Notations

$$
\begin{gathered}
T_{1}(k)=\left[(q-1)^{k}\binom{n}{k}-r_{k}\right]\left(M-q_{k}\right) q_{k}+r_{k}\left(M-q_{k}-1\right)\left(q_{k}+1\right) \\
T_{2}(k)=\left[(q-1)^{k}\binom{n}{k}-r_{k}\right]\left[\binom{q-1-t_{k}}{2} s_{k}^{2}\right. \\
\left.+\left(q-1-t_{k}\right) t_{k} s_{k}\left(s_{k}+1\right)+\binom{t_{k}}{2}\left(s_{k}+1\right)^{2}\right] \\
T_{3}(k)=r_{k}\left[\binom{q-1-t_{k}^{\prime}}{2} s_{k}^{\prime 2}+\left(q-1-t_{k}^{\prime}\right) t_{k}^{\prime} s_{k}^{\prime}\left(s_{k}^{\prime}+1\right)+\binom{t_{k}^{\prime}}{2}\left(s_{k}^{\prime}+1\right)^{2}\right]
\end{gathered}
$$

where

- q_{k} and r_{k} are the quotient and the remainder, respectively, when dividing $\frac{2(q-1) M}{q} P_{k}^{-}(n ; w)$ by $(q-1)^{k}\binom{n}{k}$,
- s_{k} and t_{k} are the quotient and the remainder, respectively, when dividing q_{k} by $(q-1)$,
- s_{k}^{\prime} and t_{k}^{\prime} are the quotient and the remainder, respectively, when dividing $q_{k}+1$ by $(q-1)$.

Inequalities for q-ary constant-weight codes

Notations

For each $k=1,2, \ldots, n$,

$$
\begin{equation*}
P_{k}^{-}(n ; x)=\frac{1}{2} \sum_{j=0}^{k}\left[(q-1)^{j}-(-1)^{j}\right](q-1)^{k-j}\binom{x}{j}\binom{n-x}{k-j} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{k}^{+}(n ; x)=(q-1)^{k}\binom{n}{k}-P_{k}^{-}(n ; x) . \tag{4}
\end{equation*}
$$

Inequalities for q-ary constant-weight codes

For $k=1$, the new inequalities give the following corollary, which was shown by P. R. J. Östergård and M. Svanström in [Ternary constant weight codes, Electron. J. Combin., vol. 9, no. 1, 2002].

Corollary

If there exists a q-ary code of length n, constant-weight w, and minimum distance $\geq d$, then

$$
\begin{equation*}
M(M-1) d \leq 2 t \sum_{i=0}^{q-2} \sum_{j=i+1}^{q-1} M_{i} M_{j}+2(n-t) \sum_{i=0}^{q-2} \sum_{j=i+1}^{q-1} M_{i}^{\prime} M_{j}^{\prime} \tag{5}
\end{equation*}
$$

where

- k and t are the quotient and the remainder, respectively, when dividing $M w$ by n,
- $M_{0}=M-k-1, M_{0}^{\prime}=M-k, M_{i}=\lfloor(k+i) /(q-1)\rfloor$, and $M_{i}^{\prime}=\lfloor(k+i-1) /(q-1)\rfloor$.

New upper bounds for q-ary constant-weight codes

Example

- Suppose that $q=3$ and $(n, d, w)=(9,3,7)$.
- The best known upper bound for $A_{3}(9,3,7)$ is $A_{3}(9,3,7) \leq 576$.
- Suppose that $A_{3}(9,3,7)=576$. Let \mathcal{C} be a code whose size attains the upper bound and let $\left\{A_{i}\right\}_{i=0}^{n}$ be the distance distribution of \mathcal{C}.
- The above theorem gives the following inequalities.

$$
\begin{aligned}
9 A_{3}+6 A_{4}+3 A_{5}-3 A_{7}-6 A_{8}-9 A_{9} & \geq 270 \\
27 A_{3}+6 A_{4}-6 A_{5}-9 A_{6}-3 A_{7}+12 A_{8}+36 A_{9} & \geq-108 \\
15 A_{3}-24 A_{4}-18 A_{5}+6 A_{6}+21 A_{7}-84 A_{9} & \geq-294 \\
-72 A_{3}-39 A_{4}+21 A_{5}+27 A_{6}-21 A_{7}-42 A_{8}+126 A_{9} & \geq-1890 \\
-108 A_{3}+42 A_{4}+39 A_{5}-36 A_{6}-21 A_{7}+84 A_{8}-126 A_{9} & \geq-3969 \\
48 A_{3}+72 A_{4}-48 A_{5}-15 A_{6}+63 A_{7}-84 A_{8}+84 A_{9} & \geq-4942 \\
144 A_{3}-48 A_{4}-24 A_{5}+54 A_{6}-57 A_{7}+48 A_{8}-36 A_{9} & \geq-4194 \\
-48 A_{4}+48 A_{5}-36 A_{6}+24 A_{7}-15 A_{8}+9 A_{9} & \geq-2160 \\
-64 A_{3}+32 A_{4}-16 A_{5}+8 A_{6}-4 A_{7}+2 A_{8}-A_{9} & \geq-1480 / 3
\end{aligned}
$$

New upper bounds for q-ary constant-weight codes

New upper bounds for q-ary constant-weight codes

Example (continued)

- Since $A_{0}=1$ and $A_{1}=A_{2}=0$,

$$
1+\sum_{i=3}^{9} A_{i}=\sum_{i=0}^{9} A_{i}=|\mathcal{C}|=576
$$

- Consider the following linear programming (where the A_{i} are considered as variables)

$$
\max \left(1+\sum_{i=3}^{9} A_{i}\right)
$$

subject to $A_{i} \geq 0, i=3,4, \ldots, 9$ and subject to the above inequalities.

- Solving this linear programming, we get the maximum value of $1+\sum_{i=3}^{9} A_{i}$ is $12094 / 21$, which is less than 576.
- This contradiction shows that such a code \mathcal{C} does not exist. Therefore,

$$
A_{3}(9,3,7) \leq 575
$$

Thank you!

