
Results on binary codes Generalizations to q-ary codes

New Inequalities for q-ary Constant-Weight
Codes

Hyun Kwang Kim∗1 Phan Thanh Toan1

1Department of Mathematics, POSTECH

International Workshop on Coding and Cryptography

April 15-19, 2013, Bergen (Norway)



Results on binary codes Generalizations to q-ary codes

Outline

1 Results on binary codes
Binary codes
A fundamental problem in coding theory
Delsarte’s linear programming bound for binary codes
New upper bounds for binary constant-weight codes

2 Generalizations to q-ary codes
q-ary codes
Delsarte’s linear programming bound for q-ary codes
New inequalities for q-ary constant-weight codes
New upper bounds for q-ary constant-weight codes



Results on binary codes Generalizations to q-ary codes

Binary codes

What is a code?

Binary code

Let F = {0, 1}.
A subset C of Fn is called a (binary) code of length n.
An element of a code C is called a codeword.

Minimum distance of a code

Hamming distance between two vectors u, v ∈ Fn, denoted by d(u, v),
is the number of coordinates where they differ.
Minimum distance of a code C is defined by

min{d(u, v)|u, v ∈ C, u 6= v}.
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A fundamental problem in coding theory

A fundamental problem in coding theory

Definition

Given n and d , define

A(n, d) = maximum number of codewords
in any code of length n and
minimum distance ≥ d .

Remarks

Determining the exact values of A(n, d) is an extremely difficult problem
(for large n).
Since A(n, d) = A(n + 1, d + 1) if d is odd, we can always assume that
d is even.
When d is even, all values of A(n, d) are known for n ≤ 16.
For an unknown A(n, d), one may try to find its lower and upper bound.
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Distance distribution of a code

Let C be a code of length n. The distance distribution {Ai}n
i=0 of C is defined

by

Ai =
1
|C| |{(u, v) ∈ C

2 | d(u, v) = i}|

for i = 0, 1, . . . , n.

Remark

By definition, A0 = 1 and
∑n

i=0 Ai = |C|.

Delsarte’s linear programming bound

For upper bounds on A(n, d), Delsarte’s linear programming bound is a
powerful bound.
Delsarte’s linear programming bound is based on the fact that the
following linear combinations of the distance distribution {Ai}n

i=0 are
nonnegative (as follows).
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Theorem (Delsarte)

Let C be a code with distance distribution {Ai}n
i=0. For k = 1, 2, . . . , n,

n∑
i=0

Pk (n; i)Ai ≥ 0,

where Pk (n; x) is the Krawtchouk polynomial given by

Pk (n; x) =
k∑

j=0

(−1)j
(

x
j

)(
n − x
k − j

)
.
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Theorem (Delsarte’s linear programming bound)

A(n, d) ≤ 1 + bmax(A1 + A2 + · · ·+ An)c,

where the maximization is taken over all (A1,A2, . . . ,An) satisfying Ai ≥ 0 for
i = 1, 2, . . . , n and satisfying the above linear constraints.

Remark

If d is even, then A(n, d) is attained by a code with all vectors having
even weights.
Hence, if d is even, then we can put Ai = 0 if i is odd.
Also, by definition, Ai = 0 if 0 < i < d .
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Delsarte’s linear programming bound for binary codes

Delsarte’s linear programming bound

Theorem (Delsarte’s linear programming bound and its improvements)

Let C be a code with distance distribution {Ai}n
i=0. For k = 1, 2, . . . , n,

n∑
i=0

Pk (n; i)Ai ≥ 0.

If M = |C| is odd, then
n∑

i=0

Pk (n; i)Ai ≥
1
M

(n
k

)
.

If M = |C| ≡ 2 (mod 4), then there exists t ∈ {0, 1, . . . , n} such that
n∑

i=0

Pk (n; i)Ai ≥
2
M

[(n
k

)
+ Pk (n; t)

]
.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Result 1

We prove simultaneously Delsarte’s linear programming bound and its
well known improvements.
The proof is based on counting the number of 2× k submatrices of C,
where C is considered as a |C| × n matrix (each codeword in C is a row).

Definition

For each k = 1, 2, . . . , n, we introduce polynomials

P−k (n; x) =
k∑

j=0
j odd

(
x
j

)(
n − x
k − j

)
and P+

k (n; x) =
k∑

j=0
j even

(
x
j

)(
n − x
k − j

)
.

Remark

It follows that P+
k (n; x) + P−k (n; x) =

( n
k

)
. The polynomial

Pk (n; x) := P+
k (n; x)− P−k (n; x) is called the Krawtchouk polynomial.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

The proof immediately follows from the following lemma.

Lemma

Let C be a code with size M and distance distribution {Ai}n
i=0 and let t be the

number of columns of C containing an odd number of ones. For each
k = 1, 2, . . . , n,

n∑
i=1

P−k (n; i)Ai ≤
2
M

[
N
(n

k

)
− δP+

k (n; t)
]

(1)

and

−
n∑

i=1

P+
k (n; i)Ai ≤ −(M − 1)

(n
k

)
+

2
M

[
N
(n

k

)
− δP+

k (n; t)
]
, (2)

where N and δ are given by

N =

{
M2

4 if M is even
M2−1

4 if M is odd
and δ =

{
1 if M ≡ 2 (mod 4)
0 otherwise .
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma

Write C = (cmi), 1 ≤ m ≤ |C|, 1 ≤ i ≤ n. Let S1(k) be the number of
2× k matrices

A =

(
cmi1 cmi2 · · · cmik
cli1 cli2 · · · clik

)
such that m 6= l , i1 < i2 < · · · < ik , and A contains an odd number of 1’s.
The entries of A are on the intersection of two rows and k columns of C.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

For an ordered pair (u, v) of different rows of C, to get such a matrix A
choose j coordinates (j odd) where u and v are differ and choose k − j
coordinates where u and v are the same.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

Hence, an ordered pair (u, v) will contribute

n∑
j=0

j odd

(
d(u, v)

j

)(
n − d(u, v)

k − j

)
= P−k (n; d(u, v))

to S1(k). Therefore,

S1(k) =
∑

u,v∈C
u 6=v

P−k (n; d(u, v)) =
n∑

i=1

∑
u,v∈C

d(u,v)=i

P−k (n; i)

=
n∑

i=1

P−k (n; i)
∑

u,v∈C
d(u,v)=i

1

= M
n∑

i=1

P−k (n; i)Ai .
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

Let u′1, u
′
2, . . . , u

′
n be the n columns of C.

For k columns u′i1 , u
′
i2 , . . . , u

′
ik , to get such a matrix A choose one row

such that the intersection of this row with the k columns has an odd
number of 1’s and choose another row such that the intersection of that
row with the k columns has an even number of 1’s.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

Hence,

S1(k) = 2
∑

i1<i2<···<ik

wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )].

If M is odd, then δ = 0 by definition. For all i1 < i2 < · · · < ik ,

wt(u′i1 + · · ·+u′ik )[M−wt(u′i1 + · · ·+u′ik )] ≤
M − 1

2
M + 1

2
=

M2 − 1
4

= N.

So

S1(k) ≤ 2
∑

i1<i2<···<ik

N = 2N
(n

k

)
= 2

[
N
(n

k

)
− δP+

k (n; t)
]
.

Therefore, (1) is proved if M is odd.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

If M ≡ 0 (mod 4), then δ = 0 by definition. For all i1 < i2 < · · · < ik ,

wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )] ≤
M
2

M
2

=
M2

4
= N.

So
S1(k) ≤ 2N

(n
k

)
= 2

[
N
(n

k

)
− δP+

k (n; t)
]
.

Therefore, (1) is proved if M ≡ 0 (mod 4).
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

If M ≡ 2 (mod 4), then δ = 1 by definition.
Let I be the collection of coordinates i such that the column u′i contains
an odd number of 1’s.
If |{i1, i2, . . . , ik} ∩ I| is odd, then

wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )] ≤
M
2

M
2

=
M2

4
= N.

However, if |{i1, i2, . . . , ik} ∩ I| is even, then
wt(u′i1 + · · ·+ u′ik )[M − wt(u′i1 + · · ·+ u′ik )] ≤

M − 2
2

M + 2
2

= N − 1.

S1(k) ≤ 2

 ∑
|{i1,i2,...,ik}∩I| odd

N +
∑

|{i1,i2,...,ik}∩I| even
N − 1


= 2

[
N
(n

k

)
− δP+

k (n; t)
]
.

Hence, (1) is proved if M ≡ 2 (mod 4).
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Proof of Lemma (continued)

For (2), one can count (two times of) the number of 2× k submatrices A
such that A contains an even number of 1’s or just use the equality

n∑
i=1

P−(n; i)Ai +
n∑

i=1

P+(n; i)Ai = (M − 1)
(n

k

)
.
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Delsarte’s linear programming bound for binary codes

Counting the number of 2 × k submatrices

Theorem (Delsarte’s linear programming bound and its improvements)

Let C be a code with distance distribution {Ai}n
i=0. For k = 1, 2, . . . , n,

n∑
i=1

Pk (n; i)Ai ≥ −
(n

k

)
.

If M = |C| is odd, then
n∑

i=1

Pk (n; i)Ai ≥ −
(n

k

)
+

1
M

(n
k

)
.

If M = |C| ≡ 2 (mod 4), then there exists t ∈ {0, 1, . . . , n} such that
n∑

i=1

Pk (n; i)Ai ≥ −
(n

k

)
+

2
M

[(n
k

)
+ Pk (n; t)

]
.

Proof of Theorem

Take sum of inequalities (1) and (2) in the above lemma.
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New upper bounds for binary constant-weight codes

Upper bounds for A(n,d ,w)

Definition

Given n, d , and w , define

A(n, d ,w) = maximum number of codewords
in any code of length n and
minimum distance ≥ d such that
each codeword has exactly w ones.
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New upper bounds for binary constant-weight codes

Counting the number of 1 × k submatrices

Proposition (1-row k -column formula)

Let C be a code of length n and constant-weight w . For each k = 1, 2, . . . , n,∑
i1<···<ik

wt(u′i1 + · · ·+ u′ik ) = MP−k (n;w),

where the sum is taken over all (i1, i2, . . . , ik ) such that i1 < i2 < · · · < ik .

Sketch of proof

Count the number of 1× k submatrices of C containing an odd number of 1’s.
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New upper bounds for binary constant-weight codes

Counting the number of 2 × k submatrices

Result 2 (2-row k -column formula)

Let C be a code of length n and constant-weight w . For each k = 1, 2, . . . , n,

w∑
i=d/2

P−k (n; 2i)A2i ≤
2
M

[((n
k

)
− rk

)
qk (M − qk )

+rk (qk + 1)(M − qk − 1)]

and

−
w∑

i=d/2

P+
k (n; 2i)A2i ≤

2
M

[((n
k

)
− rk

)
qk (M − qk )

+rk (qk + 1)(M − qk − 1)]− (M − 1)
(n

k

)
,

where qk and rk are the quotient and the remainder, respectively, when
dividing MP−k (n;w) by

( n
k

)
, i.e., MP−k (n;w) = qk

( n
k

)
+ rk , with 0 ≤ rk <

( n
k

)
.
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New upper bounds for binary constant-weight codes

New upper bounds on A(n,d ,w)

Sketch of proof

Count (two times of) the number of 2× k submatrices of C containing an odd
(even) number of 1’s.

Result 2 gives the following new upper bounds for A(n, d ,w), n ≤ 28.

� A(18, 6, 8) ≤ 427 (428)
� A(18, 6, 9) ≤ 424 (425)
� A(20, 6, 10) ≤ 1420 (1421)
� A(27, 6, 11) ≤ 66078 (66079)
� A(27, 6, 12) ≤ 84573 (84574)
� A(27, 6, 13) ≤ 91079 (91080)
� A(28, 6, 11) ≤ 104230 (104231)
� A(28, 6, 13) ≤ 164219 (164220)
� A(28, 6, 14) ≤ 169739 (169740)
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New upper bounds for binary constant-weight codes

New upper bounds on A(n,d ,w)

New upper bounds

� A(24, 10, 10) ≤ 170 (171)
� A(24, 10, 11) ≤ 222 (223)
� A(24, 10, 12) ≤ 246 (247)
� A(26, 10, 9) ≤ 213 (214)
� A(27, 10, 9) ≤ 298 (299)
� A(28, 10, 14) ≤ 2628 (2629)
� A(26, 12, 10) ≤ 47 (48)
� A(27, 12, 12) ≤ 139 (140)
� A(27, 12, 13) ≤ 155 (156)
� A(28, 12, 11) ≤ 148 (149)
� A(28, 12, 12) ≤ 198 (199)
� A(28, 12, 13) ≤ 244 (245)
� A(28, 12, 14) ≤ 264 (265)
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q-ary codes

q-ary codes

Generalizations to q-ary codes

Results 1 and 2 appeared in [B. G. Kang, H. K. Kim, and P. T. Toan,
“Delsarte’s linear programming bound for constant-weight codes," IEEE
Trans. Inf. Theory, vol. 58, no. 9, pp. 5956–5962, Sep. 2012].
In the remaining, we generalize Results 1 and 2 to q-ary codes.
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q-ary codes

Definition

Definition

Let Fq be a finite field with q elements. A subset C of Fn
q is called a q-ary

code of length n.

Definition

Given n and d , define

Aq(n, d) = maximum number of codewords
in any q-ary code of length n and
minimum distance ≥ d .

Definition

Given n, d , and w , define

Aq(n, d ,w) = maximum number of codewords
in any q-ary code of length n and
minimum distance ≥ d such that
each codeword has weight w .
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Delsarte’s linear programming bound for q-ary codes

Delsarte’s linear programming bound for q-ary codes

Result 3

We prove simultaneously Delsarte’s linear programming bound and its well
known improvements for q-ary codes.

Theorem (Delsarte’s linear programming bound and its improvements)

Let C be a q-ary code with distance distribution {Ai}n
i=0. Let M = |C|. For

k = 1, 2, . . . , n,

n∑
i=0

Pk (n; i)Ai ≥
1
M

r(q − r)(q − 1)k−1
(n

k

)
,

where r is the remainder when dividing M by q and

Pk (n; x) =
k∑

j=0

(−1)j(q − 1)k−j
(

i
j

)(
n − i
k − j

)

is the Krawtchouk polynomial.
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Delsarte’s linear programming bound for q-ary codes

Delsarte’s linear programming bound for q-ary codes

Idea of proof

Write C = (cmi), 1 ≤ m ≤ |C|, 1 ≤ i ≤ n.
Consider all 2× k matrices

A =

(
cmi1 cmi2 · · · cmik
cli1 cli2 · · · clik

)
such that m 6= l , i1 < i2 < · · · < ik and all vectors

α = (α1, α2, . . . , αk ) ∈ (F∗q)k ,

where F∗q = Fq \ {0}.
Count the number of pairs (A, α) such that

α1cmi1 + · · ·+ αk cmik 6= α1cli1 + · · ·+ αk clik .
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New inequalities for q-ary constant-weight codes

Inequalities for q-ary constant-weight codes

Result 4

Using the same idea in the proof, we get the following new inequalities for
q-ary constant-weight codes.

Theorem

Suppose that {Ai}n
i=0 is the distance distribution of a q-ary constant-weight

code C of length n and constant-weight w . Let M = |C|. Then for each
k = 1, 2, . . . , n,

n∑
i=1

Pk (n; i)Ai ≥ (M − 1)(q − 1)k
(n

k

)
− 2q

(q − 1)M
T (k),

where T (k) = T1(k) + T2(k) + T3(k).
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New inequalities for q-ary constant-weight codes

Inequalities for q-ary constant-weight codes

Notations

T1(k) =
[
(q − 1)k

(n
k

)
− rk

]
(M − qk )qk + rk (M − qk − 1)(qk + 1),

T2(k) =
[
(q − 1)k

(n
k

)
− rk

] [(q − 1− tk
2

)
s2

k

+(q − 1− tk )tk sk (sk + 1) +
(

tk
2

)
(sk + 1)2

]
,

T3(k) = rk

[(
q − 1− t ′k

2

)
s′2k + (q − 1− t ′k )t

′
k s′k (s

′
k + 1) +

(
t ′k
2

)
(s′k + 1)2

]
,

where
◦ qk and rk are the quotient and the remainder, respectively, when

dividing 2(q−1)M
q P−k (n;w) by (q − 1)k ( n

k

)
,

◦ sk and tk are the quotient and the remainder, respectively, when dividing
qk by (q − 1),

◦ s′k and t ′k are the quotient and the remainder, respectively, when dividing
qk + 1 by (q − 1).
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New inequalities for q-ary constant-weight codes

Inequalities for q-ary constant-weight codes

Notations

For each k = 1, 2, . . . , n,

P−k (n; x) =
1
2

k∑
j=0

[(q − 1)j − (−1)j ](q − 1)k−j
(

x
j

)(
n − x
k − j

)
(3)

and

P+
k (n; x) = (q − 1)k

(n
k

)
− P−k (n; x). (4)
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New inequalities for q-ary constant-weight codes

Inequalities for q-ary constant-weight codes

For k = 1, the new inequalities give the following corollary, which was shown
by P. R. J. Östergård and M. Svanström in [Ternary constant weight codes,
Electron. J. Combin., vol. 9, no. 1, 2002].

Corollary

If there exists a q-ary code of length n, constant-weight w , and minimum
distance ≥ d , then

M(M − 1)d ≤ 2t
q−2∑
i=0

q−1∑
j=i+1

MiMj + 2(n − t)
q−2∑
i=0

q−1∑
j=i+1

M ′i M
′
j , (5)

where
◦ k and t are the quotient and the remainder, respectively, when dividing

Mw by n,
◦ M0 = M − k − 1, M ′0 = M − k , Mi = b(k + i)/(q − 1)c, and

M ′i = b(k + i − 1)/(q − 1)c.
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New upper bounds for q-ary constant-weight codes

New upper bounds for q-ary constant-weight codes

Example

Suppose that q = 3 and (n, d ,w) = (9, 3, 7).
The best known upper bound for A3(9, 3, 7) is A3(9, 3, 7) ≤ 576.
Suppose that A3(9, 3, 7) = 576. Let C be a code whose size attains the
upper bound and let {Ai}n

i=0 be the distance distribution of C.
The above theorem gives the following inequalities.

9A3 + 6A4 + 3A5 − 3A7 − 6A8 − 9A9 ≥ 270
27A3 + 6A4 − 6A5 − 9A6 − 3A7 + 12A8 + 36A9 ≥ −108

15A3 − 24A4 − 18A5 + 6A6 + 21A7 − 84A9 ≥ −294
−72A3 − 39A4 + 21A5 + 27A6 − 21A7 − 42A8 + 126A9 ≥ −1890
−108A3 + 42A4 + 39A5 − 36A6 − 21A7 + 84A8 − 126A9 ≥ −3969

48A3 + 72A4 − 48A5 − 15A6 + 63A7 − 84A8 + 84A9 ≥ −4942
144A3 − 48A4 − 24A5 + 54A6 − 57A7 + 48A8 − 36A9 ≥ −4194

−48A4 + 48A5 − 36A6 + 24A7 − 15A8 + 9A9 ≥ −2160
−64A3 + 32A4 − 16A5 + 8A6 − 4A7 + 2A8 − A9 ≥ −1480/3
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New upper bounds for q-ary constant-weight codes

New upper bounds for q-ary constant-weight codes

Example (continued)

Since A0 = 1 and A1 = A2 = 0,

1 +
9∑

i=3

Ai =
9∑

i=0

Ai = |C| = 576.

Consider the following linear programming (where the Ai are considered
as variables)

max

(
1 +

9∑
i=3

Ai

)
subject to Ai ≥ 0, i = 3, 4, . . . , 9 and subject to the above inequalities.
Solving this linear programming, we get the maximum value of
1 +

∑9
i=3 Ai is 12094/21, which is less than 576.

This contradiction shows that such a code C does not exist. Therefore,

A3(9, 3, 7) ≤ 575.
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Thank you!
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