Paillier-Based Publicly Verifiable (Non-interactive) Secret Sharing

Mahabir P. Jhanwar A. Venkateswarlu Rei Safavi-Naini Presented by Santanu Sarkar

WCC 2013
April 15-19, 2013, Bergen (Norway)

Outline of the talk

- Secret Sharing
- Publicly Verifiable Secret Sharing
- Proposed Scheme
- Efficiency Comparison

Outline of the talk

- Secret Sharing
- Publicly Verifiable Secret Sharing
- Proposed Scheme
- Efficiency Comparison

(t, n)-threshold Secret Sharing

- Secret Sharing:

$$
s \xrightarrow{\text { Share Distribution }} s_{1}, s_{2}, \ldots, s_{n} \xrightarrow[\text { any } t+1 \text { shares }]{\text { Reconstruction }} s
$$

- Privacy (Perfect) : Any t shares will give no information abouts

$$
s_{i_{1}}, \ldots, s_{i_{t}} \xrightarrow{\text { unlimited computation allowed }} \text { ? }
$$

Example (Shamir Secret Sharing)

- Secret: $s \in \mathbb{F}$.
- Shares: $s_{1}=f(1), s_{2}=f(2), \ldots, s_{n}=f(n)$, where $f(x)=s+a_{1} x+a_{2} x^{2}+\cdots+a_{t} x^{t} \in \mathbb{F}[x]$.
- Privacy and Reconstructability follows from Lagrange Interpolation.

Outline of the talk

- Secret Sharing

- Publicly Verifiable Secret Sharing
- Proposed Scheme
- Efficiency Comparison

Verifiable Secret Sharing [CGMA'85]

Verifiable Secret Sharing [CGMA'85]

```
Some are wrong
\(s \xrightarrow[\text { Distribution }]{\text { Share }} \overbrace{s_{1}, s_{2}, \ldots, s_{n}}^{\text {Reconstruction }}\) need not unique secret!!
```


Verifiable Secret Sharing [CGMA'85]

- Extra Verification Protocol (VP) !! It takes place between \mathcal{D} and P_{1}, \ldots, P_{n} and satisfy the following.

Verifiable Secret Sharing [CGMA'85]

Some are wrong
$S \xrightarrow[\text { Distribution }]{\text { Share }} \overbrace{s_{1}, s_{2}, \ldots, s_{n}} \xrightarrow{\text { Reconstruction }}$ need not unique secret!!

- Extra Verification Protocol (VP) !! It takes place between \mathcal{D} and P_{1}, \ldots, P_{n} and satisfy the following.
- \mathcal{D} follows share distribution, VP; P_{i} follows VP implies P_{i} accepts share with probability 1.
- For all $S_{1}, S_{2} \subset\left\{P_{1}, \ldots, P_{n}\right\},\left(\left|S_{i}\right|=t\right)$ such that $\left\{P_{i}\right\}_{i \in S_{1}}$ and $\left\{P_{i}\right\}_{i \in S_{2}}$ accepted their shares in VP, the following holds: let s_{i} be the secret computed by $\left\{P_{i}\right\}_{i \in S_{i}}(i=1,2)$, then

$$
\operatorname{Prob}\left[s_{1} \neq s_{2}\right] \leq \text { negligible. }
$$

Publicly Verifiable Secret Sharing [Sta'96]

- Extra Verification Protocol (VP) !! It takes place between \mathcal{D} and P_{1}, \ldots, P_{n} and satisfy the following.
- \mathcal{D} follows share distribution, VP; P_{i} follows VP implies P_{i} accepts share with probability 1 .
- For all $S_{1}, S_{2} \subset\left\{P_{1}, \ldots, P_{n}\right\},\left(\left|S_{i}\right|=t\right)$ such that $\left\{P_{i}\right\}_{i \in S_{1}}$ and $\left\{P_{i}\right\}_{i \in S_{2}}$ accepted their shares in VP, the following holds: let s_{i} be the secret computed by $\left\{P_{i}\right\}_{i \in S_{i}}(i=1,2)$, then

$$
\operatorname{Prob}\left[s_{1} \neq s_{2}\right] \leq \text { negligible } .
$$

Publicly Verifiable Secret Sharing [Sta'96]

- Extra Verification Protocol (VP) !! It takes place between \mathcal{D} and P_{1}, \ldots, P_{n} and satisfy the following.
- \mathcal{D} follows share distribution, VP; P_{i} follows VP implies P_{i} accepts share with probability 1 .
- For all $S_{1}, S_{2} \subset\left\{P_{1}, \ldots, P_{n}\right\},\left(\left|S_{i}\right|=t\right)$ such that $\left\{P_{i}\right\}_{i \in S_{1}}$ and $\left\{P_{i}\right\}_{i \in S_{2}}$ accepted their shares in VP, the following holds: let s_{i} be the secret computed by $\left\{P_{i}\right\}_{i \in S_{i}}(i=1,2)$, then

$$
\operatorname{Prob}\left[s_{1} \neq s_{2}\right] \leq \text { negligible. }
$$

- The verification protocol can be executed by any third party.

Publicly Verifiable Secret Sharing [Sta'96]

- Extra Verification Protocol (VP) !! It takes place between \mathcal{D} and P_{1}, \ldots, P_{n} and satisfy the following.
- \mathcal{D} follows share distribution, VP; P_{i} follows VP implies P_{i} accepts share with probability 1 .
- For all $S_{1}, S_{2} \subset\left\{P_{1}, \ldots, P_{n}\right\},\left(\left|S_{i}\right|=t\right)$ such that $\left\{P_{i}\right\}_{i \in S_{1}}$ and $\left\{P_{i}\right\}_{i \in S_{2}}$ accepted their shares in VP, the following holds: let s_{i} be the secret computed by $\left\{P_{i}\right\}_{i \in S_{i}}(i=1,2)$, then

$$
\operatorname{Prob}\left[s_{1} \neq s_{2}\right] \leq \text { negligible. }
$$

- The verification protocol can be executed by any third party.
- Further, we consider the Non-interactive public verification.

Publicly Verifiable Secret Sharing [Sta'96]

- Extra Verification Protocol (VP) !! It takes place between \mathcal{D} and P_{1}, \ldots, P_{n} and satisfy the following.
- \mathcal{D} follows share distribution, VP; P_{i} follows VP implies P_{i} accepts share with probability 1 .
- For all $S_{1}, S_{2} \subset\left\{P_{1}, \ldots, P_{n}\right\},\left(\left|S_{i}\right|=t\right)$ such that $\left\{P_{i}\right\}_{i \in S_{1}}$ and $\left\{P_{i}\right\}_{i \in S_{2}}$ accepted their shares in VP, the following holds: let s_{i} be the secret computed by $\left\{P_{i}\right\}_{i \in S_{i}}(i=1,2)$, then

$$
\operatorname{Prob}\left[s_{1} \neq s_{2}\right] \leq \text { negligible. }
$$

- The verification protocol can be executed by any third party.
- Further, we consider the Non-interactive public verification.

Non-interactive Publicly Verifiable Secret Sharing !!

PVSS Applications

- PVSS offers an efficient alternative in many protocols which use VSS as a subroutine.
- PVSS gives a practical solution to (t, n)-threshold VSS assuming no broadcast channel.
- Useful primitive for multi-party computation.
- Various applications to electronic voting (and its variants).
- Play important roles in key-escrow systems and threshold cryptography.

Model for PVSS [Sch'99]

(1) Distribution.

- Share Distribution:
- \mathcal{D} generates shares $E_{i}\left(s_{i}\right)$ of s for P_{i}.
- \mathcal{D} also publishes $\mathrm{PROOF}_{\mathcal{D}}$ to show each $E_{i}\left(s_{i}\right)$ encrypts s_{i}.
- Shares Verification: Any party knowing the public keys of the participants may verify the shares.
(2) Reconstruction.
- Shares Decryption:
- The participants decrypt their shares s_{i} from $E_{i}\left(s_{i}\right)$.
- Every P_{i} releases s_{i} plus $\mathrm{PROOF}_{p_{i}}$ to show shares are correct.
- Share Combining: PROOF $_{P_{i}}$ are used to exclude dishonest participants. Reconstruction of s by any authorized set.

Security (Proposed Scheme)

- Unconditional Verifiability.
- For all $S_{1}, S_{2} \subset\left\{P_{1}, \ldots, P_{n}\right\},\left(\left|S_{i}\right|=t\right)$ such that $\left\{P_{i}\right\}_{i \in S_{1}}$ and $\left\{P_{i}\right\}_{i \in S_{2}}$ accepted their shares in VP, the following holds: let s_{i} be the secret computed by $\left\{P_{i}\right\}_{i \in S_{i}}(i=1,2)$, then

$$
\operatorname{Prob}\left[s_{1} \neq s_{2}\right]=0 .
$$

- Privacy. (Stronger Version by Indistinguishability of Secrets)

$$
\begin{gathered}
\mathcal{A} \text { has corrupted } t-1 \text { players } \\
\left(s_{0}, s_{1}\right) \Phi \mathcal{A}^{\text {Dist(} \cdot)} \\
\left\{E_{i}\left(s_{b, i}\right)\right\}_{i=1}^{n} \stackrel{\$}{\leftarrow} \operatorname{Dist}\left(s_{b}\right) ; b \stackrel{\$}{\leftarrow}\{0,1\} \\
b^{\prime} \stackrel{\$}{\leftarrow} \mathcal{A}^{\operatorname{Dist}(\cdot)}\left(E_{i}\left(s_{b, i}\right)\right)
\end{gathered}
$$

- $\operatorname{Adv} \underset{\operatorname{SASSS}, \mathcal{A}}{\operatorname{SA}}(\mu)=\left|\operatorname{Prob}\left[b^{\prime}=b\right]-\frac{1}{2}\right| \leq$ negligible.

Some Existing Constructions

Schemes	Technique	Hardness	Secret Type
\checkmark [Sta'96]	Discret Log based	DDH	g^{s}
\checkmark [FO'98]	RSA	Modified RSA	s
\checkmark [Sch'99]	Discret Log based	Diffie-Hellman	g^{s}
\checkmark [HV'08]	Pairing	DBDH	$e(g, g)^{s}$
\checkmark [RV'05]	Paillier	DCRA	s
\checkmark Proposed	Paillier	DCRA	s

- Discrete log (Pairing) based schemes shares the secret g^{s} $\left(e(g, g)^{s}\right)$ for secret s.
- Paillier based schemes have the advantage of sharing the secret s as it is.

Outline of the talk

- Secret Sharing

- Publicly Verifiable Secret Sharing
- Proposed Scheme
- Efficiency Comparison

Preliminaries

- Let $n=p q$ be such that $\operatorname{gcd}(\phi(n), n)=1$. Let $\lambda=\operatorname{lcm}(p-1, q-1)$ be Carmichael's number.
- An element $x \in \mathbb{Z}_{n^{2}}^{*}$ is said to be an n-th residue modulo n^{2} if there exists $y \in \mathbb{Z}_{n^{2}}^{*}$ such that $x \equiv y^{n} \bmod n^{2}$.
- Decisional Composite Residuosity Assumption (DCRA). Hard distinguishing n-th residues from non n-th residues !!

Proposed Scheme (Underlying Primitives)

- Paillier's Public Key Encryption [Pai'99].

$$
\begin{array}{c|c|c}
n=p q, \underline{\text { KeyGen }} \operatorname{gcd}(\phi(n), n)=1 & \underline{E n c} & \text { Dec } \\
\lambda=\operatorname{Icm}(p-1, q-1) ; g \in \mathbb{Z}_{n^{2}}^{*} \text { with } n \mid o(g) & r \in_{R} \mathbb{Z}_{n}^{*} & M=\frac{L\left(c^{\lambda} \bmod n^{2}\right)}{L\left(g^{\lambda} \bmod n^{2}\right)} \bmod n \\
\operatorname{pk}=(n, g) ; \text { mk }=\lambda & C=g^{M} r^{n} \bmod n^{2} & \text { where } L(X)=\frac{X-1}{n} .
\end{array}
$$

- Chaum-Pedersen protocol [CP'93]: interactive proof of knowledge for equality of discrete logarithms.

$$
\left(g_{1}, g_{2}, y_{1}, y_{2}\right) ; y_{1}=g_{1}^{x} \text { and } y_{2}=g_{2}^{x}
$$

- Fiat-Shamir technique [FS'86]: from interactive to non-interactive.

Proposed Scheme

- Underlying Useful Observations/Results
- Let $f(x)=\sum_{k=0}^{t-1} a_{k} x^{k}$ and $\{f(j)\}_{1 \leq j \leq t}$ be t points over $f(x)$. One can get (useful observation),

$$
\left\{g^{a_{k}}\right\}_{0 \leq k \leq t-1} \text { from }\left(g,\left\{g^{f(j)}\right\}_{1 \leq j \leq t}\right) .
$$

- Let $n=p q$, where p, q are safe primes i.e., $p=2 \cdot p^{\prime}+1$. Provide results to check if $v \in \mathrm{QR}_{n^{2}}$ is a generator or not.

Lemma

v is a generator of $Q R_{n^{2}}$ iff $\operatorname{gcd}(v-1, n)=1$ and $\operatorname{gcd}\left(v^{p^{\prime} q^{\prime}}-1, n\right)=1$.

Proposed Scheme

- Initialization:
- The dealer generates $n=p q$ with $p=2 p^{\prime}+1, q=2 q^{\prime}+1$ and $\operatorname{gcd}(n, \phi(n))=1$. Set $m=p^{\prime} q^{\prime}$.
- Choose $(a, b) \in_{R} \mathbb{Z}_{n}^{*} \times \mathbb{Z}_{n}^{*}$ and set $g=(1+n)^{a} b^{n}\left(\bmod n^{2}\right)$.
- Choose $v \in_{R} Q R_{n^{2}}$ and check if v is a generator of $Q R_{n^{2}}$.
- Dealer publishes (n, g, v).
- Every P_{i} selects $\left(m_{i}, r_{i}\right) \in_{R} \mathbb{Z}_{n} \times \mathbb{Z}_{n}^{*}$ and publish:

$$
T_{i}=g^{m_{i}} r_{i}^{n} \quad\left(\bmod n^{2}\right) \text { and } W_{i}=v^{\Delta m_{i}} \quad\left(\bmod n^{2}\right)
$$

where $\Delta=\ell$!.

- The pair $\left(m_{i}, r_{i}\right)$ is kept secret with P_{i}.

Proposed Scheme

\checkmark Distribution:

- Share Distribution (among ℓ players $\left\{P_{1}, \ldots, P_{\ell}\right\}$):
- Secret is $s \in \mathbb{Z}_{n}$.
- Choose $x \in_{R} \mathbb{Z}_{n}^{*}$ and compute $C=g^{s} x^{n} \bmod n^{2}$.
- Choose $\beta \in_{R} \mathbb{Z}_{n}^{*}$ and set $\theta=a m \beta \bmod n$.
- Compute $m_{i}=\frac{L\left(T_{i}^{\lambda} \bmod n^{2}\right)}{L\left(g^{\lambda} \bmod n^{2}\right)}(\bmod n)$ for $1 \leq i \leq \ell$.
- Choose a $t-1$ degree polynomial $f(x) \in \mathbb{Z}_{n m}[x]$:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{t-1} x^{t-1}
$$

where $a_{0}=\beta m$ and $a_{i} \in \mathbb{Z}_{n m}$ for $1 \leq i \leq t-1$.

- Compute $C_{i}=C^{2 \Delta f_{i}+2 \Delta m_{i}}$, where $f_{i}=f(i) \bmod n m$, $1 \leq i \leq \ell$.
- Compute $v^{\Delta a_{0}}, v^{\Delta a_{1}}, \ldots, v^{\Delta a_{t-1}}$.
- Finally publish: $\left\{\theta, C,\left(C_{i}\right)_{1 \leq i \leq \ell},\left(v^{\Delta a_{i}}\right)_{0 \leq i \leq t-1}\right\}$.

Proposed Scheme

\checkmark Distribution:

- Share Verification:
- Interactive Proof: Existence of the unique $f_{i}, 1 \leq i \leq \ell$, satisfying:

$$
C_{i}^{2}=\left(C^{4 \Delta}\right)^{f_{i}+m_{i}} \text { and } v_{i} \cdot W_{i}=\left(v^{\Delta}\right)^{f_{i}+m_{i}} .
$$

- Make it non-interactive using Fiat-Shamir technique.

Proposed Scheme

\checkmark Reconstruction:

- Share Decryption:
- Each P_{i} computes $C_{i}^{\prime}=C^{2 \Delta f_{i}}$ from C_{i} by computing $C_{i}^{\prime}=C_{i} \cdot\left(C^{2 \Delta m_{i}}\right)^{-1}$.
- Each P_{i} release C_{i}^{\prime} with a proof string showing the existence of unique m_{i} 's for $1 \leq i \leq \ell$, satisfying

$$
\left(C_{i} C_{i}^{\prime-1}\right)^{2}=\left(C^{4 \Delta}\right)^{m_{i}} \text { and } W_{i}=\left(v^{\Delta}\right)^{m_{i}}
$$

- Share Combining:
\checkmark Let there be t valid shares $\left\{C_{i}^{\prime}\right\}_{1 \leq i \leq t}$. The secret s can be obtained as follows:

$$
L\left(\prod_{i \in S}\left(C_{i}^{\prime}\right)^{2 \lambda_{i}^{S}(0)} \bmod n^{2}\right) \times \frac{1}{4 \Delta^{2} \theta} \bmod n=s
$$

Security

- Verifiability: Unconditional verifiability.
- Privacy:

Theorem

In the random oracle model for H and assuming the Decisional Composite Residuosity Assumption (DCRA) holds, the proposed publicly verifiable secret sharing scheme is semantically secure against static adversary.

Outline of the talk

- Secret Sharing

- Publicly Verifiable Secret Sharing
- Proposed Scheme
- Efficiency Comparison

Efficiency Comparison

Scheme Share Distribution Broadcast Bandwidth Verification
(1) Ruiz and Villar [05] $\ell(t+2)+2 t+1$ exps
t many $\mathbb{Z}_{n^{2}}$ elts $+2 \ell$ many $\mathbb{Z}_{n} \quad \ell(t+1)$ exps elts
(2) Proposed Scheme
$4 \ell+t+3$ exps
$(\ell+t+2)$ many $\mathbb{Z}_{n^{2}}$ elts $+\ell \quad \ell(t+3)$ exps many \mathbb{Z}_{n} elts
(3) Schoenmakers [99]
$3 \ell+t$ exps
$(\ell+t)$ order q group elts $+\ell \quad \ell(t+3)$ exps many \mathbb{Z}_{q} elts

- (1) is the only Paillier-based PVSS. (3) is based on Pairings.
- Improvement over (1) in Share Distribution.
- Comparable to (3).

