Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Paillier-Based Publicly Verifiable (Non-interactive) Secret Sharing

Mahabir P. Jhanwar A. Venkateswarlu Rei Safavi-Naini Presented by Santanu Sarkar

> WCC 2013 April 15-19, 2013, Bergen (Norway)

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline of the talk

Secret Sharing

Publicly Verifiable Secret Sharing

Proposed Scheme

Efficiency Comparison

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

Outline of the talk

Secret Sharing

Publicly Verifiable Secret Sharing

Proposed Scheme

Efficiency Comparison

► Publicly Verifiable Secret Sharing

► Proposed Scheme

Efficiency Comparison

(*t*, *n*)-threshold Secret Sharing

Secret Sharing:

$$s \xrightarrow{\text{Share Distribution}} s_1, s_2, \dots, s_n \xrightarrow{\text{Reconstruction}} s_{t+1}$$
 shares

Privacy (Perfect) : Any t shares will give no information about s

$$s_{i_1}, \ldots, s_{i_t} \xrightarrow{\text{unlimited computation allowed}} ?$$

Example (Shamir Secret Sharing)

- Secret: *s* ∈ 𝔽.
- Shares: $s_1 = f(1), s_2 = f(2), \dots, s_n = f(n)$, where $f(x) = s + a_1 x + a_2 x^2 + \dots + a_t x^t \in \mathbb{F}[x]$.

 Privacy and Reconstructability follows from Lagrange Interpolation.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline of the talk

Secret Sharing

Publicly Verifiable Secret Sharing

Proposed Scheme

Efficiency Comparison

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

Verifiable Secret Sharing [CGMA'85]

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

イロト 不得 トイヨト イヨト

э.

Verifiable Secret Sharing [CGMA'85]

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

Verifiable Secret Sharing [CGMA'85]

► Extra Verification Protocol (VP) !! It takes place between D and P₁,..., P_n and satisfy the following.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Verifiable Secret Sharing [CGMA'85]

- ► Extra Verification Protocol (VP) !! It takes place between D and P₁,..., P_n and satisfy the following.
 - ▶ D follows share distribution, VP; P_i follows VP implies P_i accepts share with probability 1.
 - ▶ For all $S_1, S_2 \subset \{P_1, \ldots, P_n\}, (|S_i| = t)$ such that $\{P_i\}_{i \in S_1}$ and $\{P_i\}_{i \in S_2}$ accepted their shares in VP, the following holds: let s_i be the secret computed by $\{P_i\}_{i \in S_i}$ (i = 1, 2), then

 $Prob[s_1 \neq s_2] \leq negligible.$

Publicly Verifiable Secret Sharing
 0000

► Proposed Scheme

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Publicly Verifiable Secret Sharing [Sta'96]

- ► Extra Verification Protocol (VP) !! It takes place between D and P₁,..., P_n and satisfy the following.
 - ▶ D follows share distribution, VP; P_i follows VP implies P_i accepts share with probability 1.
 - ▶ For all $S_1, S_2 \subset \{P_1, \ldots, P_n\}, (|S_i| = t)$ such that $\{P_i\}_{i \in S_1}$ and $\{P_i\}_{i \in S_2}$ accepted their shares in VP, the following holds: let s_i be the secret computed by $\{P_i\}_{i \in S_i}$ (i = 1, 2), then

 $Prob[s_1 \neq s_2] \leq negligible.$

Publicly Verifiable Secret Sharing [Sta'96]

- ► Extra Verification Protocol (VP) !! It takes place between D and P₁,..., P_n and satisfy the following.
 - ▶ D follows share distribution, VP; P_i follows VP implies P_i accepts share with probability 1.
 - ▶ For all $S_1, S_2 \subset \{P_1, \ldots, P_n\}, (|S_i| = t)$ such that $\{P_i\}_{i \in S_1}$ and $\{P_i\}_{i \in S_2}$ accepted their shares in VP, the following holds: let s_i be the secret computed by $\{P_i\}_{i \in S_i}$ (i = 1, 2), then

 $Prob[s_1 \neq s_2] \leq negligible.$

▶ The verification protocol can be executed by any third party.

► Proposed Scheme

Publicly Verifiable Secret Sharing [Sta'96]

- ► Extra Verification Protocol (VP) !! It takes place between D and P₁,..., P_n and satisfy the following.
 - ▶ D follows share distribution, VP; P_i follows VP implies P_i accepts share with probability 1.
 - ▶ For all $S_1, S_2 \subset \{P_1, \ldots, P_n\}, (|S_i| = t)$ such that $\{P_i\}_{i \in S_1}$ and $\{P_i\}_{i \in S_2}$ accepted their shares in VP, the following holds: let s_i be the secret computed by $\{P_i\}_{i \in S_i}$ (i = 1, 2), then

 $Prob[s_1 \neq s_2] \leq negligible.$

- ▶ The verification protocol can be executed by any third party.
- ► Further, we consider the Non-interactive public verification.

► Proposed Scheme

Publicly Verifiable Secret Sharing [Sta'96]

- ► Extra Verification Protocol (VP) !! It takes place between D and P₁,..., P_n and satisfy the following.
 - ▶ D follows share distribution, VP; P_i follows VP implies P_i accepts share with probability 1.
 - ▶ For all $S_1, S_2 \subset \{P_1, \ldots, P_n\}, (|S_i| = t)$ such that $\{P_i\}_{i \in S_1}$ and $\{P_i\}_{i \in S_2}$ accepted their shares in VP, the following holds: let s_i be the secret computed by $\{P_i\}_{i \in S_i}$ (i = 1, 2), then

 $Prob[s_1 \neq s_2] \leq negligible.$

- ► The verification protocol can be executed by any third party.
- Further, we consider the Non-interactive public verification. Non-interactive Publicly Verifiable Secret Sharing !!

Publicly Verifiable Secret Sharing
 0000

► Proposed Scheme

▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

PVSS Applications

- PVSS offers an efficient alternative in many protocols which use VSS as a subroutine.
- PVSS gives a practical solution to (t, n)-threshold VSS assuming no broadcast channel.
- ▶ Useful primitive for multi-party computation.
- ► Various applications to electronic voting (and its variants).
- Play important roles in key-escrow systems and threshold cryptography.

► Proposed Scheme

Efficiency Comparison

Model for PVSS [Sch'99]

1) Distribution.

- Share Distribution:
 - \mathcal{D} generates shares $E_i(s_i)$ of s for P_i .
 - \mathcal{D} also publishes $\mathsf{PROOF}_{\mathcal{D}}$ to show each $E_i(s_i)$ encrypts s_i .
- Shares Verification: Any party knowing the public keys of the participants may verify the shares.

2 Reconstruction.

- Shares Decryption:
 - The participants decrypt their shares s_i from $E_i(s_i)$.
 - Every P_i releases s_i plus $PROOF_{P_i}$ to show shares are correct.
- Share Combining: PROOF_{Pi} are used to exclude dishonest participants. Reconstruction of s by any authorized set.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

Security (Proposed Scheme)

Unconditional Verifiability.

▶ For all $S_1, S_2 \subset \{P_1, \ldots, P_n\}, (|S_i| = t)$ such that $\{P_i\}_{i \in S_1}$ and $\{P_i\}_{i \in S_2}$ accepted their shares in VP, the following holds: let s_i be the secret computed by $\{P_i\}_{i \in S_i}$ (i = 1, 2), then

 $\mathsf{Prob}[\underline{s_1} \neq \underline{s_2}] = 0.$

Privacy. (Stronger Version by Indistinguishability of Secrets)

$$\begin{array}{c} \mathcal{A} \text{ has corrupted } t-1 \text{ players} \\ (s_0, s_1) \stackrel{\$}{\leftarrow} \mathcal{A}^{\text{Dist}(\cdot)} \\ \{E_i(s_{b,i})\}_{i=1}^n \stackrel{\$}{\leftarrow} \text{Dist}(s_b); \ b \stackrel{\$}{\leftarrow} \{0, 1\} \\ b' \stackrel{\$}{\leftarrow} \mathcal{A}^{\text{Dist}(\cdot)}(E_i(s_{b,i})) \end{array}$$

►
$$\operatorname{Adv}_{\operatorname{PVSS},\mathcal{A}}^{\operatorname{SA-IND}}(\mu) = \left|\operatorname{Prob}[b' = b] - \frac{1}{2}\right| \leq \operatorname{negligible}.$$

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

Some Existing Constructions

Schemes	Technique	Hardness	Secret Type
✓ [Sta'96]	Discret Log based	DDH	g ^s
√ [FO'98]	RSA	Modified RSA	S
✓ [Sch'99]	Discret Log based	Diffie-Hellman	g ^s
√ [HV'08]	Pairing	DBDH	$e(g,g)^s$
✓ [RV'05]	Paillier	DCRA	S
🗸 Proposed	Paillier	DCRA	S

- Discrete log (Pairing) based schemes shares the secret g^s (e(g,g)^s) for secret s.
- Paillier based schemes have the advantage of sharing the secret s as it is.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

Outline of the talk

Secret Sharing

Publicly Verifiable Secret Sharing

Proposed Scheme

Efficiency Comparison

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

Preliminaries

- Let n = pq be such that gcd(φ(n), n) = 1. Let λ = lcm(p − 1, q − 1) be Carmichael's number.
- ▶ An element $x \in \mathbb{Z}_{n^2}^*$ is said to be an *n*-th residue modulo n^2 if there exists $y \in \mathbb{Z}_{n^2}^*$ such that $x \equiv y^n \mod n^2$.
- Decisional Composite Residuosity Assumption (DCRA). Hard distinguishing *n*-th residues from non *n*-th residues !!

Publicly Verifiable Secret Sharing 00000 Proposed Scheme000000

▶ Efficiency Comparison

Proposed Scheme (Underlying Primitives)

Paillier's Public Key Encryption [Pai'99].

$$\begin{array}{c|c} \underbrace{\mathsf{KeyGen}}{n = pq, \gcd(\phi(n), n) = 1} \\ \lambda = \mathsf{lcm}(p - 1, q - 1); \ g \in \mathbb{Z}_{n^2}^* \text{ with } n | o(g) \\ \mathsf{pk} = (n, g); \ \mathsf{sk} = \lambda \end{array} \qquad \begin{array}{c|c} \underbrace{\mathsf{Enc}}{\mathsf{Msg}} & \underbrace{\mathsf{Dec}}{\mathsf{Msg}} \\ r \in_{\mathcal{R}} \mathbb{Z}_n^* \\ C = g^M r^n \mod n^2 \end{array} \qquad \begin{array}{c|c} M = \frac{L(C^\lambda \mod n^2)}{L(g^\lambda \mod n^2)} \mod n \\ \mathsf{where } L(X) = \frac{X - 1}{n}. \end{array}$$

 Chaum-Pedersen protocol [CP'93]: interactive proof of knowledge for equality of discrete logarithms.

$$(g_1, g_2, y_1, y_2)$$
; $y_1 = g_1^x$ and $y_2 = g_2^x$.

 Fiat-Shamir technique [FS'86]: from interactive to non-interactive.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme ○●○○○○○ ▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposed Scheme

Underlying Useful Observations/Results

$$\{g^{a_k}\}_{0 \le k \le t-1}$$
 from $(g, \{g^{f(j)}\}_{1 \le j \le t})$.

▶ Let n = pq, where p, q are safe primes i.e., $p = 2 \cdot p' + 1$. Provide results to check if $v \in QR_{p^2}$ is a generator or not.

Lemma

v is a generator of QR_{n^2} iff gcd(v-1, n) = 1 and $gcd(v^{p'q'}-1, n) = 1$.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

Proposed Scheme

Initialization:

- ► The dealer generates n = pq with p = 2p' + 1, q = 2q' + 1and $gcd(n, \phi(n)) = 1$. Set m = p'q'.
- Choose $(a, b) \in_R \mathbb{Z}_n^* \times \mathbb{Z}_n^*$ and set $g = (1 + n)^a b^n \pmod{n^2}$.
- ▶ Choose $v \in_R QR_{n^2}$ and check if v is a generator of QR_{n^2} .
- Dealer publishes (n, g, v).
- Every P_i selects $(m_i, r_i) \in_R \mathbb{Z}_n \times \mathbb{Z}_n^*$ and publish:

$$T_i = g^{m_i} r_i^n \pmod{n^2}$$
 and $W_i = v^{\Delta m_i} \pmod{n^2}$

where $\Delta = \ell!$.

▶ The pair (m_i, r_i) is kept secret with P_i .

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposed Scheme

\checkmark Distribution:

Share Distribution (among ℓ players $\{P_1, \ldots, P_\ell\}$):

Secret is s ∈ Z_n.
Choose x ∈_R Z_n^{*} and compute C = g^sxⁿ mod n².
Choose β ∈_R Z_n^{*} and set θ = amβ mod n.
Compute m_i = L(T_i^λ mod n²)/(L(g^λ mod n²)) (mod n) for 1 ≤ i ≤ ℓ.
Choose a t − 1 degree polynomial f(x) ∈ Z_{nm}[x]:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{t-1} x^{t-1}$$

where $a_0 = \beta m$ and $a_i \in \mathbb{Z}_{nm}$ for $1 \le i \le t - 1$. • Compute $C_i = C^{2\Delta f_i + 2\Delta m_i}$, where $f_i = f(i) \mod nm$,

- $1 \leq i \leq \ell$.
- $\blacktriangleright \text{ Compute } v^{\Delta a_0}, v^{\Delta a_1}, \dots, v^{\Delta a_{t-1}}.$
- Finally publish: $\{\theta, C, (C_i)_{1 \le i \le \ell}, (v^{\Delta a_i})_{0 \le i \le t-1}\}$.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

▶ Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposed Scheme

✓ Distribution:

- ► Share Verification:
 - ► Interactive Proof: Existence of the unique f_i, 1 ≤ i ≤ ℓ, satisfying:

$$C_i^2 = (C^{4\Delta})^{f_i + m_i}$$
 and $v_i \cdot W_i = (v^{\Delta})^{f_i + m_i}$.

▶ Make it non-interactive using Fiat-Shamir technique.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

Proposed Scheme

✓ Reconstruction:

► Share Decryption:

- ► Each P_i computes $C'_i = C^{2\Delta f_i}$ from C_i by computing $C'_i = C_i \cdot (C^{2\Delta m_i})^{-1}$.
- ► Each P_i release C'_i with a proof string showing the existence of unique m_i's for 1 ≤ i ≤ ℓ, satisfying

$$(C_i C_i'^{-1})^2 = (C^{4\Delta})^{m_i}$$
 and $W_i = (v^{\Delta})^{m_i}$

Share Combining:

Let there be t valid shares {C'_i}_{1≤i≤t}. The secret s can be obtained as follows:

$$L\left(\prod_{i\in S} (C'_i)^{2\lambda^S_i(0)} \mod n^2\right) imes rac{1}{4\Delta^2 heta} \mod n = s.$$

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

► Verifiability: Unconditional verifiability.

► Privacy:

Theorem

In the random oracle model for H and assuming the Decisional Composite Residuosity Assumption (DCRA) holds, the proposed publicly verifiable secret sharing scheme is semantically secure against static adversary.

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

Outline of the talk

Secret Sharing

Publicly Verifiable Secret Sharing

Proposed Scheme

Efficiency Comparison

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへ⊙

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Efficiency Comparison

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Efficiency Comparison

Scheme	Share Distribution	Broadcast Bandwidth	Verification
① Ruiz and Villar [05]	$\ell(t+2)+2t+1$ exps	$t \operatorname{many} \mathbb{Z}_{n^2} \operatorname{elts} + 2\ell \operatorname{many} \mathbb{Z}_n$ elts	$\ell(t+1)$ exps
2 Proposed Scheme	$4\ell + t + 3 \exp ($	$(\ell + t + 2)$ many \mathbb{Z}_{n^2} elts $+ \ell$ many \mathbb{Z}_n elts	$\ell(t+3)$ exps
3 Schoenmakers [99]	$3\ell + t$ exps	$(\ell+t)$ order q group elts $+$ ℓ many \mathbb{Z}_q elts	$\ell(t+3)$ exps

 \blacktriangleright (1) is the only Paillier-based PVSS. (3) is based on Pairings.

- Improvement over (1) in Share Distribution.
- ► Comparable to (3).

Publicly Verifiable Secret Sharing 00000 ► Proposed Scheme

Thank You !!