Quantum Algorithms to Check Resiliency of Boolean Functions [Extended Abstract]

Kaushik Chakraborty¹ Subhamoy Maitra¹

¹Indian Statistical Institute Kolkata, India

April, 2013 / WCC , Bergen, Norway

ヘロト ヘヨト ヘヨト

Chakraborty, Maitra Short Paper Title

Outline

- Basics of Quantum Computation
- 2 Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

ヘロト ヘ戸ト ヘヨト ヘヨト

Qubit (preliminaries)

- Classical bits: 0, 1.
- Quantum counterpart $|0\rangle, |1\rangle$.

• $|0\rangle$ can be written as $\begin{vmatrix} 1\\0 \end{vmatrix}$

• $|1\rangle$ can be written as $\begin{bmatrix} 0\\1 \end{bmatrix}$.

Superposition of |0⟩, |1⟩: α|0⟩ + β|1⟩ can be written as α α 1 0 + β 0 1 = α β .
α a be written as α α 0 + β 0 1 = α β .

◆□ > ◆□ > ◆豆 > ◆豆 > -

Qubit and Measurement

• A qubit:

$$\alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle,$$

$$\alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1.$$

- Measurement in {|0⟩, |1⟩} basis: we will get |0⟩ with probability |α|², |1⟩ with probability |β|². The original state gets destroyed.
- Example:

$$\frac{1+i}{2}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle.$$

ヘロト ヘヨト ヘヨト

After measurement: we will get

- $|0\rangle$ with probability $\frac{1}{2}$,
- $|1\rangle$ with probability $\frac{1}{2}$.

Multi-Qubit System

Tensor products among the qubits are used to represent a system of multiple qubits. For example, two qubits |0⟩ and |0⟩ together can be represented as

$$|00
angle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

• *n* qubit quantum state can be written as $|\psi_n\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle + ... + \alpha_{2^n-1}|2^n - 1\rangle$, where $|\alpha_0|^2 + |\alpha_1|^2 + + |\alpha_{2^n-1}|^2 = 1$, in vector form it can be written as $(\alpha_0 \quad \alpha_1 \quad \alpha_2 \quad ... \quad \alpha_{2^n-1})^T$

・ロト ・ 理 ト ・ ヨ ト ・

Operations on Qubits

- All operators are unitary operators.
- A quantum operator which can operate on *n* qubits is a $2^n \times 2^n$ unitary matrix having real or imaginary entries.
- Example: Hadamard operator H =

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix},$$

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

It is a single qubit operator.

- For *n* bit Boolean function *f*, *U_f* will be an *n* + 1 qubit operator.
- First *n* qubits will be called control bits, and the last bit will be called a target bit.
- It works in the following fashion, $U_f|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle$

• if
$$|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$
, then
 $U_f|x\rangle|y\rangle = (-1)^{f(x)}|x\rangle|y\rangle$

ヘロト ヘアト ヘビト ヘビト

э.

Deutsch-Jozsa Algorithm Resiliency Checking

イロト イポト イヨト イヨト

Outline

Basics of Quantum Computation

- Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- 3 Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

Deutsch-Jozsa Algorithm Resiliency Checking

Deutsch-Jozsa(DJ) Algorithm

Problem Statement :

Given a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ with a promise that *f* is either balanced or constant. Decide which one it is.

Input : A Boolean function f on n variables is available in the form of the transformation U_f .

Output : If the state $|00...0\rangle$ is observed then conclude *f* is constant. Otherwise conclude *f* is balanced

イロン 不同 とくほ とくほ とう

Deutsch-Jozsa Algorithm Resiliency Checking

Deutsch-Jozsa(DJ) Algorithm

Problem Statement :

Given a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ with a promise that *f* is either balanced or constant. Decide which one it is.

Input : A Boolean function f on n variables is available in the form of the transformation U_{f} .

Output : If the state $|00...0\rangle$ is observed then conclude *f* is constant. Otherwise conclude *f* is balanced

ヘロト ヘアト ヘビト ヘビト

Deutsch-Jozsa Algorithm Resiliency Checking

Deutsch-Jozsa(DJ) Algorithm

Problem Statement :

Given a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ with a promise that *f* is either balanced or constant. Decide which one it is.

Input : A Boolean function f on n variables is available in the form of the transformation U_f .

Output : If the state $|00...0\rangle$ is observed then conclude *f* is constant. Otherwise conclude *f* is balanced

イロト 不得 とくほ とくほとう

DJ Circuit

Deutsch-Jozsa Algorithm Resiliency Checking

$|0\rangle \xrightarrow{n} H^{\otimes n} x x H^{\otimes n} M$ $|1\rangle H^{\otimes n} + f(x) + f(x)$ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \psi_{2} \psi_{3} \psi_{3}$

Figure : Quantum circuit to implement Deutsch-Jozsa Algorithm

イロト 不得 とくほと くほとう

э

DJ Circuit

Deutsch-Jozsa Algorithm Resiliency Checking

$|0\rangle \underline{n}_{H^{\otimes n}} x$

 $|\mathbf{U}\rangle \underbrace{H^{\otimes n}}_{H} x x \underbrace{U_{f}}_{y y \oplus f(x)}$ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \psi_{0}\rangle |\psi_{1}\rangle |\psi_{2}\rangle |\psi_{3}\rangle$

Figure : Quantum circuit to implement Deutsch-Jozsa Algorithm

イロト 不得 とくほと くほとう

ъ

Deutsch-Jozsa Algorithm Resiliency Checking

DJ Circuit

Figure : Quantum circuit to implement Deutsch-Jozsa Algorithm

イロト 不得 とくほと くほとう

ъ

Deutsch-Jozsa Algorithm Resiliency Checking

DJ Circuit

Figure : Quantum circuit to implement Deutsch-Jozsa Algorithm

イロト 不得 とくほと くほとう

ъ

DJ Circuit

Deutsch-Jozsa Algorithm Resiliency Checking

$|0\rangle \underbrace{\begin{array}{cccc} n \\ H^{\otimes n} \end{array}}_{X} \\ |1\rangle \underbrace{\begin{array}{cccc} U_{f} \\ y \\ \psi_{0} \end{array}}_{Y} \\ |\psi_{1}\rangle \\ \psi_{1}\rangle \\ \psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{3}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\ |\psi_{1}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\ |\psi_{1}\rangle \\ |\psi_{1}\rangle \\ |\psi_{1}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\ |\psi_{2}\rangle \\ |\psi_{3}\rangle \\ |\psi_{1}\rangle \\$

Figure : Quantum circuit to implement Deutsch-Jozsa Algorithm

<ロ> (四) (四) (三) (三) (三)

Deutsch-Jozsa Algorithm Resiliency Checking

イロト イポト イヨト イヨト

Outline

Basics of Quantum Computation

- Basic Quantum Algorithm and Resiliency Checking
 Deutsch-Jozsa Algorithm
 - Resiliency Checking
- 3 Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

Deutsch-Jozsa Algorithm Resiliency Checking

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

- Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$
- \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

$$\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z\in\{0,1\}^{n}}\sum_{x\in\{0,1\}^{n}}(-1)^{x\cdot z\oplus f(x)}|z
angle$$

- $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.
- So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

Deutsch-Jozsa Algorithm Resiliency Checking

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

• Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$

• \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

$$\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z\in\{0,1\}^{n}}\sum_{x\in\{0,1\}^{n}}(-1)^{x\cdot z\oplus f(x)}|z
angle$$

• $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.

• So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

ヘロン 人間 とくほど くほとう

Deutsch-Jozsa Algorithm Resiliency Checking

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

- Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$
- \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

 $\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z\in\{0,1\}^{n}}\sum_{x\in\{0,1\}^{n}}(-1)^{x\cdot z\oplus f(x)}|z
angle$

• $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.

• So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

ヘロン 人間 とくほど くほどう

Deutsch-Jozsa Algorithm Resiliency Checking

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

- Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$
- \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

$$\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z \in \{0,1\}^{n}}\sum_{x \in \{0,1\}^{n}}(-1)^{x \cdot z \oplus f(x)}|z
angle$$

• $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.

• So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

ヘロン 人間 とくほど くほとう

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

- Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$
- \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

$$\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z \in \{0,1\}^{n}}\sum_{x \in \{0,1\}^{n}}(-1)^{x \cdot z \oplus f(x)}|z
angle$$

• $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.

• So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

イロト 不得 とくほ とくほう

Deutsch-Jozsa Algorithm Resiliency Checking

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

- Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$
- \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

$$\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z \in \{0,1\}^{n}}\sum_{x \in \{0,1\}^{n}}(-1)^{x \cdot z \oplus f(x)}|z
angle$$

- $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.
- So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

Deutsch-Jozsa Algorithm Resiliency Checking

From DJ to Walsh Spectrum[Maitra et. al, IJQI, 2005]

- Let \mathcal{D}_f be the DJ operator, where, $\mathcal{D}_f = H^{\otimes n} U_f H^{\otimes n}$
- \mathcal{D}_f operator converts the input state $|0^n\rangle$ to $|\psi_3\rangle$

$$\mathcal{D}_{f}|00...0
angle = |\psi_{3}
angle = rac{1}{2^{n}}\sum_{z \in \{0,1\}^{n}}\sum_{x \in \{0,1\}^{n}}(-1)^{x \cdot z \oplus f(x)}|z
angle$$

- $\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z \oplus f(x)} =$ Walsh spectrum value of the function *f* at point $z = W_f(z)$.
- So, we can write $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

Deutsch-Jozsa Algorithm Resiliency Checking

Resiliency Checking

- a function *f* ∈ B_n is *m*-resilient iff its Walsh transform satisfies W_f(z) = 0, for 0 ≤ wt(z) ≤ m
- **Goal :** Find some *z*, where $0 \le wt(z) \le m$, for which $W_f(z) \ne 0$

If found such *z*, conclude *f* is not *m*-resilient

Otherwise conclude *f* is *m* resilient

- $S_m = \{x \in \{0, 1\}^n | wt(x) \le m\}$
- $\overline{S}_m = \{x \in \{0,1\}^n | wt(x) > m\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Deutsch-Jozsa Algorithm Resiliency Checking

Resiliency Checking

- a function *f* ∈ B_n is *m*-resilient iff its Walsh transform satisfies W_f(z) = 0, for 0 ≤ wt(z) ≤ m
- **Goal :** Find some *z*, where $0 \le wt(z) \le m$, for which $W_f(z) \ne 0$

If found such *z*, conclude *f* is not *m*-resilient

Otherwise conclude *f* is *m* resilient

•
$$S_m = \{x \in \{0, 1\}^n | wt(x) \le m\}$$

• $\overline{S}_m = \{x \in \{0,1\}^n | wt(x) > m\}.$

ヘロト ヘアト ヘビト ヘビト

Deutsch-Jozsa Algorithm Resiliency Checking

ヘロト 人間 とくほとく ほとう

3

From DJ to Resiliency Checking

• In DJ algorithm, $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

• o, we can write
$$|\psi_3\rangle$$
 as
 $|\psi_3\rangle = \sum_{s \in S_m} \frac{W_t(s)}{2^n} |s\rangle + \sum_{s \in \overline{S}_m} \frac{W_t(s)}{2^n} |s\rangle.$

• Equivalently $|\psi_3\rangle = a|X\rangle + b|Y\rangle$, where,

$$a^2 = \sum\limits_{s \in S_m} rac{W_f^2(s)}{2^{2n}} ext{ and } b^2 = \sum\limits_{s \in \overline{S}_m} rac{W_f^2(s)}{2^{2n}}.$$

Deutsch-Jozsa Algorithm Resiliency Checking

イロト イポト イヨト イヨト 一臣

From DJ to Resiliency Checking

- In DJ algorithm, $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$
- o, we can write $|\psi_3\rangle$ as $|\psi_3\rangle = \sum_{s \in S_m} \frac{W_l(s)}{2^n} |s\rangle + \sum_{s \in \overline{S}_m} \frac{W_l(s)}{2^n} |s\rangle.$
- Equivalently $|\psi_3\rangle = a|X\rangle + b|Y\rangle$, where,

$$a^2 = \sum\limits_{s \in S_m} rac{W_f^2(s)}{2^{2n}} ext{ and } b^2 = \sum\limits_{s \in \overline{S}_m} rac{W_f^2(s)}{2^{2n}}.$$

Deutsch-Jozsa Algorithm Resiliency Checking

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

From DJ to Resiliency Checking

• In DJ algorithm, $|\psi_3\rangle = \frac{1}{2^n} \sum_{z \in \{0,1\}^n} W_f(z) |z\rangle$

• o, we can write
$$|\psi_3\rangle$$
 as
 $|\psi_3\rangle = \sum_{s \in S_m} \frac{W_t(s)}{2^n} |s\rangle + \sum_{s \in \overline{S}_m} \frac{W_t(s)}{2^n} |s\rangle.$

• Equivalently $|\psi_3\rangle = a|X\rangle + b|Y\rangle$, where,

$$a^2 = \sum\limits_{s \in S_m} rac{W_f^2(s)}{2^{2n}} ext{ and } b^2 = \sum\limits_{s \in \overline{S}_m} rac{W_f^2(s)}{2^{2n}}.$$

Deutsch-Jozsa Algorithm Resiliency Checking

Simple Algorithm to Check Resiliency

- 1 Take an (n + 1) qubit state $|\psi_0\rangle = |0\rangle^{\otimes n}|1\rangle$; for i = 1 to r do
- 2 Apply $\mathcal{D}_f \otimes H$ on $|\psi_0\rangle$ to get $|\psi_3\rangle = a|X\rangle + b|Y\rangle$;
- 3 measure the first *n* qubits of $|\psi_3\rangle$ and let *u* be the output of the measurement;
- 4 if $u \in S_m$ then

Report that the function is not *m*-resilient (NO) and terminate;

end

end

5 Report that the function is *m*-resilient (YES);

Algorithm 1: Resiliency Checking Using DJ algorithm

Deutsch-Jozsa Algorithm Resiliency Checking

Query Complexity for Algorithm 1

Theorem

Let c be a predefined constant. Algorithm 1 correctly answers NO, but answers YES with success probability greater that or equal to c, in r many steps, where r is $O(\frac{1}{a^2})$ and

$$a^2 = \sum_{s \in S_m} \frac{W_f^2(s)}{2^{2n}}.$$

Proof.

According to *Algorithm* 1, one can observe that for each iteration, the success probability is a^2 . At *i*-th step, the success probability will be $1 - (1 - a^2)^i$. So, at i = r the success probability will become $1 - (1 - a^2)^r = c$. Now solving this equation we get *r* is $O(\frac{1}{a^2})$.

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロト イポト イヨト イヨト

Outline

- Basics of Quantum Computation
- 2 Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト ヘアト ヘビト ヘビト

Amplitude Amplification using Grover Operator

Theorem

Let $|\Psi\rangle = \sum_{s \in S_m} \frac{W_t(s)}{2^n} |s\rangle + \sum_{s \in \overline{S}_m} \frac{W_t(s)}{2^n} |s\rangle = a|X\rangle + b|Y\rangle$, where $a = \sin \theta$, $b = \cos \theta$. The application of $[(2|\Psi\rangle\langle\Psi| - I)\mathcal{O}_g]^t$ operator on $|\Psi\rangle$ produces $|\Psi_t\rangle$, in which the probability amplitude of $|X\rangle$ is $\sin(2t + 1)\theta$.

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

Resiliency Checking using Grover Algorithm

1
$$S_m = \{x \in \{0, 1\}^n | wt(x) \le m\};$$

- **2** for i = 0 to r do
- 3 Apply Deutsch-Jozsa algorithm till the step before measurement to obtain $|\Psi\rangle = \sum_{s \in S_m} \frac{W_t(s)}{2^n} |s\rangle + \sum_{s \in \overline{S}_m} \frac{W_t(s)}{2^n} |s\rangle;$
- 4 By applying Grover iteration, obtain

$$|\Psi_{t_i}\rangle = [(2|\Psi\rangle\langle\Psi| - I)\mathcal{O}_g]^{t_i}|\Psi\rangle;$$

- 5 Measure $|\Psi_{t_i}\rangle$ in computational basis to obtain *n*-bit string *u*;
 - if $u \in S_m$ then

Report that the function is not *m*-resilient (NO) and terminate;

end

end

6

7 Report that the function is *m*-resilient (YES); -> (=> (=> (=>) (=>)

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

- Basics of Quantum Computation
- 2 Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロト イポト イヨト イヨト

When To Stop

- *Theorem* 2 implies that at the first iteration the probability of success goes from $\sin^2 \theta$ to $\sin^2 3\theta$
- In *t* iteration the success probability will become sin²(2*t* + 1)θ
- So, too much big value of *t* may lead to bad success probability

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロト イポト イヨト イヨト

When To Stop

- *Theorem* 2 implies that at the first iteration the probability of success goes from $\sin^2 \theta$ to $\sin^2 3\theta$
- In *t* iteration the success probability will become $sin^2(2t+1)\theta$
- So, too much big value of t may lead to bad success probability

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト 人間 とくほとくほとう

When to Stop (Contd..)

- Value of $a = \sin \theta$ in $|\psi\rangle$ is not known as priori
- According to *Theorem* 2 the value of *t_i* depend upon the value of *a* or θ
- without loss of generality assume that $0 \le |\theta| \le \frac{\pi}{2}$
- Desired success probability is some predefined constant $c = \sin^2 \theta_c$.
- Assume at **STEP 4** of *Algorithm* 2 $|\psi_{t_i}\rangle = \sin \theta_i |X\rangle + \cos \theta_i |Y\rangle$
- **GOAL** : to put θ_i into the region $[\theta_c, \pi \theta_c]$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト 人間 とくほとく ほとう

When to Stop (Contd..)

- Value of $a = \sin \theta$ in $|\psi\rangle$ is not known as priori
- According to *Theorem* 2 the value of *t_i* depend upon the value of *a* or θ
- without loss of generality assume that $0 \le |\theta| \le \frac{\pi}{2}$
- Desired success probability is some predefined constant $c = \sin^2 \theta_c$.
- Assume at **STEP 4** of *Algorithm* 2 $|\psi_{t_i}\rangle = \sin \theta_i |X\rangle + \cos \theta_i |Y\rangle$
- **GOAL** : to put θ_i into the region $[\theta_c, \pi \theta_c]$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト 人間 とくほとくほとう

When to Stop (Contd..)

- Value of $a = \sin \theta$ in $|\psi\rangle$ is not known as priori
- According to *Theorem* 2 the value of *t_i* depend upon the value of *a* or θ
- without loss of generality assume that $0 \le |\theta| \le \frac{\pi}{2}$
- Desired success probability is some predefined constant $c = \sin^2 \theta_c$.
- Assume at **STEP 4** of *Algorithm* 2 $|\psi_{t_i}\rangle = \sin \theta_i |X\rangle + \cos \theta_i |Y\rangle$
- **GOAL** : to put θ_i into the region $[\theta_c, \pi \theta_c]$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロト イポト イヨト イヨト

1

- Divide the region $[0, \frac{\pi}{2}]$ into r + 1 many parts, $\alpha_r \ge \theta, \alpha_r, \alpha_{r-1}, \dots, \alpha_1 = \theta_c$ (in ascending order)
- So, $\exists i \in [1, r]$ such that $\alpha_{i+1} \leq \theta < \alpha_i$ or for i = 0, may be $\frac{\pi}{2} \leq \theta \leq \theta_c$
- At *i*-th step, $i \ge 1$ in Algorithm 2 we assume that $\alpha_{i+1} \le \theta \le \alpha_i$
- So, the value of t_i will be such that $\theta_c = (2t_i + 1)\alpha_{i+1} \le (2t_i + 1)\theta \le (2t_i + 1)\alpha_i = \pi - \theta_c$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロト イポト イヨト イヨト 一臣

- Divide the region $[0, \frac{\pi}{2}]$ into r + 1 many parts, $\alpha_r \ge \theta, \alpha_r, \alpha_{r-1}, \dots, \alpha_1 = \theta_c$ (in ascending order)
- So, $\exists i \in [1, r]$ such that $\alpha_{i+1} \leq \theta < \alpha_i$ or for i = 0, may be $\frac{\pi}{2} \leq \theta \leq \theta_c$
- At *i*-th step, $i \ge 1$ in Algorithm 2 we assume that $\alpha_{i+1} \le \theta \le \alpha_i$
- So, the value of t_i will be such that $\theta_c = (2t_i + 1)\alpha_{i+1} \le (2t_i + 1)\theta \le (2t_i + 1)\alpha_i = \pi - \theta_c$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- Divide the region $[0, \frac{\pi}{2}]$ into r + 1 many parts, $\alpha_r \ge \theta, \alpha_r, \alpha_{r-1}, \dots, \alpha_1 = \theta_c$ (in ascending order)
- So, $\exists i \in [1, r]$ such that $\alpha_{i+1} \leq \theta < \alpha_i$ or for i = 0, may be $\frac{\pi}{2} \leq \theta \leq \theta_c$
- At *i*-th step, $i \ge 1$ in *Algorithm* 2 we assume that $\alpha_{i+1} \le \theta \le \alpha_i$
- So, the value of t_i will be such that $\theta_c = (2t_i + 1)\alpha_{i+1} \le (2t_i + 1)\theta \le (2t_i + 1)\alpha_i = \pi - \theta_c$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト 人間 とくほとく ほとう

э.

- Divide the region $[0, \frac{\pi}{2}]$ into r + 1 many parts, $\alpha_r \ge \theta, \alpha_r, \alpha_{r-1}, \dots, \alpha_1 = \theta_c$ (in ascending order)
- So, $\exists i \in [1, r]$ such that $\alpha_{i+1} \leq \theta < \alpha_i$ or for i = 0, may be $\frac{\pi}{2} \leq \theta \leq \theta_c$
- At *i*-th step, $i \ge 1$ in *Algorithm* 2 we assume that $\alpha_{i+1} \le \theta \le \alpha_i$
- So, the value of t_i will be such that $\theta_c = (2t_i + 1)\alpha_{i+1} \le (2t_i + 1)\theta \le (2t_i + 1)\alpha_i = \pi - \theta_c$

Query Complexity

Our Approach (Contd..)

So, we can write,

$$(2t_i+1)\alpha_i=\pi-\theta_c, \tag{1}$$

$$(2t_i+1)\alpha_{i+1}=\theta_c.$$
 (2)

Similarly, we can write

$$(2t_{i-1}+1)\alpha_{i-1} = \pi - \theta_c,$$
(3)

$$(2t_{i-1}+1)\alpha_i=\theta_c.$$
 (4)

$$(2t_i + 1) = \frac{(\pi - \theta_c)^{(i-1)}}{\theta_c^{(i-1)}}$$
(5)

1

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

Our Approach (Contd..)

So, we can write,

$$(2t_i+1)\alpha_i=\pi-\theta_c, \qquad (1)$$

$$(2t_i+1)\alpha_{i+1}=\theta_c.$$
 (2)

Similarly, we can write

$$(2t_{i-1}+1)\alpha_{i-1} = \pi - \theta_c,$$
 (3)

$$(2t_{i-1}+1)\alpha_i=\theta_c.$$
 (4)

Thus, from (1), (4), and solving them by taking initial condition $t_1 = 0$ we get,

$$(2t_i + 1) = \frac{(\pi - \theta_c)^{(i-1)}}{\theta_c^{(i-1)}}$$
(5)

イロト イポト イヨト イヨト

1

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

Our Approach (Contd..)

So, we can write,

$$(2t_i+1)\alpha_i=\pi-\theta_c, \qquad (1)$$

$$(2t_i+1)\alpha_{i+1}=\theta_c.$$
 (2)

Similarly, we can write

$$(2t_{i-1}+1)\alpha_{i-1}=\pi-\theta_c,$$
 (3)

$$(2t_{i-1}+1)\alpha_i=\theta_c.$$
 (4)

Thus, from (1), (4), and solving them by taking initial condition $t_1 = 0$ we get,

$$(2t_i + 1) = \frac{(\pi - \theta_c)^{(i-1)}}{\theta_c^{(i-1)}}$$
(5)

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Determine the Value of r

• Assume that $a = \sin \theta$, if $\theta \to 0$, then $a \approx \theta$

- Implies in worst case $(2t_r + 1)\theta = \theta_c$
- So, $(2t_r + 1) \approx \frac{1}{a}$ and

$$r \approx \log_{rac{\pi - heta_c}{ heta_c}}(rac{1}{a})$$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Determine the Value of r

- Assume that $a = \sin \theta$, if $\theta \to 0$, then $a \approx \theta$
- Implies in worst case $(2t_r + 1)\theta = \theta_c$

• So, $(2t_r + 1) \approx \frac{1}{a}$ and

$$r \approx \log_{rac{\pi - heta_c}{ heta_c}}(rac{1}{a})$$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロン 不得 とくほ とくほ とうほ

Determine the Value of r

- Assume that $a = \sin \theta$, if $\theta \to 0$, then $a \approx \theta$
- Implies in worst case $(2t_r + 1)\theta = \theta_c$
- So, $(2t_r + 1) \approx \frac{1}{a}$ and

$$r \approx \log_{rac{\pi - heta_c}{ heta_c}}(rac{1}{a})$$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

イロン 不得 とくほ とくほ とうほ

Determine the Value of r

- Assume that $a = \sin \theta$, if $\theta \to 0$, then $a \approx \theta$
- Implies in worst case $(2t_r + 1)\theta = \theta_c$
- So, $(2t_r + 1) \approx \frac{1}{a}$ and

$$r pprox \log_{rac{\pi - heta_c}{ heta_c}}(rac{1}{a})$$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

Example

- Let $f : \{0,1\}^3 \to \{0,1\}$, such that $f(x_2, x_1, x_0) = x_0 x_1 \oplus x_1 x_2$
- GOAL : to check whether f is 0 resilient or not.
- Assume that $c = \frac{1}{2}$, so, $\theta_c = \frac{\pi}{4}$
- Here *S_m* = {000}
- After applying the DJ algorithm the state will be $|\psi\rangle = \frac{1}{2}[|000\rangle + |010\rangle + |101\rangle |111\rangle]$
- $a = \sin \theta = \sqrt{(\frac{1}{2})^2} = \frac{1}{2}, \ \theta = \frac{\pi}{6}$
- Now according to the algorithm, assume that $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ and $t_0 = 0$, so at **STEP 5** we have to measure $|\psi\rangle$, probability of success will be $\frac{1}{4}$ which is less than *c*
- If measurement outcome is 000 then conclude that *f* is not 0 resilient. else go to next step and conclude with probability $\frac{1}{2}$ that $\theta < \frac{\pi}{4}$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト 人間 とくほとく ほとう

1

Example (Contd..)

- In next iteration, i = 1, $t_1 = 1$ and assume that $\frac{\pi}{4} = (2t_1 + 1)\alpha_2 \le (2t_1 + 1)\theta \le (2t_1 + 1)\alpha_1 = \frac{3\pi}{4}$. So, apply the Grover operator on $|\psi\rangle t_i$ many times
- Now if we measure the state $|\psi_{t_1}\rangle$, then θ will become $3\theta = \frac{\pi}{2} \ge \theta_c$, so, the success probability will become greater than c
- Now if |000> is observed then conclude that f is not 0 resilient

Otherwise resilient

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

ヘロト ヘアト ヘヨト ヘ

Overall Query Complexity

Theorem

Let c be a predefined constant. Algorithm 2 correctly answers NO, but answers YES with success probability greater than or equal to c, in r, i.e., $O(\log \frac{1}{a})$ many steps and the number of times the Grover operator is executed is $O(\frac{1}{a})$ where

$$a^2 = \sum_{s \in S_m} \frac{W_f^2(s)}{2^{2n}}.$$

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Overall Query Complexity (Contd..)

Proof.

How we estimate *r* is explained above. In Algorithm 2, at the *i*-th step we apply the operator $(2|\psi\rangle\langle\psi|-I)$, t_i times. Here *i* varies from 1 to *r*. So, the total number of times the Grover operator is applied is $T = \sum_{i=1}^{r} t_i$. So, $T = \frac{1}{2} [\sum_{i=1}^{r} (\frac{(\pi - \theta_c)^{(i-1)}}{\theta_c^{(i-1)}} - 1)]$. By solving this equation we get,

$$T \approx \frac{1}{2} [\frac{1/a - 1}{(\pi - \theta_c)/\theta_c - 1} - \frac{1}{2} \{ \log_{\frac{\pi - \theta_c}{\theta_c}}(\frac{1}{a})(\log_{\frac{\pi - \theta_c}{\theta_c}}(\frac{1}{a}) + 1) \}].$$
(6)

So, the number of times the Grover operator is executed is $O(\frac{1}{a})$.

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

くロト (過) (目) (日)

Outline

- Basics of Quantum Computation
- 2 Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
 - 4 Conclusion
 - Potential Advantages
 - Future Work

Improvement Using Grover Algorithm Query Complexity Exponential Speedup for Special Class of Boolean Functions

3-valued walsh spectrum

- For any *m*-resilient function the walsh spectrum will be divisible by 2^{*m*+2} (*Sarkar et.al, CRYPTO 2000*)
- Consider the set of Boolean functions $A = \{f \in B_n | W_f(\omega) \equiv 0 \mod 2^{m+2}\}$
- If $f \in A$ is *m* resilient then $a \ge \frac{2^{m+2}}{2^n}$
- For them according to Algorithm 2 the query complexity will be O(2^{n-m-2})
- If *m* ≥ *n* − *O*(*poly*(log *n*)), then required query complexity will be *O*(*ploy*(*n*))
- Known classical algorithm will take O(2ⁿ) amount of time for deciding the resiliency of the Boolean function for this kind of Boolean functions. So, exponential speed up is achieved using quantum algorithm

Potential Advantages Future Work

Outline

- Basics of Quantum Computation
- 2 Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

Potential Advantages Future Work

Potential Advantage Over Existing Quantum Methods

- Using Grover like algorithm query complexity has been reduced from $O(\frac{1}{a^2})$ to $O(\frac{1}{a})$, imply **quadratic speed up** on the number of input bits
- Number of measurement is reduced from O(¹/_{a²}) to O(log ¹/_a), imply exponential reduction in the measurement

ヘロト 人間 とくほとくほとう

Potential Advantages Future Work

Potential Advantage over Existing Classical Methods

- Achieve exponential speed up in checking the resiliency of some special class of boolean functions
- Also achieve exponential speedup over classical methods in some scenarios where the Boolean function is not *m*-resilient and the walsh spectrum values at points having weight less than or equal to *m* is very small

No known classical method is capable of deciding whether the boolean function *m*-resilient or not, with lesser than $O(2^n)$ queries

But if the sum of the squares of those non zero walsh spectrum values will be of $\Omega(2^n)$ then our algorithm will achieve exponential speedup

◆□ > ◆□ > ◆豆 > ◆豆 > -

Potential Advantages Future Work

Potential Advantage over Existing Classical Methods

- Achieve exponential speed up in checking the resiliency of some special class of boolean functions
- Also achieve exponential speedup over classical methods in some scenarios where the Boolean function is not *m*-resilient and the walsh spectrum values at points having weight less than or equal to *m* is very small No known classical method is capable of deciding whether the boolean function *m*-resilient or not, with lesser than O(2ⁿ) queries

But if the sum of the squares of those non zero walsh spectrum values will be of $\Omega(2^n)$ then our algorithm will achieve exponential speedup

ヘロト 人間 とくほとくほとう

Potential Advantages Future Work

Potential Advantage over Existing Classical Methods

- Achieve exponential speed up in checking the resiliency of some special class of boolean functions
- Also achieve exponential speedup over classical methods in some scenarios where the Boolean function is not *m*-resilient and the walsh spectrum values at points having weight less than or equal to *m* is very small No known classical method is capable of deciding whether the boolean function *m*-resilient or not, with lesser than *O*(2ⁿ) queries

But if the sum of the squares of those non zero walsh spectrum values will be of $\Omega(2^n)$ then our algorithm will achieve exponential speedup

Potential Advantages Future Work

Outline

- Basics of Quantum Computation
- 2 Basic Quantum Algorithm and Resiliency Checking
 - Deutsch-Jozsa Algorithm
 - Resiliency Checking
- 3 Our Approach Towards Resiliency Checking
 - Improvement Using Grover Algorithm
 - Query Complexity
 - Exponential Speedup for Special Class of Boolean Functions
- 4 Conclusion
 - Potential Advantages
 - Future Work

Potential Advantages Future Work

Application of Our Approach in Other Scenarios

- Other than resiliency checking, this Boolean functions and Grover based approach has some other applications, like the *Dicke state* preparation *Chakraborty et. al, arXiv:1209.5932*
- Using the walsh spectrum property of symmetric boolean functions *Dicke states* can be prepared
- The proposed technique has helped to achieve quadratic speed up over existing quantum methods for *Dicke state* preparation

Potential Advantages Future Work

THANK YOU

Chakraborty, Maitra Short Paper Title

ヘロト 人間 とくほとくほとう

₹ 990