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Outline

* Balanced Feistel networks (BFNs)
— one of the most popular block cipher constructions

— explore the optimality of BFNs with SP-type F-functions w.r.t.
resistance against differential/linear attacks

* For a wide class of BFNs
— prove bounds on the number of active S-boxes
— demonstrate their tightness with MDS

— compare the efficiency w.r.t. the ratio between active S-boxes
and all S-boxes

— identify the optimal construction(s) in the class



What is a block cipher?

Block cipher

A block cipher with n-bit block and k-bit key is
a subset of 2k permutations among all 2"!
permutations on n bits.
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Why block ciphers?

Most basic security primitive in nearly all security solutions,
e.g. used for constructing

— stream ciphers,

— hash functions,

— message authentication codes,

— authenticated encryption algorithms,

— entropy extractors, ...

Probably the best understood cryptographic primitives

All U.S. symmetric-key encryption standards and
recommendations have block ciphers at their core: DES, AES



Block ciphers: iterative construction

Iterative block cipher and key schedule

An iterative block cipher consists of r
consecutive applications of simpler key-
dependent transforms | = fro fr—10... f20 f1

plaintext\} ‘ ciphertext
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Building blocks:
Substitution-Permutation (SP) function
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LA A A A A A A addition with subkey
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linear operation:
Linear diffusion bit permutation,

matrix-vector mult.

Used in many ciphers (DES, AES, Serpent, Present, Camellia, Clefia,...)
and hash functions (Whirlwind, Groestl, Spongent, Photon, ...)



Round constructions:
Substitution-Permutation networks

1 round = 1 SP-function

Linear diffusion

Used in AES (Rijndael), Serpent, Present,
Groestl, Photon, Spongent, ...



Round constructions:
Balanced and Generalized Feistel

Balanced Feistel Generalized Feistel Network (GFN)
Network (BFN) type-ll 4-line GFN
an an ' an
\ | 4 \ | 4 \ | 4
Used in DES, Camellia, E2, Used in CLEFIA,
Blowfish, Twofish, CAST128, SHAVvite-3, RCS,...

KASUMI, MISTY, ...



Feistel with SP-type F-functions

* Balanced Feistel networks (BFNs)
— DES, GOST, KASUMI, ...
e Substitution-Permutation (SP) type F-function

— widely used (Twofish, Camellia, CLEFIA, ...)
— bijective S-boxes + MDS matrix

S

S
+ole ) = M
— —

S-boxes linear diffusion
— K (S-layer) (P-layer)

SP-type F-function



Building blocks:
Substitution-Permutation-Substitution
(SPS) function

Used in E2, Picollo, and some other ciphers



Feistel with SPS-type F-functions

* Balanced Feistel networks (BFNs)
— DES, GOST, KASUMI, ...

* Substitution-Permutation-Substitution (SP) type F-function
— used in E2, Picollo
— bijective S-boxes + MDS matrix + bijective S-boxes
— Analyzed in [B10, BS12, BS13...]
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Target structures

« Arbitrary number of S-box layers interleaved with P-layer
— m . # S-boxes in an S-box layer
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Target structures

« Arbitrary number of S-box layers interleaved with P-layer
— m . # S-boxes in an S-box layer
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Target structures

« Arbitrary number of S-box layers interleaved with P-layer
— m . # S-boxes in an S-box layer
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Target structures

« Arbitrary number of S-box layers interleaved with P-layer

— m . # S-boxes in an S-box layer

1 S-layer + 1 P-layer
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Target structures

« Arbitrary number of S-box layers interleaved with P-layer
— m . # S-boxes in an S-box layer
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Our major question

« Arbitrary number of S-box layers interleaved with P-layer
— m . # S-boxes in an S-box layer
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Efficiency:
Counting # active S-boxes

widely accepted tool for security evaluation
show practical security against differential/linear attacks

no evidence against multiple trails (differentials/linear
hulls)

For SPNs

— simple and tight bounds are given

— e.g. AES: 25 active S-boxes / 4-round
For BFNs

— more complex to prove

— due to XOR after F-function, output of F is not directly
input to next F (unlike SPNs)



Efficiency comparison
e a metric used in [Shirai-Preneel04, B11, B12, BS12,
BS13,...]
— proportion of active S-boxes to all S-boxes
— asymptotic proportion for » —

Efficiency metric

A

m,r

m,r

E =lim

m : the number of S-boxesin an S -layer

S :the number of S-boxes over r rounds

A :the number of active S - boxes over » rounds




Two types of proofs

* |: trail attaining the min. # active F corresponds to
trail attaining the min. # active S

— (2) BFN-(SP)?*1S, (3) BFN-(SP)?, and (4) BFN-(SP)?tS
— # active S is proportional to # active F
— easy to prove



Two types of proofs

* |: trail attaining the min. # active F corresponds to
trail attaining the min. # active S

— (2) BFN-(SP)?*1S, (3) BFN-(SP)?, and (4) BFN-(SP)?tS
— # active S is proportional to # active F
— easy to prove

* |lI: trail attaining the min. # active F does not correspond to
the trail attaining the min. # active S

— (1) BFN-(SP)?t*1
— a more involved proof




Bounds on # active S for BFNs
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Bounds on # active S for BFNs
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These bounds can be actually tight




Example of tightness:
Iterative trail for BFN-(SP)?%!
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Example of tightness:
Iterative trail for BFN-(SP)?%!
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Example of tightness:
Iterative trail for BFN-(SP)?%!
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Example of tightness:
Iterative trail for BFN-(SP)?%!
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Bounds on # active S-boxes for
BFN-(SP)?*! with m = 4
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Efficiency comparison

 a metric used in [Shirai-Preneel04, B11, BS12, ...
— proportion of active S-boxes to all S-boxes
— asymptotic proportion for 7 —>

Efficiency metric

, A
E =lm___ ™"
S

m,r

m : the number of S-boxesin an S -layer

S :the number of S-boxes over r rounds

A :the number of active S -boxes over r rounds




E_ for BFNs with SP-type F and MDS

Construction E =lim__, S’W
BFN-(SP)?# m+1
BFN_(SP)ZMS .

o m+1

+
BFN-(SP) -
BFN-SP m+2
4m
BFN'(SP)ZtS 2t(m + 1) + 2
32t +1)m



Optimality result

- Optimality ~
For BFNs with MDS-based SP-type F-function and m =2,
BFN-(SP)%t and BFN-(SP)%*1S provide a higher or equal
proportion of active S-boxes than the others for any t.

\ Thus, BFN-SPSP and BFN-SPS are optimal w.r.t. E, J




Efficiency comparison
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Conclusions

* Proven tight lower bounds on # active S-boxes for
a wide class of BFNs (any number of rounds)

 BFN-SPS/BFN-SPSP are the most efficient
constructions w.r.t. ratio between active S-boxes
and all S-boxes in this class

* Conjecture: For most other reasonable Feistel
constructions, it is also best to take SPS or SPSP F-
functions to optimize for E,, if MDS diffusion



References

[Shirai-Preneel04] Taizo Shirai, Bart Preneel: On Feistel Ciphers Using
Optimal Diffusion Mappings Across Multiple Rounds. ASIACRYPT 2004
1-15

[B10] Andrey Bogdanov: On the differential and linear efficiency of
balanced Feistel networks. Inf. Process. Lett. 110(20): 861-866 (2010)

[B11] Andrey Bogdanov: On unbalanced Feistel networks with
contracting MDS diffusion. Des. Codes Cryptography 59(1-3): 35-58
(2011)

[BS11] Andrey Bogdanov, Kyoji Shibutani: Double SP-Functions:
Enhanced Generalized Feistel Networks - Extended Abstract. ACISP
2011: 106-119

[BS13] Andrey Bogdanov, Kyoji Shibutani: Generalized Feistel networks
revisited. Des. Codes Cryptography 66(1-3): 75-97 (2013)



