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Polar codes

Polar codes acheive symmetric capacity of certain
channels.

Erdal Arikan introduced polar codes in 2009. Polar codes are a channel
dependent construction of symmetric capacity achieving codes for binary
DMCs inspired by the chain rule for mutual information, which states

NI (W ) = I (XN
1 ;YN

1 )

=
N∑
i=1

I (Ui ;YN
1 U i−1

1 ).
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Polar codes

Classically, a message is encoded and each bit is sent
across W .
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Polar codes

In polar coding, sums of bits are sent across W .
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Polar codes

This results in upgraded and degraded channels.
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Polar codes

This results in upgraded and degraded channels.
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Polar codes

The 4-bit diagram has 4 embedded copies of the 2-bit
diagram represented by a permutation of G⊗2
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Polar codes

Bit-reversals are represented by switching columns.
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Polar codes

This results in upgraded and degraded channels.
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Polar codes

The channel WN is defined recursively.

We define Wi : X i → Y i , 1 ≤ i ≤ N = 2n, as

W1 = W ,

W2(y2
1 |u2

1) = W (y1|u1 ⊕ u2)W (y2|u2),

and
WN(yN

1 |uN1 ) = W N(y |u(BNG
⊗n
2 )),

where u ∈ XN and y ∈ YN and W N denotes N independent uses of W .
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Polar codes

The channels W
(i)
N are defined based on the chain rule

for mutual information.

For 1 ≤ i ≤ N, the binary channels

W
(i)
N : X → YN ×X i−1

are defined by the transition probabilities

W
(i)
N (yN

1 , u
i−1
1 |ui ) =

∑
uN
i+1∈XN−i

1

2N−1
WN(yN

1 |uN1 ).
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Polar codes

The fraction of better channels goes to I (W ).

Theorem (Arikan, 2009)

For any binary DMC W, the channels W
(i)
N polarize in the sense that, for

any fixed δ ∈ (0, 1), as N goes to infinity, the fraction of indices
i ∈ 1, . . . ,N for which

I (W
(i)
N ) ∈ (δ, 1]

goes to
I (W ).
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Generalized polar codes

Polar codes for q-ary DMC were first studied by Mori
and Tanaka.

Let W : X → Y be a q-ary DMC.

Rate: The symmetric capacity is

I (W ) =
∑
y∈Y

∑
x∈X

1

q
W (y |x) logq

(
W (y |x)

1
q

∑
x′∈X W (y |x ′)

)
.

Reliability: The Bhattacharyya parameter is

Z (W ) =
1

q(q − 1)

∑
x,x′∈X ,x 6=x′

Zx,x′(W ),

where
Zx,x′ =

∑
y∈Y

√
W (y |x)W (y |x ′).

for x , x ′ ∈ X .
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Generalized polar codes

Polarization is not restricted to G2.

Theorem (Korada,Şaşoğlu, and Urbanke, 2009)

For any binary channel W , G polarizes if and only if G is not upper
triangular.

Theorem (Mori and Tanaka, 2010)

For any q-ary channel W , suppose G is linear kernel which is not
diagonal. Let k be the index of the row with the largest number of
non-zero elements. If there exists j ∈ {0, . . . , k − 1} such that Gkj is a
primitive element, then G polarizes.
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Generalized polar codes

The rate of polarization of a kernel depends on partial
distances, which are governed by nested vector spaces.

Each kernel matrix has a rate of polarization, E (G ), called the exponent
of G. Let

G =


—– g1 —–
—– g2 —–

...
—– g`−1 —–
—– g` —–

 ∈ F`×`q .

The i th partial distance of G is

Di = d(gi , 〈gi+1, . . . , g`〉).
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Generalized polar codes

The rate of polarization of a kernel depend on partial
distances, which are governed by nested vector spaces.

Each kernel matrix has a rate of polarization, E (G ), called the exponent
of G. Let

G =


—– g1 —–
—– g2 —–

...
—– g`−1 —–
—– g` —–

 ∈ F`×`q .

The i th partial distance of G is

Di = d(gi , 〈gi+1, . . . , g`〉).

Note that
〈g`〉 ⊆ 〈g`−1, g`〉 ⊆ . . . ⊆ 〈g2, . . . , g`〉 .
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Generalized polar codes

The rate of polarization of a kernel depend on partial
distances, which are governed by nested vector spaces.

Each kernel matrix has a rate of polarization, E (G ), called the exponent
of G. Let

G =


—– g1 —–
—– g2 —–

...
—– g`−1 —–
—– g` —–

 ∈ F`×`q .

The i th partial distance of G is

Di = d(gi , 〈gi+1, . . . , g`〉).

Definition

For any channel W and any `× ` kernel matrix G with partial distances
{Di}`i=1,

E(G) =
1

`

∑̀
i=1

log`(Di ).
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Generalized polar codes

The exponent provides a bound on the block error
probability.

Theorem (Korada,Şaşoğlu, and Urbanke, 2009)

For any W with 0 < I (W ) < 1, an `× ` kernel G has a rate of
polarization E (G ) if and only if

For any fixed β < E (G ),

lim inf
n→∞

Pr [Zn ≤ 2−`
nβ

] = I (W ).

For any fixed β > E (G ),

lim inf
n→∞

Pr [Zn ≤ 2−`
nβ

] = 0.

Here, Zn = Z(Wn), and the Wi are defined recursively as

W0 = W , and Wn+1 = (Wn)
(Bn+1)
N

,

where {Bn | n ≥ 1} is a sequence of i.i.d random variables uniformly distributed over the set {1, . . . , `}.
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Generalized polar codes

The exponent provides a bound on the block error
probability.

Theorem

Consider polar coding over a q-ary DMC using kernel G at a fixed rate
0 < R < I (W ) with block length N = `n. Then

Pe = O(2−`
nβ

)

for 0 < β < E (G ).
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Algebraic geometry kernels

The nested structure of AG codes provides a systematic
construction of nice kernels.

Let F be a function field over Fq of genus g . Consider divisors A and

D = P1 + . . .+ Pn

with disjoint support, where Pi are places of F of degree 1. The
Riemann-Roch space of A is

L(A) = {f ∈ F | (f ) ≥ −A} ∪ {0}.

An algebraic geometry (AG) code, C (D,A), is

C (D,A) = {(f (P1), . . . , f (Pn)) : f ∈ L(A)}.

AG codes have a “nested” structure such that given divisors A and B,

A ≤ B ⇒ L(A) ⊆ L(B)

⇒ C (D,A) ⊆ C (D,B).



Polar codes with large exponent using AG code kernels

Algebraic geometry kernels

The nested structure of AG codes provides a systematic
construction of nice kernels.

Let F be a function field over Fq of genus g . Consider divisors A and

D = P1 + . . .+ Pn

with disjoint support, where Pi are places of F of degree 1. The
Riemann-Roch space of A is

L(A) = {f ∈ F | (f ) ≥ −A} ∪ {0}.

An algebraic geometry (AG) code, C (D,A), is

C (D,A) = {(f (P1), . . . , f (Pn)) : f ∈ L(A)}.

AG codes have a “nested” structure such that given divisors A and B,

A ≤ B ⇒ L(A) ⊆ L(B)

⇒ C (D,A) ⊆ C (D,B).



Polar codes with large exponent using AG code kernels

Algebraic geometry kernels

The nested structure of AG codes provides a systematic
construction of nice kernels.

Construct a sequence of divisors

A1 ≤ · · · ≤ An

so that the supports of D := P1 + · · ·+ Pn and Aj are disjoint and

C (D,A1) $ C (D,A2) $ . . . $ C (D,An) = Fn
q.

Let {f1, . . . , fk} is a basis for L(An), so

G =


fk (P1) fk (P2) · · · fk (Pn)

fk−1(P1) fk−1(P2) · · · fk−1(Pn)

.

.

.

.

.

. · · ·
.
.
.

f1(P1) f1(P2) · · · f1(Pn)



is a generator matrix for C (D,An). The matrix with rows
Rowk−iG , . . . ,RowkG is a generator matrix for

C (D,Ai ).
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Algebraic geometry kernels

The partial distances of the kernel are bounded by the
minimum distance of the nested codes.

Let {f1, . . . , fk} is a basis for L(An), so

G =


fk(P1) fk(P2) · · · fk(Pn)
fk−1(P1) fk−1(P2) · · · fk−1(Pn)

...
... · · ·

...
f2(P1) f2(P2) · · · f2(Pn)
f1(P1) f1(P2) · · · f1(Pn)


is a generator matrix for C (D,An). This G will be the kernel matrix, so

Di ≥ d(C (D,An−i )) := dn−i .
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Algebraic geometry kernels

Bounds on the minimum distance of nested codes give
bounds on the exponent.

Theorem

The exponent of the polar code with kernel G constructed using an AG
code of length n of a function field of genus g as above satisfies

E (G ) ≥ 1

n

logn((n − g)!) +
n∑

i=n−g+1

logn(di )

 .

Corollary (Mori and Tanaka, 2010)

If GRS is a Reed-Solomon kernel over Fq, then the exponent of GRS is

E (GRS) =
logq(q!)

q
.
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Algebraic geometry kernels

Maximal function fields give kernels with exponents
very close to 1.

Theorem

Let F/Fq be a maximal function field of genus g. Also, let G be a
generator matrix of an AG code on F of length n constructed as before
where n = q + 2gq1/2. Then

lim
q→∞

E (G ) = 1.
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Algebraic geometry kernels

The Hermitian function field is an example of a
maximal function field.

Let F = Fq2 (x , y) be the function field of the Hermitian curve

yq + y = xq+1

where q is a power of a prime. A Hermitian code over Fq2 of length q3 is

C (D, aP∞),

where
D =

∑
α,β∈Fq2 ,βq+β=αq+1

Pα,β

and Pα,β is a common zero of x − α and y − β.
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Algebraic geometry kernels

Bounds on the minimum distances can be used to
bound the exponent of Hermitian kernels.

Corollary

The exponent of a Hermitian kernel GH over Fq2 is bounded below by

E(GH ) ≥
1

q3
log

q3

(q3 − q2 + q)!

q−1∏
j=1

(q3 − (j − 1)q)
j
(q − 1)

j
(q2 − jq)j∏j

i=1
(q2 − jq − i)

 ,

where ai := a(a− 1) . . . (a− i + 1).

m 2 4 6 8

q = 2
Reed-Solomon 0.57312 0.69141 0.77082 0.82226

Hermitian 0.56216 0.70734 0.80276 0.85930

q = 3
Reed-Solomon 0.64737 0.78120 0.84917 0.88631

Hermitian 0.65248 0.81459 0.88634 0.91988

q = 5
Reed-Solomon 0.72079 0.84569 0.89648 0.92233

Hermitian 0.74345 0.88296 0.92819 0.94767

Table : Lower bounds on exponents of Reed-Solomon and Hermitian kernels
over Fqm
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Algebraic geometry kernels
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Algebraic geometry kernels

Hermitian kernels usually produce larger exponents than
Reed-Solomon kernels.

Proposition

Let GH be a Hermitian kernel over Fq2 , and let GRS be a Reed-Solomon
kernel also over Fq2 . Then for q ≥ 3

E (GRS) ≤ E (GH).

Corollary

If GH is a Hermitian kernel over Fq2 , then

lim
q→∞

E (GH) = 1.
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Algebraic geometry kernels
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