Interpolation-Based Decoding of Interleaved Gabidulin Codes

Antonia Wachter-Zeh ${ }^{1,2}$ and Alexander Zeh ${ }^{1,3}$

${ }^{1}$ Institute of Communications Engineering, Ulm University, Ulm, Germany
${ }^{2}$ Inst. de Recherche Mathématique de Rennes, Université de Rennes 1, France
${ }^{3}$ Research Center INRIA Saclay - Île-de-France, École Polytechnique, France
April 19, 2013

International Workshop on Coding and Cryptography (WCC 2013)

Outline

(1) Motivation: Network Coding and Interleaving
(2) Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
(3) Previous Work and Our Contribution

4 Interpolation-Based Decoding

- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder
(5) Conclusion and Outlook

Outline

(1) Motivation: Network Coding and Interleaving
(2) Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
(3) Previous Work and Our Contribution
(4) Interpolation-Based Decoding
- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder
(5) Conclusion and Outlook

Non-Coherent Random Linear Network Coding

- Non-coherent network coding: internal structure unknown
- Packets: vectors over finite field
- Nodes build outgoing packets as random linear combinations of incoming packets

Sink

Non-Coherent Random Linear Network Coding

- Non-coherent network coding: internal structure unknown
- Packets: vectors over finite field
- Nodes build outgoing packets as random linear combinations of incoming packets
\Longrightarrow Higher throughput than routing!
\Longrightarrow BUT: Mixing of packets results in high error propagation

Lifting Construction

Kötter \& Kschischang (2008); Silva, Kschischang \& Kötter (2008): Error control in RLNC based on lifted Gabidulin codes.

Lifted Gabidulin Code

- Transmit basis of subspace
- The matrix \mathbf{C} is a codeword of Gab $[n, k]$
- Identity matrix is necessary to "identify" linear combinations of the network

BUT: Additional overhead due to identity matrix.

Lifting Construction with Interleaving

Interleaved Gabidulin codes relatively reduce this overhead!

Lifted Interleaved Gabidulin Code

- Transmit basis of subspace
- \mathbf{C}_{i} are a codewords of $\operatorname{Gab}\left[n, k_{i}\right]$
- $\mathbf{C}^{T} \stackrel{\text { def }}{=}\left(\mathbf{C}_{1}^{T} \mathbf{C}_{2}^{T} \ldots \mathbf{C}_{s}^{T}\right)$, where $\mathbf{C} \in \operatorname{IGab}\left[s ; n, k_{1}, \ldots, k_{s}\right]$
(Relatively) less additional overhead due to identity matrix.

Outline

(1) Motivation: Network Coding and Interleaving
(2) Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
(3) Previous Work and Our Contribution

4 Interpolation-Based Decoding

- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder
(5) Conclusion and Outlook

Rank Metric

Rank Metric

- Let \mathcal{B} be a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} where q is a power of a prime
- One-to-one mapping between $\mathbf{x} \in \mathbb{F}_{q^{m}}^{n}$ and $\mathbf{X} \in \mathbb{F}_{q}^{m \times n}$
- Rank norm: $\operatorname{rk}(\mathbf{x}) \stackrel{\text { def }}{=}$ rank of \mathbf{X} over \mathbb{F}_{q}

Minimum Rank Distance of a block code C with $\mathbf{c}^{(i)} \in \mathbb{F}_{q^{m}}^{n}$
 \square
 - Codes over $\mathbb{F}_{q^{m}}$ of cardinality $M=q^{\min \{n(m-d+1), m(n-d+1)\}}$ are called Maximum Rank Distance (MRD) codes.

For linear codes:

Rank Metric

Rank Metric

- Let \mathcal{B} be a basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q} where q is a power of a prime
- One-to-one mapping between $\mathbf{x} \in \mathbb{F}_{q^{m}}^{n}$ and $\mathbf{X} \in \mathbb{F}_{q}^{m \times n}$
- Rank norm: $\operatorname{rk}(\mathbf{x}) \stackrel{\text { def }}{=}$ rank of \mathbf{X} over \mathbb{F}_{q}

Minimum Rank Distance of a block code C with $\mathbf{c}^{(i)} \in \mathbb{F}_{q^{m}}^{n}$:

- $d \stackrel{\text { def }}{=} \min \left\{\operatorname{rk}\left(\mathbf{c}^{(1)}-\mathbf{c}^{(2)}\right) \mid \mathbf{c}^{(1)}, \mathbf{c}^{(2)} \in \mathrm{C}, \mathbf{c}^{(1)} \neq \mathbf{c}^{(2)}\right\}$
- Codes over $\mathbb{F}_{q^{m}}$ of cardinality $M=q^{\min \{n(m-d+1), m(n-d+1)\}}$ are called Maximum Rank Distance (MRD) codes.

For linear codes:

- $d \stackrel{\text { def }}{=} \min \{\operatorname{rk}(\mathbf{c}) \mid \mathbf{c} \in \mathbf{C}, \mathbf{c} \neq \mathbf{0}\} \leq n-k+1$

Linearized Polynomials

Linearized Polynomial

- $f(x) \stackrel{\text { def }}{=} \sum_{i=0}^{d_{f}} f_{i} x^{[i]}=\sum_{i=0}^{d_{f}} f_{i} x^{q^{i}}$ with $f_{i} \in \mathbb{F}_{q^{m}}$
- If $f_{d_{f}} \neq 0$, define the q-degree: $\operatorname{deg}_{q} f(x)=d_{f}$

Use usual addition and non-commutative composition $f(g(x))$ \rightsquigarrow Non-commutative ring of linearized polynomials $\mathbb{L}_{q^{m}}[x]$

Multi-variate Linearized Polynomials

Linearized Polynomials

Linearized Polynomial

- $f(x) \stackrel{\text { def }}{=} \sum_{i=0}^{d_{f}} f_{i} x^{[i]}=\sum_{i=0}^{d_{f}} f_{i} x^{q^{i}}$ with $f_{i} \in \mathbb{F}_{q^{m}}$
- If $f_{d_{f}} \neq 0$, define the q-degree: $\operatorname{deg}_{q} f(x)=d_{f}$

Use usual addition and non-commutative composition $f(g(x))$ \rightsquigarrow Non-commutative ring of linearized polynomials $\mathbb{L}_{q^{m}}[x]$

Multi-variate Linearized Polynomials

- $f\left(x, y_{1}, \ldots, y_{s}\right) \stackrel{\text { def }}{=} f^{(0)}(x)+f^{(1)}\left(y_{1}\right)+\cdots+f^{(s)}\left(y_{s}\right)$, where $f^{(i)}(x) \in \mathbb{L}_{q^{m}}[x]$ for all i
- No "mixed" terms!
- Multi-variate non-commutative ring of linearized polynomials:

$$
\mathbb{L}_{q^{m}}\left[x, y_{1}, \ldots, y_{s}\right]
$$

Gabidulin Codes

Introduced by Delsarte (1978), Gabidulin (1985), Roth (1991).

Definition (Gabidulin Code)

A linear Gabidulin code $\operatorname{Gab}[n, k]$ over $\mathbb{F}_{q^{m}}$ of length $n \leq m$ and dimension $k \leq n$ is defined by:

$$
\begin{aligned}
& \mathrm{Gab}[n, k] \stackrel{\text { def }}{=}\left\{\left(f\left(\alpha_{0}\right) f\left(\alpha_{1}\right) \ldots f\left(\alpha_{n-1}\right)\right)=f(\boldsymbol{\alpha}) \mid\right. \\
&\left.\operatorname{deg}_{q} f(x)<k, f(x) \in \mathbb{L}_{q^{m}}[x]\right\}
\end{aligned}
$$

where the fixed elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{F}_{q^{m}}$ are linearly independent over \mathbb{F}_{q}.

Minimum rank distance of a Gabidulin code:

$$
d=\min \{\operatorname{rank}(\mathbf{c}) \mid \mathbf{c} \in \operatorname{Gab}[n, k], \mathbf{c} \neq \mathbf{0}\}=n-k+1
$$

\Longrightarrow Gabidulin codes are MRD codes.

Interleaved Gabidulin Codes

Definition (Interleaved Gabidulin Code)

A linear (vertically) interleaved Gabidulin code over $\mathbb{F}_{q^{m}}$ of length $n \leq m$, elementary dimensions k_{1}, \ldots, k_{s} and interleaving order s is defined by
$\mathrm{IGab}\left[s ; n, k_{1}, \ldots, k_{s}\right] \stackrel{\text { def }}{=}\left\{\left(\begin{array}{c}\mathbf{c}^{(1)} \\ \mathbf{c}^{(2)} \\ \vdots \\ \mathbf{c}^{(s)}\end{array}\right)=\left(\begin{array}{c}f^{(1)}(\boldsymbol{\alpha}) \\ f^{(2)}(\boldsymbol{\alpha}) \\ \vdots \\ f^{(s)}(\boldsymbol{\alpha})\end{array}\right)\right\}$,

where

- $\operatorname{deg}_{q} f^{(i)}(x)<k_{i} \leq n$,
- $f^{(i)}(x) \in \mathbb{L}_{q^{m}}[x]$ for $i=1, \ldots, s$,
- $\operatorname{rk}\left(\boldsymbol{\alpha}=\left(\alpha_{0} \alpha_{1} \ldots \alpha_{n-1}\right)\right)=n$.

Interleaved Gabidulin Codes

Definition (Interleaved Gabidulin Code)

A linear (vertically) interleaved Gabidulin code over $\mathbb{F}_{q^{m}}$ of length $n \leq m$, elementary dimensions k_{1}, \ldots, k_{s} and interleaving order s is defined by
$\mathrm{IGab}\left[s ; n, k_{1}, \ldots, k_{s}\right] \stackrel{\text { def }}{=}\left\{\left(\begin{array}{c}\mathbf{c}^{(1)} \\ \mathbf{c}^{(2)} \\ \vdots \\ \mathbf{c}^{(s)}\end{array}\right)=\left(\begin{array}{c}f^{(1)}(\boldsymbol{\alpha}) \\ f^{(2)}(\boldsymbol{\alpha}) \\ \vdots \\ f^{(s)}(\boldsymbol{\alpha})\end{array}\right)\right\}$,

- $\operatorname{deg}_{q} f^{(i)}(x)<k_{i} \leq n$,
- $f^{(i)}(x) \in \mathbb{L}_{q^{m}}[x]$ for $i=1, \ldots, s$,
- $\operatorname{rk}\left(\boldsymbol{\alpha}=\left(\alpha_{0} \alpha_{1} \ldots \alpha_{n-1}\right)\right)=n$.

Error Model

"Number" of errors t :

Outline

(1) Motivation: Network Coding and Interleaving

- Rank Metric Codes
- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
(3) Previous Work and Our Contribution
(4) Interpolation-Based Decoding
- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder
(5) Conclusion and Outlook

Previous Work

- Loidreau \& Overbeck (2006): Unique decoding of interleaved Gabidulin codes:
- by solving a linear system of equations,
- up to $\tau \leq\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors w.h.p.,
- complexity $\mathcal{O}\left(n^{3}\right)$,
- upper bound on the failure probability: $P_{f, L O} \leq 4 / q^{m}$.
- Sidorenko \& Bossert (2010): Unique decoding of interleaved Gabidulin codes:
- by linearized shift-register synthesis,
- up to $\tau \leq\left[\frac{s}{s+1}(d-1)\right]$ errors w.h.p.,
- complexity $\mathcal{O}\left(n^{2}\right)$
- improved upper bound on the failure probability.

Previous Work

- Loidreau \& Overbeck (2006): Unique decoding of interleaved Gabidulin codes:
- by solving a linear system of equations,
- up to $\tau \leq\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors w.h.p.,
- complexity $\mathcal{O}\left(n^{3}\right)$,
- upper bound on the failure probability: $P_{f, L O} \leq 4 / q^{m}$.
- Sidorenko \& Bossert (2010): Unique decoding of interleaved Gabidulin codes:
- by linearized shift-register synthesis,
- up to $\tau \leq\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors w.h.p.,
- complexity $\mathcal{O}\left(n^{2}\right)$,
- improved upper bound on the failure probability.

Our Contribution

We use an interpolation-based decoding algorithm...

- ... for unique decoding of interleaved Gabidulin codes:
- up to $\tau \leq\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors w.h.p,
- complexity $\mathcal{O}\left(n^{2}\right)$,
- failure probability: $P_{f} \leq P_{f, L O} \leq 4 / q^{m}$
for list decoding of interleaved Gabidulin codes:
- finds the list of all codewords within distance
- basis of this list can be found with complexity $\mathcal{O}\left(n^{2}\right)$
- list size can be exponential in n,
- average list size:

Our Contribution

We use an interpolation-based decoding algorithm...

- ... for unique decoding of interleaved Gabidulin codes:
- up to $\tau \leq\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors w.h.p.
- complexity $\mathcal{O}\left(n^{2}\right)$,
- failure probability: $P_{f} \leq P_{f, L O} \leq 4 / q^{m}$
- ... for list decoding of interleaved Gabidulin codes:
- finds the list of all codewords within distance $\tau<\frac{s}{s+1} \cdot d$,
- basis of this list can be found with complexity $\mathcal{O}\left(n^{2}\right)$,
- list size can be exponential in n,
- average list size: $\bar{\ell}<1+4\left(q^{m \sum_{i=1}^{s} k_{i}}-1\right) q^{(s m+n) \tau-\tau^{2}-s m n}$.

Outline

(1) Motivation: Network Coding and Interleaving
(2) Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
(3) Previous Work and Our Contribution

4 Interpolation-Based Decoding

- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder
(5) Conclusion and Outlook

Overview and Idea of Decoder

Let $\left(\begin{array}{cccc}\mathbf{r}^{(1)}=\left(\begin{array}{llll}r_{0}^{(1)} & r_{1}^{(1)} & \ldots & \left.r_{n-1}^{(1)}\right) \\ & \vdots & & \\ & & \\ \mathbf{r}^{(s)}=\left(r_{0}^{(s)}\right. & r_{1}^{(s)} & \ldots & \left.r_{n-1}^{(s)}\right)\end{array}\right) \in \mathbb{F}_{q^{m}}^{s \times n} \text { be the received word } .\end{array}\right.$

(1) Interpolation:

Find non-zero $(s+1)$-variate linearized polynomial of the form $Q\left(x, y_{1}, \ldots, y_{s}\right)=Q_{0}(x)+Q_{1}\left(y_{1}\right)+\cdots+Q_{s}\left(y_{s}\right)$ such that

- $Q\left(\alpha_{i}, r_{i}^{(1)}, \ldots, r_{i}^{(s)}\right)=0$, for $i=0, \ldots, n-1$,
- $\operatorname{deg}_{q} Q_{0}(x)<n-\tau$,
- $\operatorname{deg}_{q} Q_{i}\left(y_{i}\right)<n-\tau-\left(k_{i}-1\right)$, for $i=1, \ldots, s$.

(C) Root-finding:

Find all tuples of polynomials $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that $Q\left(x, f^{(1)}(x), \ldots, f^{(s)}(x)\right)=0$.

For simplicity, consider only $k_{i}=k$, for $i=1, \ldots, s$ in this talk.

Overview and Idea of Decoder

(1) Interpolation:

Find non-zero $(s+1)$-variate linearized polynomial of the form $Q\left(x, y_{1}, \ldots, y_{s}\right)=Q_{0}(x)+Q_{1}\left(y_{1}\right)+\cdots+Q_{s}\left(y_{s}\right)$ such that

- $Q\left(\alpha_{i}, r_{i}^{(1)}, \ldots, r_{i}^{(s)}\right)=0$, for $i=0, \ldots, n-1$,
- $\operatorname{deg}_{q} Q_{0}(x)<n-\tau$,
- $\operatorname{deg}_{q} Q_{i}\left(y_{i}\right)<n-\tau-\left(k_{i}-1\right)$, for $i=1, \ldots, s$.
(2) Root-finding:

Find all tuples of polynomials $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that $Q\left(x, f^{(1)}(x), \ldots, f^{(s)}(x)\right)=0$.

For simplicity, consider only $k_{i}=k$, for $i=1, \ldots, s$ in this talk.

Overview and Idea of Decoder

Let $\left(\begin{array}{cccc}\mathbf{r}^{(1)}=\left(\begin{array}{lll}r_{0}^{(1)} & r_{1}^{(1)} & \ldots\end{array} r_{n-1}^{(1)}\right) \\ & \vdots & & \\ \mathbf{r}^{(s)}=\left(r_{0}^{(s)}\right. & r_{1}^{(s)} & \ldots & \left.r_{n-1}^{(s)}\right)\end{array}\right) \in \mathbb{F}_{q^{m}}^{s \times n}$ be the received word
(1) Interpolation:

Find non-zero $(s+1)$-variate linearized polynomial of the form $Q\left(x, y_{1}, \ldots, y_{s}\right)=Q_{0}(x)+Q_{1}\left(y_{1}\right)+\cdots+Q_{s}\left(y_{s}\right)$ such that

- $Q\left(\alpha_{i}, r_{i}^{(1)}, \ldots, r_{i}^{(s)}\right)=0$, for $i=0, \ldots, n-1$,
- $\operatorname{deg}_{q} Q_{0}(x)<n-\tau$,
- $\operatorname{deg}_{q} Q_{i}\left(y_{i}\right)<n-\tau-\left(k_{i}-1\right)$, for $i=1, \ldots, s$.
(2) Root-finding:

Find all tuples of polynomials $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that $Q\left(x, f^{(1)}(x), \ldots, f^{(s)}(x)\right)=0$.

For simplicity, consider only $k_{i}=k$, for $i=1, \ldots, s$ in this talk.

Interpolation-Step

Lemma (Interpolation)

There exists a non-zero $Q\left(x, y_{1}, \ldots, y_{s}\right)$, fulfilling the interpolation conditions if

$$
\tau<\frac{s}{s+1} \cdot(n-k+1)=\frac{s}{s+1} \cdot d
$$

- Calculating $Q\left(x, y_{1}, \ldots, y_{s}\right)$ is a linear system of equations
- Complexity:
- with Gaussian elimination: $\mathcal{O}\left(s n^{3}\right)$
- with the approach by Xie, Yan \& Suter (2011): $\mathcal{O}\left(s^{2} n(n-\tau)\right)$
- We use a basis of the solution space for the root-finding step

Interpolation-Step

Lemma (Interpolation)

There exists a non-zero $Q\left(x, y_{1}, \ldots, y_{s}\right)$, fulfilling the interpolation conditions if

$$
\tau<\frac{s}{s+1} \cdot(n-k+1)=\frac{s}{s+1} \cdot d
$$

- Calculating $Q\left(x, y_{1}, \ldots, y_{s}\right)$ is a linear system of equations
- Complexity:
- with Gaussian elimination: $\mathcal{O}\left(s n^{3}\right)$
- with the approach by Xie, Yan \& Suter (2011): $\mathcal{O}\left(s^{2} n(n-\tau)\right)$
- We use a basis of the solution space for the root-finding step

Root-Finding Step

Theorem (Root-Finding)

Let $\operatorname{rk}\left(\mathbf{E}_{q}\right) \leq \tau$, where $\tau<\frac{s}{s+1} \cdot d$ and let $Q\left(x, y_{1}, \ldots, y_{s}\right)$ fulfill the interpolation constraints. Then,

$$
Q\left(x, f^{(1)}(x), \ldots, f^{(s)}(x)\right)=0
$$

- This is a linear system of equations over $\mathbb{F}_{q^{m}}$ in the coefficients of $f^{(1)}(x), \ldots, f^{(s)}(x)$
- Similar to
- Guruswami \& Wang (2012) for folded/derivative RS codes - Mahdavifar \& Vardy (2012) for folded Gabidulin codes
- Use basis for all $Q\left(x, y_{1}, \ldots, y_{s}\right)$ for the root-finding step
- Complexity (recursive calculation): $\mathcal{O}\left(s^{3} k^{2}\right)$

Root-Finding Step

Theorem (Root-Finding)

Let $\operatorname{rk}\left(\mathbf{E}_{q}\right) \leq \tau$, where $\tau<\frac{s}{s+1} \cdot d$ and let $Q\left(x, y_{1}, \ldots, y_{s}\right)$ fulfill the interpolation constraints. Then,

$$
Q\left(x, f^{(1)}(x), \ldots, f^{(s)}(x)\right)=0
$$

- This is a linear system of equations over $\mathbb{F}_{q^{m}}$ in the coefficients of $f^{(1)}(x), \ldots, f^{(s)}(x)$
- Similar to
- Guruswami \& Wang (2012) for folded/derivative RS codes
- Mahdavifar \& Vardy (2012) for folded Gabidulin codes
- Use basis for all $Q\left(x, y_{1}, \ldots, y_{s}\right)$ for the root-finding step
- Complexity (recursive calculation): $\mathcal{O}\left(s^{3} k^{2}\right)$

Interpretation as List Decoder

Theorem (List Decoding of Interleaved Gabidulin Codes)

- Let $\mathbf{c}^{(i)}=f^{(i)}(\boldsymbol{\alpha})$ define IGab $\left[s ; n, k_{1}, \ldots, k_{s}\right]$,
- $\mathbf{r}^{(i)}=\mathbf{c}^{(i)}+\mathbf{e}^{(i)}$ for $i=1, \ldots, s$.

Then, we can find a basis of the subspace containing all $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that their evaluation is in rank distance

$$
\tau<\frac{s}{s+1} \cdot(n-k+1)=\frac{s}{s+1} \cdot d
$$

to the received word with overall complexity at most $\mathcal{O}\left(s^{3} n^{2}\right)$.

- Maximum list size can be exponential: $\ell \leq q^{m(s-1) k}$
- Average list size (without transmitted codeword):

$$
\bar{\ell}<4\left(q^{m s k}-1\right) q^{(s m+n) \tau-\tau^{2}-s m n}
$$

Interpretation as Unique Decoder

- Decoding failure if rank of root-finding matrix is not full.
- In the other cases there is a unique solution!

Theorem (Unique Decoding of Interleaved Gabidulin Codes)

- Let $\mathbf{c}^{(i)}=f^{(i)}(\boldsymbol{\alpha})$ define IGab $\left[s ; n, k_{1}, \ldots, k_{s}\right]$,
- $\mathbf{r}^{(i)}=\mathbf{c}^{(i)}+\mathbf{e}^{(i)}$ for $i=1, \ldots, s$.

Then, with probability at least

$$
1-4 q^{-m(s(n-k-\tau)-t+1)} \geq 1-P_{f, L O}
$$

we find a unique solution $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that its evaluation is in rank distance

$$
t \leq \tau=\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor
$$

to the received word with overall complexity at most $\mathcal{O}\left(s^{3} n^{2}\right)$.

Example - Failure Probability and List Size

- Consider $\operatorname{IGab}\left[s=2 ; n=7, k_{1}=2, k_{2}=2\right]$ code over $\mathbb{F}_{2^{7}}$. \Longrightarrow BMD decoding: $\tau=\left\lfloor\frac{d-1}{2}\right\rfloor=2$
\Longrightarrow Interleaved decoding (for unique \& list decoding): $\tau=3$
- Simulated failure probability for 10^{7} transmissions (any error matrix $\mathbf{E}_{q} \in \mathbb{F}_{q}^{s m \times n}$ of rank $\tau=3$ is equal probable):
- Upper bound on average list size:
- Upper bound on failure probability:

Example - Failure Probability and List Size

- Consider IGab[s=2;n=7, $\left.k_{1}=2, k_{2}=2\right]$ code over $\mathbb{F}_{2^{7}}$. \Longrightarrow BMD decoding: $\tau=\left\lfloor\frac{d-1}{2}\right\rfloor=2$
\Longrightarrow Interleaved decoding (for unique \& list decoding): $\tau=3$
- Simulated failure probability for 10^{7} transmissions (any error matrix $\mathbf{E}_{q} \in \mathbb{F}_{q}^{s m \times n}$ of rank $\tau=3$ is equal probable):

$$
P(\operatorname{rk}(\mathbf{Q})<s k)=P_{f}=P_{f, L O}=P_{f, S B}=6.12 \cdot 10^{-5}
$$

- Upper bound on average list size:

$$
\bar{\ell}<1+6.104 \cdot 10^{-5}
$$

- Upper bound on failure probability:

$$
P_{f} \leq 4 q^{-m(s(n-k-\tau)-\tau+1)}=2.44 \cdot 10^{-4}
$$

Outline

(1) Motivation: Network Coding and Interleaving
(2) Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
(3) Previous Work and Our Contribution

4 Interpolation-Based Decoding

- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder
(5) Conclusion and Outlook

Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

- ... can be used as unique decoder
- correcting up to $\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors,
- with probability at least $1-P_{f, L O} \geq 1-4 / q^{m}$,
- with complexity $\mathcal{O}\left(n^{2}\right)$ over $\mathbb{F}_{q^{m}}$.
- ... or as a list decoder
- finding all words within distance $\tau<\frac{s}{s+1} \cdot d$,
- with worst-case exponential complexity, but complexity $O\left(n^{2}\right)$ for finding the basis for all solutions.

Outlook

- Use re-encoding to decrease complexity.
- Decoding usual Gabidulin code beyond half the minimum distance by virtual extension to an interleaved Gabidulin code.

Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

- ... can be used as unique decoder
- correcting up to $\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors,
- with probability at least $1-P_{f, L O} \geq 1-4 / q^{m}$,
- with complexity $\mathcal{O}\left(n^{2}\right)$ over $\mathbb{F}_{q^{m}}$.
- ... or as a list decoder
- finding all words within distance $\tau<\frac{s}{s+1} \cdot d$,
- with worst-case exponential complexity, but complexity $\mathcal{O}\left(n^{2}\right)$ for finding the basis for all solutions.

Outlook

- Use re-encoding to decrease complexity.
- Decoding usual Gabidulin code beyond half the minimum distance by virtual extension to an interleaved Gabidulin code.

Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

- ... can be used as unique decoder
- correcting up to $\left\lfloor\frac{s}{s+1}(d-1)\right\rfloor$ errors,
- with probability at least $1-P_{f, L O} \geq 1-4 / q^{m}$,
- with complexity $\mathcal{O}\left(n^{2}\right)$ over $\mathbb{F}_{q^{m}}$.
- ... or as a list decoder
- finding all words within distance $\tau<\frac{s}{s+1} \cdot d$,
- with worst-case exponential complexity, but complexity $\mathcal{O}\left(n^{2}\right)$ for finding the basis for all solutions.

Outlook

- Use re-encoding to decrease complexity.
- Decoding usual Gabidulin code beyond half the minimum distance by virtual extension to an interleaved Gabidulin code.

Thank you...
...for your attention!

