

ulm university universität **UUUIM**

Interpolation-Based Decoding of Interleaved Gabidulin Codes

Antonia Wachter-Zeh^{1,2} and Alexander Zeh^{1,3}

¹Institute of Communications Engineering, Ulm University, Ulm, Germany ²Inst. de Recherche Mathématique de Rennes, Université de Rennes 1, France ³Research Center INRIA Saclay - Île-de-France, École Polytechnique, France

April 19, 2013

International Workshop on Coding and Cryptography (WCC 2013)

Outline

1 Motivation: Network Coding and Interleaving

2 Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
- Previous Work and Our Contribution
- Interpolation-Based Decoding
 - Overview and Idea
 - Interpretation as List Decoder
 - Interpretation as Unique Decoder

Outline

1 Motivation: Network Coding and Interleaving

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes

- - Overview and Idea
 - Interpretation as List Decoder
 - Interpretation as Unique Decoder

Non-Coherent Random Linear Network Coding

- Non-coherent network coding: internal structure unknown
- Packets: vectors over finite field
- Nodes build outgoing packets as random linear combinations of incoming packets
- ⇒ Higher throughput than routing!⇒ BUT: Mixing of packets results in high error propagation

Non-Coherent Random Linear Network Coding

- Non-coherent network coding: internal structure unknown
- Packets: vectors over finite field
- Nodes build outgoing packets as random linear combinations of incoming packets
- ⇒ Higher throughput than routing!⇒ BUT: Mixing of packets results in high error propagation

Kötter & Kschischang (2008); Silva, Kschischang & Kötter (2008): Error control in RLNC based on **lifted Gabidulin codes**.

Lifted Gabidulin Code

- Transmit basis of subspace
- The matrix \mathbf{C} is a codeword of $\operatorname{Gab}[n,k]$
- Identity matrix is necessary to "identify" linear combinations of the network

BUT: Additional overhead due to identity matrix.

Lifting Construction with Interleaving

Interleaved Gabidulin codes relatively reduce this overhead!

Lifted Interleaved Gabidulin Code

- Transmit basis of subspace
- C_i are a codewords of $Gab[n, k_i]$

• $\mathbf{C}^T \stackrel{\text{def}}{=} \left(\mathbf{C}_1^T \ \mathbf{C}_2^T \ \dots \ \mathbf{C}_s^T \right)$, where $\mathbf{C} \in \text{IGab}[s; n, k_1, \dots, k_s]$

(Relatively) less additional overhead due to identity matrix.

Outline

Motivation: Network Coding and Interleaving

2 Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes
- 3 Previous Work and Our Contribution
- Interpolation-Based Decoding
 - Overview and Idea
 - Interpretation as List Decoder
 - Interpretation as Unique Decoder
- 5 Conclusion and Outlook

Rank Metric

Rank Metric

- Let $\mathcal B$ be a basis of $\mathbb F_{q^m}$ over $\mathbb F_q$ where q is a power of a prime
- ullet One-to-one mapping between $\mathbf{x}\in\mathbb{F}_{q^m}^n$ and $\mathbf{X}\in\mathbb{F}_{q}^{m imes n}$
- Rank norm: $rk(\mathbf{x}) \stackrel{\text{def}}{=} rank \text{ of } \mathbf{X} \text{ over } \mathbb{F}_q$

Minimum Rank Distance of a block code C with $\mathbf{c}^{(i)} \in \mathbb{F}_{q^m}^n$:

- $d \stackrel{\text{def}}{=} \min\{ \operatorname{rk}(\mathbf{c}^{(1)} \mathbf{c}^{(2)}) \mid \mathbf{c}^{(1)}, \mathbf{c}^{(2)} \in \mathsf{C}, \mathbf{c}^{(1)} \neq \mathbf{c}^{(2)} \}$
- Codes over \mathbb{F}_{q^m} of cardinality $M = q^{\min\{n(m-d+1), m(n-d+1)\}}$ are called Maximum Rank Distance (MRD) codes.

For linear codes:

• $d \stackrel{\text{def}}{=} \min \{ \operatorname{rk}(\mathbf{c}) \mid \mathbf{c} \in \mathsf{C}, \mathbf{c} \neq \mathbf{0} \} \le n - k + 1$

Rank Metric

Rank Metric

- Let $\mathcal B$ be a basis of $\mathbb F_{q^m}$ over $\mathbb F_q$ where q is a power of a prime
- ullet One-to-one mapping between $\mathbf{x}\in\mathbb{F}_{q^m}^n$ and $\mathbf{X}\in\mathbb{F}_{q}^{m imes n}$
- Rank norm: $rk(\mathbf{x}) \stackrel{\text{def}}{=} rank \text{ of } \mathbf{X} \text{ over } \mathbb{F}_q$

Minimum Rank Distance of a block code C with $\mathbf{c}^{(i)} \in \mathbb{F}_{q^m}^n$:

•
$$d \stackrel{\text{def}}{=} \min\{ \operatorname{rk}(\mathbf{c}^{(1)} - \mathbf{c}^{(2)}) \mid \mathbf{c}^{(1)}, \mathbf{c}^{(2)} \in \mathsf{C}, \mathbf{c}^{(1)} \neq \mathbf{c}^{(2)} \}$$

• Codes over \mathbb{F}_{q^m} of cardinality $M = q^{\min\{n(m-d+1), m(n-d+1)\}}$ are called Maximum Rank Distance (MRD) codes.

For linear codes:

• $d \stackrel{\text{def}}{=} \min \left\{ \operatorname{rk}(\mathbf{c}) \mid \mathbf{c} \in \mathsf{C}, \mathbf{c} \neq \mathbf{0} \right\} \le n - k + 1$

Linearized Polynomials

Linearized Polynomial

•
$$f(x) \stackrel{\text{def}}{=} \sum_{i=0}^{d_f} f_i x^{[i]} = \sum_{i=0}^{d_f} f_i x^{q^i}$$
 with $f_i \in \mathbb{F}_{q^m}$

• If $f_{d_f} \neq 0$, define the *q*-degree: $\deg_q f(x) = d_f$

Use usual addition and non-commutative composition f(g(x)) \rightsquigarrow Non-commutative ring of linearized polynomials $\mathbb{L}_{q^m}[x]$

Multi-variate Linearized Polynomials

- $f(x, y_1, \dots, y_s) \stackrel{\text{def}}{=} f^{(0)}(x) + f^{(1)}(y_1) + \dots + f^{(s)}(y_s)$, where $f^{(i)}(x) \in \mathbb{L}_{q^m}[x]$ for all i
- No "mixed" terms!
- Multi-variate non-commutative ring of linearized polynomials: $\mathbb{L}_{q^m}[x, y_1, \dots, y_s]$

Linearized Polynomials

Linearized Polynomial

•
$$f(x) \stackrel{\text{def}}{=} \sum_{i=0}^{d_f} f_i x^{[i]} = \sum_{i=0}^{d_f} f_i x^{q^i}$$
 with $f_i \in \mathbb{F}_{q^m}$

• If $f_{d_f} \neq 0$, define the *q*-degree: $\deg_q f(x) = d_f$

Use usual addition and non-commutative composition f(g(x)) \rightsquigarrow Non-commutative ring of linearized polynomials $\mathbb{L}_{q^m}[x]$

Multi-variate Linearized Polynomials

- $f(x, y_1, \dots, y_s) \stackrel{\text{def}}{=} f^{(0)}(x) + f^{(1)}(y_1) + \dots + f^{(s)}(y_s)$, where $f^{(i)}(x) \in \mathbb{L}_{q^m}[x]$ for all i
- No "mixed" terms!
- Multi-variate non-commutative ring of linearized polynomials: $\mathbb{L}_{q^m}[x,y_1,\ldots,y_s]$

Gabidulin Codes

Introduced by Delsarte (1978), Gabidulin (1985), Roth (1991).

Definition (Gabidulin Code)

A linear Gabidulin code ${\rm Gab}[n,k]$ over \mathbb{F}_{q^m} of length $n\leq m$ and dimension $k\leq n$ is defined by:

$$\mathsf{Gab}[n,k] \stackrel{\text{def}}{=} \left\{ \left(f(\alpha_0) \ f(\alpha_1) \ \dots \ f(\alpha_{n-1}) \right) = f(\boldsymbol{\alpha}) \ \middle| \\ \deg_q f(x) < k, \ f(x) \in \mathbb{L}_{q^m}[x] \right\},$$

where the fixed elements $\alpha_0, \alpha_1, \ldots, \alpha_{n-1} \in \mathbb{F}_{q^m}$ are linearly independent over \mathbb{F}_q .

 $\begin{array}{l} \mbox{Minimum rank distance of a Gabidulin code:} \\ d = \min\{ {\rm rank}({\bf c}) \mid {\bf c} \in {\rm Gab}[n,k], {\bf c} \neq {\bf 0} \} = n-k+1. \\ \implies \mbox{Gabidulin codes are MRD codes.} \end{array}$

Interleaved Gabidulin Codes

Definition (Interleaved Gabidulin Code)

A linear (vertically) interleaved Gabidulin code over \mathbb{F}_{q^m} of length $n \leq m$, elementary dimensions k_1, \ldots, k_s and interleaving order s is defined by

$$\operatorname{IGab}[s; n, k_1, \dots, k_s] \stackrel{\text{def}}{=} \left\{ \begin{pmatrix} \mathbf{c}^{(1)} \\ \mathbf{c}^{(2)} \\ \vdots \\ \mathbf{c}^{(s)} \end{pmatrix} = \begin{pmatrix} f^{(1)}(\boldsymbol{\alpha}) \\ f^{(2)}(\boldsymbol{\alpha}) \\ \vdots \\ f^{(s)}(\boldsymbol{\alpha}) \end{pmatrix} \right\},$$

where

Interleaved Gabidulin Codes

Definition (Interleaved Gabidulin Code)

A linear (vertically) interleaved Gabidulin code over \mathbb{F}_{q^m} of length $n \leq m$, elementary dimensions k_1, \ldots, k_s and interleaving order s is defined by

$$\mathrm{IGab}[s;n,k_1,\ldots,k_s] \stackrel{\mathrm{def}}{=} \left\{ \begin{pmatrix} \mathbf{c}^{(1)} \\ \mathbf{c}^{(2)} \\ \vdots \\ \mathbf{c}^{(s)} \end{pmatrix} = \begin{pmatrix} f^{(1)}(\boldsymbol{\alpha}) \\ f^{(2)}(\boldsymbol{\alpha}) \\ \vdots \\ f^{(s)}(\boldsymbol{\alpha}) \end{pmatrix} \right\},$$

where

Error Model

- All e⁽ⁱ⁾ lie in the same rowspace!
- Corresponds to *s* key equations with the same error span polynomial

 \implies This can be used in the decoding process!

Outline

Motivation: Network Coding and Interleaving

2 Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes

3 Previous Work and Our Contribution

- Interpolation-Based Decoding
 - Overview and Idea
 - Interpretation as List Decoder
 - Interpretation as Unique Decoder
- 5 Conclusion and Outlook

Previous Work

- Loidreau & Overbeck (2006): Unique decoding of interleaved Gabidulin codes:
 - by solving a linear system of equations,
 - up to $\tau \leq \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$ errors w.h.p.,
 - complexity $\mathcal{O}(n^3)$,
 - upper bound on the failure probability: $P_{f,LO} \leq 4/q^m$.
- Sidorenko & Bossert (2010): Unique decoding of interleaved Gabidulin codes:
 - by linearized shift-register synthesis,

• up to
$$\tau \leq \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$$
 errors w.h.p.,

- complexity $\mathcal{O}(n^2)$,
- improved upper bound on the failure probability.

Previous Work

- Loidreau & Overbeck (2006): Unique decoding of interleaved Gabidulin codes:
 - by solving a linear system of equations,
 - up to $\tau \leq \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$ errors w.h.p.,
 - complexity $\mathcal{O}(n^3)$,
 - upper bound on the failure probability: $P_{f,LO} \leq 4/q^m$.
- Sidorenko & Bossert (2010): Unique decoding of interleaved Gabidulin codes:
 - by linearized shift-register synthesis,

• up to
$$\tau \leq \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$$
 errors w.h.p.,

- complexity $\mathcal{O}(n^2)$,
- improved upper bound on the failure probability.

We use an interpolation-based decoding algorithm...

- ... for unique decoding of interleaved Gabidulin codes:
 - up to $\tau \leq \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$ errors w.h.p,
 - complexity $\mathcal{O}(n^2)$,
 - failure probability: $P_f \leq P_{f,LO} \leq 4/q^m$
- ... for list decoding of interleaved Gabidulin codes:
 - finds the list of all codewords within distance $\tau < \frac{s}{s+1} \cdot d$,
 - basis of this list can be found with complexity $\mathcal{O}(n^2)$,
 - list size can be exponential in n,
 - average list size: $\overline{\ell} < 1 + 4 \left(q^{m \sum_{i=1}^{s} k_i} 1 \right) q^{(sm+n)\tau \tau^2 smn}$.

We use an interpolation-based decoding algorithm...

- ... for unique decoding of interleaved Gabidulin codes:
 - up to $\tau \leq \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$ errors w.h.p,
 - complexity $\mathcal{O}(n^2)$,
 - failure probability: $P_f \leq P_{f,LO} \leq 4/q^m$
- ... for **list decoding** of interleaved Gabidulin codes:
 - finds the list of all codewords within distance $\tau < \frac{s}{s+1} \cdot d$,
 - basis of this list can be found with complexity $\mathcal{O}(n^2)$,
 - list size can be exponential in n,
 - average list size: $\overline{\ell} < 1 + 4 \left(q^{m \sum_{i=1}^{s} k_i} 1 \right) q^{(sm+n)\tau \tau^2 smn}$.

Outline

Motivation: Network Coding and Interleaving

2 Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes

3 Previous Work and Our Contribution

- Interpolation-Based Decoding
 - Overview and Idea
 - Interpretation as List Decoder
 - Interpretation as Unique Decoder

5 Conclusion and Outlook

Overview and Idea of Decoder

(1) (1) (1) (1) (1)

$$\text{Let} \begin{pmatrix} \mathbf{r}^{(1)} = (r_0^{(s)} \ r_1^{(s)} \ \dots \ r_{n-1}^{(s-1)}) \\ \vdots \\ \mathbf{r}^{(s)} = (r_0^{(s)} \ r_1^{(s)} \ \dots \ r_{n-1}^{(s)}) \end{pmatrix} \in \mathbb{F}_{q^m}^{s \times n} \text{ be the received word}$$

Interpolation:

Find non-zero (s+1)-variate linearized polynomial of the form $Q(x, y_1, \dots, y_s) = Q_0(x) + Q_1(y_1) + \dots + Q_s(y_s)$ such that

•
$$Q(\alpha_i, r_i^{(1)}, \dots, r_i^{(s)}) = 0$$
, for $i = 0, \dots, n-1$,

•
$$\deg_q Q_0(x) < n - \tau$$
,

•
$$\deg_q Q_i(y_i) < n - \tau - (k_i - 1)$$
, for $i = 1, ..., s$.

2 Root-finding:
Find all tuples of polynomials
$$f^{(1)}(x), \ldots, f^{(s)}(x)$$
 such that $Q\left(x, f^{(1)}(x), \ldots, f^{(s)}(x)\right) = 0.$

Overview and Idea of Decoder

(1) (1) (1) (1) (1)

Let
$$\begin{pmatrix} \mathbf{r}^{(i)} = (r_0^{(i)} \ r_1^{(i)} \ \dots \ r_{n-1}^{(i)}) \\ \vdots \\ \mathbf{r}^{(s)} = (r_0^{(s)} \ r_1^{(s)} \ \dots \ r_{n-1}^{(s)}) \end{pmatrix} \in \mathbb{F}_{q^m}^{s \times n} \text{ be the received word}$$

Interpolation:

Find non-zero (s+1)-variate linearized polynomial of the form $Q(x, y_1, \dots, y_s) = Q_0(x) + Q_1(y_1) + \dots + Q_s(y_s)$ such that

•
$$Q(\alpha_i, r_i^{(1)}, \dots, r_i^{(s)}) = 0$$
, for $i = 0, \dots, n-1$,

•
$$\deg_q Q_0(x) < n - \tau$$
,

•
$$\deg_q Q_i(y_i) < n - \tau - (k_i - 1)$$
, for $i = 1, ..., s$.

O Root-finding:

Find all tuples of polynomials $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that $Q(x, f^{(1)}(x), \dots, f^{(s)}(x)) = 0.$

Overview and Idea of Decoder

(1) (1) (1) (1) (1)

Let
$$\begin{pmatrix} \mathbf{r}^{(i)} = (r_0^{(i)} \ r_1^{(i)} \ \dots \ r_{n-1}^{(i)}) \\ \vdots \\ \mathbf{r}^{(s)} = (r_0^{(s)} \ r_1^{(s)} \ \dots \ r_{n-1}^{(s)}) \end{pmatrix} \in \mathbb{F}_{q^m}^{s \times n} \text{ be the received word}$$

Interpolation:

Find non-zero (s+1)-variate linearized polynomial of the form $Q(x, y_1, \dots, y_s) = Q_0(x) + Q_1(y_1) + \dots + Q_s(y_s)$ such that

•
$$Q(\alpha_i, r_i^{(1)}, \dots, r_i^{(s)}) = 0$$
, for $i = 0, \dots, n-1$,

•
$$\deg_q Q_0(x) < n - \tau$$
,

•
$$\deg_q Q_i(y_i) < n - \tau - (k_i - 1)$$
, for $i = 1, ..., s$.

O Root-finding:

Find all tuples of polynomials $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that $Q(x, f^{(1)}(x), \dots, f^{(s)}(x)) = 0.$

For simplicity, consider only $k_i = k$, for $i = 1, \ldots, s$ in this talk.

Lemma (Interpolation)

There exists a non-zero $Q(x, y_1, \ldots, y_s)$, fulfilling the interpolation conditions if

$$\tau < \frac{s}{s+1} \cdot (n-k+1) = \frac{s}{s+1} \cdot d$$

- Calculating $Q(x, y_1, \ldots, y_s)$ is a linear system of equations
- Complexity:
 - with Gaussian elimination: $\mathcal{O}(sn^3)$
 - with the approach by Xie, Yan & Suter (2011): $\mathcal{O}(s^2n(n-\tau))$
- We use a basis of the solution space for the root-finding step

Lemma (Interpolation)

There exists a non-zero $Q(x, y_1, \ldots, y_s)$, fulfilling the interpolation conditions if

$$\tau < \frac{s}{s+1} \cdot (n-k+1) = \frac{s}{s+1} \cdot d$$

- $\bullet~\mathsf{Calculating}~Q(x,y_1,\ldots,y_s)$ is a linear system of equations
- Complexity:
 - with Gaussian elimination: $\mathcal{O}(sn^3)$
 - with the approach by Xie, Yan & Suter (2011): $\mathcal{O}(s^2n(n-\tau))$
- We use a basis of the solution space for the root-finding step

Theorem (Root-Finding)

Let $\operatorname{rk}(\mathbf{E}_q) \leq \tau$, where $\tau < \frac{s}{s+1} \cdot d$ and let $Q(x, y_1, \ldots, y_s)$ fulfill the interpolation constraints. Then,

$$Q(x, f^{(1)}(x), \dots, f^{(s)}(x)) = 0.$$

- This is a **linear** system of equations over \mathbb{F}_{q^m} in the coefficients of $f^{(1)}(x), \ldots, f^{(s)}(x)$
- Similar to
 - Guruswami & Wang (2012) for folded/derivative RS codes
 - Mahdavifar & Vardy (2012) for folded Gabidulin codes
- Use basis for all $Q(x,y_1,\ldots,y_s)$ for the root-finding step
- Complexity (recursive calculation): $\mathcal{O}(s^3k^2)$

Theorem (Root-Finding)

Let $\operatorname{rk}(\mathbf{E}_q) \leq \tau$, where $\tau < \frac{s}{s+1} \cdot d$ and let $Q(x, y_1, \ldots, y_s)$ fulfill the interpolation constraints. Then,

$$Q\left(x, f^{(1)}(x), \dots, f^{(s)}(x)\right) = 0.$$

- This is a **linear** system of equations over \mathbb{F}_{q^m} in the coefficients of $f^{(1)}(x), \ldots, f^{(s)}(x)$
- Similar to
 - Guruswami & Wang (2012) for folded/derivative RS codes
 - Mahdavifar & Vardy (2012) for folded Gabidulin codes
- Use basis for all $Q(x,y_1,\ldots,y_s)$ for the root-finding step
- Complexity (recursive calculation): $\mathcal{O}(s^3k^2)$

Theorem (List Decoding of Interleaved Gabidulin Codes)

• Let
$$\mathbf{c}^{(i)} = f^{(i)}(\boldsymbol{\alpha})$$
 define $\operatorname{IGab}[s; n, k_1, \dots, k_s]$,

•
$$\mathbf{r}^{(i)} = \mathbf{c}^{(i)} + \mathbf{e}^{(i)}$$
 for $i = 1, ..., s$.

Then, we can find a basis of the subspace containing all $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that their evaluation is in rank distance

$$\tau < \frac{s}{s+1} \cdot (n-k+1) = \frac{s}{s+1} \cdot d$$

to the received word with overall complexity at most $\mathcal{O}(s^3n^2)$.

- Maximum list size can be exponential: $\ell \leq q^{m(s-1)k}$
- Average list size (without transmitted codeword): $\overline{\ell} < 4 \left(q^{msk} 1\right) q^{(sm+n)\tau \tau^2 smn}$

Interpretation as Unique Decoder

- Decoding failure if rank of root-finding matrix is not full.
- In the other cases there is a unique solution!

Theorem (Unique Decoding of Interleaved Gabidulin Codes)

• Let
$$\mathbf{c}^{(i)} = f^{(i)}(oldsymbol{lpha})$$
 define $\operatorname{IGab}[s;n,k_1,\ldots,k_s]$,

•
$$\mathbf{r}^{(i)} = \mathbf{c}^{(i)} + \mathbf{e}^{(i)}$$
 for $i = 1, ..., s$.

Then, with probability at least

$$1 - 4q^{-m(s(n-k-\tau)-t+1)} \ge 1 - P_{f,LO},$$

we find a unique solution $f^{(1)}(x), \ldots, f^{(s)}(x)$ such that its evaluation is in rank distance

$$t \le \tau = \left\lfloor \frac{s}{s+1}(d-1) \right\rfloor$$

to the received word with overall complexity at most $\mathcal{O}(s^3n^2)$.

Example — Failure Probability and List Size

- Consider IGab $[s = 2; n = 7, k_1 = 2, k_2 = 2]$ code over \mathbb{F}_{2^7} . \implies BMD decoding: $\tau = \lfloor \frac{d-1}{2} \rfloor = 2$ \implies Interleaved decoding (for unique & list decoding): $\tau = 3$
- Simulated failure probability for 10^7 transmissions (any error matrix $\mathbf{E}_q \in \mathbb{F}_q^{sm \times n}$ of rank $\tau = 3$ is equal probable):

$$P(\operatorname{rk}(\mathbf{Q}) < sk) = P_f = P_{f,LO} = P_{f,SB} = 6.12 \cdot 10^{-5}.$$

• Upper bound on average list size:

$$\bar{\ell} < 1 + 6.104 \cdot 10^{-5}$$

• Upper bound on failure probability:

$$P_f \le 4q^{-m(s(n-k-\tau)-\tau+1)} = 2.44 \cdot 10^{-4}$$

Example — Failure Probability and List Size

- Consider IGab[$s = 2; n = 7, k_1 = 2, k_2 = 2$] code over \mathbb{F}_{2^7} . \implies BMD decoding: $\tau = \lfloor \frac{d-1}{2} \rfloor = 2$ \implies Interleaved decoding (for unique & list decoding): $\tau = 3$
- Simulated failure probability for 10^7 transmissions (any error matrix $\mathbf{E}_q \in \mathbb{F}_q^{sm \times n}$ of rank $\tau = 3$ is equal probable):

$$P(\operatorname{rk}(\mathbf{Q}) < sk) = P_f = P_{f,LO} = P_{f,SB} = 6.12 \cdot 10^{-5}.$$

• Upper bound on average list size:

$$\bar{\ell} < 1 + 6.104 \cdot 10^{-5}$$

• Upper bound on failure probability:

$$P_f \le 4q^{-m(s(n-k-\tau)-\tau+1)} = 2.44 \cdot 10^{-4}$$

Outline

Motivation: Network Coding and Interleaving

2 Rank Metric Codes

- Rank Metric
- Gabidulin Codes
- Interleaved Gabidulin Codes

3 Previous Work and Our Contribution

Interpolation-Based Decoding

- Overview and Idea
- Interpretation as List Decoder
- Interpretation as Unique Decoder

5 Conclusion and Outlook

Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

- ... can be used as unique decoder
 - $\bullet \, \, {\rm correcting} \, {\rm up} \, {\rm to} \, \left| \frac{s}{s+1} (d-1) \right| \, {\rm errors,}$
 - with probability at least $1 \vec{P}_{f,LO} \ge 1 4/q^m$,
 - with complexity $\mathcal{O}(n^2)$ over $\mathbb{F}_{q^m}.$
- ... or as a list decoder
 - $\bullet\,$ finding all words within distance $\tau < \frac{s}{s+1} \cdot d,$
 - with worst-case exponential complexity, but complexity $\mathcal{O}(n^2)$ for finding the basis for all solutions.

Outlook

- Use re-encoding to decrease complexity.
- Decoding usual Gabidulin code beyond half the minimum distance by virtual extension to an interleaved Gabidulin code.

Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

- ... can be used as unique decoder
 - correcting up to $\left|\frac{s}{s+1}(d-1)\right|$ errors,
 - with probability at least $1 \vec{P}_{f,LO} \geq 1 4/q^m$,
 - with complexity $\mathcal{O}(n^2)$ over $\mathbb{F}_{q^m}.$
- ... or as a list decoder
 - finding all words within distance $\tau < \frac{s}{s+1} \cdot d$,
 - with worst-case exponential complexity, but complexity $\mathcal{O}(n^2)$ for finding the basis for all solutions.

Outlook

• Use re-encoding to decrease complexity.

• Decoding usual Gabidulin code beyond half the minimum distance by virtual extension to an interleaved Gabidulin code.

Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

- ... can be used as unique decoder
 - $\bullet \,$ correcting up to $\left| \frac{s}{s+1} (d-1) \right|$ errors,
 - with probability at least $1 \vec{P}_{f,LO} \geq 1 4/q^m$,
 - with complexity $\mathcal{O}(n^2)$ over $\mathbb{F}_{q^m}.$
- ... or as a list decoder
 - finding all words within distance $\tau < \frac{s}{s+1} \cdot d$,
 - with worst-case exponential complexity, but complexity $\mathcal{O}(n^2)$ for finding the basis for all solutions.

Outlook

- Use re-encoding to decrease complexity.
- Decoding usual Gabidulin code beyond half the minimum distance by virtual extension to an interleaved Gabidulin code.

...for your attention!