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Non-Coherent Random Linear Network Coding

Non-coherent network coding:
internal structure unknown

Packets: vectors over finite field

Nodes build outgoing packets as
random linear combinations of
incoming packets

=⇒ Higher throughput than routing!
=⇒ BUT: Mixing of packets results in

high error propagation

Source

Error

Sink
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Lifting Construction

Kötter & Kschischang (2008); Silva, Kschischang & Kötter (2008):
Error control in RLNC based on lifted Gabidulin codes.

Lifted Gabidulin Code

Transmit basis of subspace

The matrix C is a codeword of
Gab[n, k]

Identity matrix is necessary to
“identify” linear combinations
of the network

I CT

BUT: Additional overhead due to identity matrix.
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Lifting Construction with Interleaving

Interleaved Gabidulin codes relatively reduce this overhead!

Lifted Interleaved Gabidulin Code

I CT
1 CT

2
. . . CT

s

def
= CT , where C ∈ IGab[s;n, k1, . . . , ks]

Transmit basis of subspace

Ci are a codewords of Gab[n, ki]

CT def
=
(
CT

1 CT
2 . . . CT

s

)
, where C ∈ IGab[s;n, k1, . . . , ks]

(Relatively) less additional overhead due to identity matrix.
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Rank Metric

Rank Metric

Let B be a basis of Fqm over Fq where q is a power of a prime

One-to-one mapping between x ∈ Fnqm and X ∈ Fm×nq

Rank norm: rk(x)
def
= rank of X over Fq

Minimum Rank Distance of a block code C with c(i) ∈ Fnqm :

d
def
= min{rk(c(1) − c(2)) | c(1), c(2) ∈ C, c(1) 6= c(2)}

Codes over Fqm of cardinality M = qmin{n(m−d+1),m(n−d+1)}

are called Maximum Rank Distance (MRD) codes.

For linear codes:

d
def
= min {rk(c) | c ∈ C, c 6= 0} ≤ n− k + 1
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Linearized Polynomials

Linearized Polynomial

f(x)
def
=

df∑
i=0

fix
[i] =

df∑
i=0

fix
qi with fi ∈ Fqm

If fdf 6= 0, define the q-degree: degq f(x) = df

Use usual addition and non-commutative composition f(g(x))
 Non-commutative ring of linearized polynomials Lqm [x]

Multi-variate Linearized Polynomials

f(x, y1, . . . , ys)
def
= f (0)(x) + f (1)(y1) + · · ·+ f (s)(ys), where

f (i)(x) ∈ Lqm [x] for all i

No “mixed” terms!

Multi-variate non-commutative ring of linearized polynomials:
Lqm [x, y1, . . . , ys]
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Gabidulin Codes

Introduced by Delsarte (1978), Gabidulin (1985), Roth (1991).

Definition (Gabidulin Code)

A linear Gabidulin code Gab[n, k] over Fqm of length n ≤ m and
dimension k ≤ n is defined by:

Gab[n, k]
def
=
{
(f(α0) f(α1) . . . f(αn−1)) =f(α)

∣∣
degq f(x) < k, f(x) ∈ Lqm [x]

}
,

where the fixed elements α0, α1, . . . , αn−1 ∈ Fqm are linearly
independent over Fq.

Minimum rank distance of a Gabidulin code:
d = min{rank(c) | c ∈ Gab[n, k], c 6= 0} = n− k + 1.

=⇒ Gabidulin codes are MRD codes.
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Interleaved Gabidulin Codes

Definition (Interleaved Gabidulin Code)

A linear (vertically) interleaved Gabidulin
code over Fqm of length n ≤ m, elementary
dimensions k1, . . . , ks and interleaving order
s is defined by

IGab[s;n, k1, . . . , ks]
def
=



c(1)

c(2)

...
c(s)

=

f (1)(α)
f (2)(α)

...
f (s)(α)


,

where

degq f
(i)(x) < ki ≤ n,

f (i)(x) ∈ Lqm [x] for i = 1, . . . , s,

rk(α = (α0 α1 . . . αn−1)) = n.

c(1)

c(2)
...

c(s)

7→
C(2)

C(1)

...

C(s)

∈ Fsm×nq∈ Fs×nqm

11/25



Interleaved Gabidulin Codes

Definition (Interleaved Gabidulin Code)

A linear (vertically) interleaved Gabidulin
code over Fqm of length n ≤ m, elementary
dimensions k1, . . . , ks and interleaving order
s is defined by

IGab[s;n, k1, . . . , ks]
def
=



c(1)

c(2)

...
c(s)

=

f (1)(α)
f (2)(α)

...
f (s)(α)


,

where

degq f
(i)(x) < ki ≤ n,

f (i)(x) ∈ Lqm [x] for i = 1, . . . , s,

rk(α = (α0 α1 . . . αn−1)) = n.

c(1)

c(2)
...

c(s)

7→
C(2)

C(1)

...

C(s)

∈ Fsm×nq∈ Fs×nqm

11/25



Error Model

“Number” of errors t:

e(1)

e(2)
...

e(s)

t
def
= rk

def
= rk E(2)

E(1)

...

E(s)

∈ Fsm×nq∈ Fs×nqm

All e(i) lie in the same
rowspace!

Corresponds to s key
equations with the same
error span polynomial

=⇒ This can be used in
the decoding process!
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Previous Work

Loidreau & Overbeck (2006): Unique decoding of
interleaved Gabidulin codes:

by solving a linear system of equations,

up to τ ≤
⌊

s
s+1 (d− 1)

⌋
errors w.h.p.,

complexity O(n3),
upper bound on the failure probability: Pf,LO ≤ 4/qm.

Sidorenko & Bossert (2010): Unique decoding of
interleaved Gabidulin codes:

by linearized shift-register synthesis,

up to τ ≤
⌊

s
s+1 (d− 1)

⌋
errors w.h.p.,

complexity O(n2),
improved upper bound on the failure probability.
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Our Contribution

We use an interpolation-based decoding algorithm...

... for unique decoding of interleaved Gabidulin codes:

up to τ ≤
⌊

s
s+1 (d− 1)

⌋
errors w.h.p,

complexity O(n2),
failure probability: Pf ≤ Pf,LO ≤ 4/qm

... for list decoding of interleaved Gabidulin codes:

finds the list of all codewords within distance τ < s
s+1 · d,

basis of this list can be found with complexity O(n2),
list size can be exponential in n,

average list size: ` < 1 + 4
(
qm

∑s
i=1 ki − 1

)
q(sm+n)τ−τ2−smn.
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Overview and Idea of Decoder

Let

 r(1)=(r
(1)
0 r

(1)
1 ... r

(1)
n−1)

...
r(s)=(r

(s)
0 r

(s)
1 ... r

(s)
n−1)

 ∈ Fs×nqm be the received word

1 Interpolation:
Find non-zero (s+1)-variate linearized polynomial of the form
Q(x, y1, . . . , ys) = Q0(x) +Q1(y1)+ · · ·+Qs(ys) such that

Q(αi, r
(1)
i , . . . , r

(s)
i ) = 0, for i = 0, . . . , n− 1,

degq Q0(x) < n− τ ,
degq Qi(yi) < n− τ − (ki − 1), for i = 1, . . . , s.

2 Root-finding:
Find all tuples of polynomials f (1)(x), . . . , f (s)(x) such that
Q
(
x, f (1)(x), . . . , f (s)(x)

)
= 0.

For simplicity, consider only ki = k, for i = 1, . . . , s in this talk.
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Interpolation-Step

Lemma (Interpolation)

There exists a non-zero Q(x, y1, . . . , ys), fulfilling the interpolation
conditions if

τ <
s

s+ 1
· (n− k + 1) =

s

s+ 1
· d

Calculating Q(x, y1, . . . , ys) is a linear system of equations

Complexity:

with Gaussian elimination: O(sn3)
with the approach by Xie, Yan & Suter (2011): O(s2n(n− τ))

We use a basis of the solution space for the root-finding step
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Root-Finding Step

Theorem (Root-Finding)

Let rk(Eq) ≤ τ , where τ < s
s+1 · d and let Q(x, y1, . . . , ys) fulfill

the interpolation constraints. Then,

Q
(
x, f (1)(x), . . . , f (s)(x)

)
= 0.

This is a linear system of equations over Fqm in the
coefficients of f (1)(x), . . . , f (s)(x)

Similar to

Guruswami & Wang (2012) for folded/derivative RS codes
Mahdavifar & Vardy (2012) for folded Gabidulin codes

Use basis for all Q(x, y1, . . . , ys) for the root-finding step

Complexity (recursive calculation): O(s3k2)
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Interpretation as List Decoder

Theorem (List Decoding of Interleaved Gabidulin Codes)

Let c(i) = f (i)(α) define IGab[s;n, k1, . . . , ks],

r(i) = c(i) + e(i) for i = 1, . . . , s.

Then, we can find a basis of the subspace containing all
f (1)(x), . . . , f (s)(x) such that their evaluation is in rank distance

τ <
s

s+ 1
· (n− k + 1) =

s

s+ 1
· d

to the received word with overall complexity at most O(s3n2).

Maximum list size can be exponential: ` ≤ qm(s−1)k

Average list size (without transmitted codeword):
` < 4

(
qmsk − 1

)
q(sm+n)τ−τ2−smn
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Interpretation as Unique Decoder

Decoding failure if rank of root-finding matrix is not full.

In the other cases there is a unique solution!

Theorem (Unique Decoding of Interleaved Gabidulin Codes)

Let c(i) = f (i)(α) define IGab[s;n, k1, . . . , ks],

r(i) = c(i) + e(i) for i = 1, . . . , s.

Then, with probability at least

1− 4q−m(s(n−k−τ)−t+1) ≥ 1− Pf,LO,

we find a unique solution f (1)(x), . . . , f (s)(x) such that its
evaluation is in rank distance

t ≤ τ =

⌊
s

s+ 1
(d− 1)

⌋
to the received word with overall complexity at most O(s3n2).
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Example — Failure Probability and List Size

Consider IGab[s = 2;n = 7, k1 = 2, k2 = 2] code over F27 .
=⇒ BMD decoding: τ =

⌊
d−1
2

⌋
= 2

=⇒ Interleaved decoding (for unique & list decoding): τ = 3

Simulated failure probability for 107 transmissions (any error
matrix Eq ∈ Fsm×nq of rank τ = 3 is equal probable):

P
(
rk(Q) < sk

)
= Pf = Pf,LO = Pf,SB = 6.12 · 10−5.

Upper bound on average list size:

` < 1 + 6.104 · 10−5

Upper bound on failure probability:

Pf ≤ 4q−m(s(n−k−τ)−τ+1) = 2.44 · 10−4
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Conclusion and Outlook

Conclusion

Interpolation based decoding of interleaved Gabidulin codes:

... can be used as unique decoder

correcting up to
⌊

s
s+1 (d− 1)

⌋
errors,

with probability at least 1− Pf,LO ≥ 1− 4/qm,
with complexity O(n2) over Fqm .

... or as a list decoder

finding all words within distance τ < s
s+1 · d,

with worst-case exponential complexity, but complexity O(n2)
for finding the basis for all solutions.

Outlook

Use re-encoding to decrease complexity.

Decoding usual Gabidulin code beyond half the minimum
distance by virtual extension to an interleaved Gabidulin code.
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Thank you...

...for your attention!
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