List Decoding of Lifted Gabidulin Codes via the Plücker Embedding

Anna-Lena Trautmann
Institute of Mathematics
University of Zurich
WCC in Bergen, Norway April 19th, 2013

joint work with Natalia Silberstein and Joachim Rosenthal

Outline

(1) Constant Dimension Codes
(2) The Plücker Embedding

- Balls inside $\mathcal{G}_{q}(k, n)$
- Lifted MRD Codes
- A First List Decoding Algorithm
(3) Conclusion

Definition

- The Grassmannian $\mathcal{G}_{q}(k, n)$ is the set of all k-dimensional subspaces of \mathbb{F}_{q}^{n}.
- A constant dimension code $(C D C)$ is a subset of $\mathcal{G}_{q}(k, n)$.

Definition

- The Grassmannian $\mathcal{G}_{q}(k, n)$ is the set of all k-dimensional subspaces of \mathbb{F}_{q}^{n}.
- A constant dimension code $(C D C)$ is a subset of $\mathcal{G}_{q}(k, n)$.

Definition

- The subspace distance d_{S} is a metric on $\mathcal{G}_{q}(k, n)$:

$$
d_{S}(\mathcal{U}, \mathcal{V}):=2 k-2 \operatorname{dim}(\mathcal{U} \cap \mathcal{V})
$$

- The minimum distance of a $\mathrm{CDC} \mathcal{C} \subseteq \mathcal{G}_{q}(k, n)$ is

$$
d_{S}(\mathcal{C}):=\min \left\{d_{S}(\mathcal{U}, \mathcal{V}) \mid \mathcal{U}, \mathcal{V} \in \mathcal{C}, \mathcal{U} \neq \mathcal{V}\right\}
$$

Definition

- The Grassmannian $\mathcal{G}_{q}(k, n)$ is the set of all k-dimensional subspaces of \mathbb{F}_{q}^{n}.
- A constant dimension code $(C D C)$ is a subset of $\mathcal{G}_{q}(k, n)$.

Definition

- The subspace distance d_{S} is a metric on $\mathcal{G}_{q}(k, n)$:

$$
d_{S}(\mathcal{U}, \mathcal{V}):=2 k-2 \operatorname{dim}(\mathcal{U} \cap \mathcal{V})
$$

- The minimum distance of a $\operatorname{CDC} \mathcal{C} \subseteq \mathcal{G}_{q}(k, n)$ is

$$
d_{S}(\mathcal{C}):=\min \left\{d_{S}(\mathcal{U}, \mathcal{V}) \mid \mathcal{U}, \mathcal{V} \in \mathcal{C}, \mathcal{U} \neq \mathcal{V}\right\}
$$

Constant dimension codes (or subspace codes in general) can be used in random network coding, distributed storage, storage of biometric data etc.

Let $\mathcal{U} \in \mathcal{C} \subseteq \mathcal{G}_{q}(k, n)$ be a sent word and $\mathcal{R}=\overline{\mathcal{U}} \oplus \mathcal{E}$ be the received vector space.

Definition

- A minimum distance decoder outputs the unique word of \mathcal{C} that is closest to \mathcal{R}, if it exists:

$$
M D D_{\mathcal{C}}(\mathcal{R}):=\operatorname{argmin}\left\{d_{S}(\mathcal{V}, \mathcal{R}) \mid \mathcal{V} \in \mathcal{C}\right\}
$$

Let $\mathcal{U} \in \mathcal{C} \subseteq \mathcal{G}_{q}(k, n)$ be a sent word and $\mathcal{R}=\overline{\mathcal{U}} \oplus \mathcal{E}$ be the received vector space.

Definition

- A minimum distance decoder outputs the unique word of \mathcal{C} that is closest to \mathcal{R}, if it exists:

$$
M D D_{\mathcal{C}}(\mathcal{R}):=\operatorname{argmin}\left\{d_{S}(\mathcal{V}, \mathcal{R}) \mid \mathcal{V} \in \mathcal{C}\right\}
$$

- A (complete) list decoder outputs the complete list of words of \mathcal{C} that are within a given radius t to \mathcal{R} :

$$
L D_{\mathcal{C}}(\mathcal{R}, t):=\left\{\mathcal{V} \in \mathcal{C} \mid d_{S}(\mathcal{V}, \mathcal{R}) \leq t\right\}
$$

Let $\mathcal{U} \in \mathcal{C} \subseteq \mathcal{G}_{q}(k, n)$ be a sent word and $\mathcal{R}=\overline{\mathcal{U}} \oplus \mathcal{E}$ be the received vector space.

Definition

- A minimum distance decoder outputs the unique word of \mathcal{C} that is closest to \mathcal{R}, if it exists:

$$
M D D_{\mathcal{C}}(\mathcal{R}):=\operatorname{argmin}\left\{d_{S}(\mathcal{V}, \mathcal{R}) \mid \mathcal{V} \in \mathcal{C}\right\}
$$

- A (complete) list decoder outputs the complete list of words of \mathcal{C} that are within a given radius t to \mathcal{R} :

$$
L D_{\mathcal{C}}(\mathcal{R}, t):=\left\{\mathcal{V} \in \mathcal{C} \mid d_{S}(\mathcal{V}, \mathcal{R}) \leq t\right\}
$$

- List decoding for classical Reed-Solomon codes: Sudan, Guruswami
- List decoding for subcodes (!) of lifted Gabidulin codes: Mahdavifar and Vardy; Guruswami and Xing; Guruswami, Narayanan and Wang

(1) Constant Dimension Codes

(2) The Plücker Embedding

- Balls inside $\mathcal{G}_{q}(k, n)$
- Lifted MRD Codes
- A First List Decoding Algorithm

The maximal minors of a matrix representation of a subspace constitute the Plücker coordinates of the subspace:

Theorem

The map

$$
\begin{aligned}
\varphi: \mathcal{G}_{q}(k, n) & \longrightarrow \mathbb{P}^{\binom{n}{k}-1} \\
\operatorname{rowspace}(U) & \longmapsto\left[M_{1, \ldots, k}(U): \ldots: M_{n-k+1, \ldots, n}(U)\right] .
\end{aligned}
$$

is an embedding of the Grassmannian $\mathcal{G}_{q}(k, n)$. It is called the Plücker embedding of $\mathcal{G}_{q}(k, n)$.

The maximal minors of a matrix representation of a subspace constitute the Plücker coordinates of the subspace:

Theorem

The map

$$
\begin{aligned}
\varphi: \mathcal{G}_{q}(k, n) & \longrightarrow \mathbb{P}\binom{n}{k}-1 \\
\operatorname{rowspace}(U) & \longmapsto\left[M_{1, \ldots, k}(U): \ldots: M_{n-k+1, \ldots, n}(U)\right] .
\end{aligned}
$$

is an embedding of the Grassmannian $\mathcal{G}_{q}(k, n)$. It is called the Plücker embedding of $\mathcal{G}_{q}(k, n)$.

Plücker coordinates in $\mathcal{G}_{q}(2,4)$

$$
\begin{gathered}
U=\left[\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right], \quad M_{i, j}:=a_{i} b_{j}-a_{j} b_{i} \\
\varphi(\operatorname{rs}(U))=\left[M_{1,2}: M_{1,3}: M_{1,4}: M_{2,3}: M_{2,4}: M_{3,4}\right] \in \mathbb{P}^{5}
\end{gathered}
$$

Theorem

The Plücker embedded Grassmannian $\mathcal{G}_{q}(k, n)$ forms a variety in $\mathbb{P}^{\binom{n}{k}-1 \text {. The shuffle relations (or straightening syzygies) }}$ form a (minimal Gröbner) basis for this variety.

Theorem

The Plücker embedded Grassmannian $\mathcal{G}_{q}(k, n)$ forms a variety in $\mathbb{P}^{\binom{n}{k}-1}$. The shuffle relations (or straightening syzygies) form a (minimal Gröbner) basis for this variety.

Basis of $\mathcal{G}_{q}(2,4)$:

$$
M_{1,2} M_{3,4}-M_{1,3} M_{2,4}+M_{1,4} M_{2,3}=0
$$

$\Longrightarrow u=[1: 0: 1: 0: 1: 0]$ fulfills this equation, indices 12:13 : $14: 23: 24: 34$

$$
\varphi^{-1}(u)=\mathrm{rs}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Theorem

The Plücker embedded Grassmannian $\mathcal{G}_{q}(k, n)$ forms a variety in $\mathbb{P}^{\binom{n}{k}-1 \text {. The shuffle relations (or straightening syzygies) }}$ form a (minimal Gröbner) basis for this variety.

Basis of $\mathcal{G}_{q}(2,4)$:

$$
M_{1,2} M_{3,4}-M_{1,3} M_{2,4}+M_{1,4} M_{2,3}=0
$$

$\Longrightarrow u=[1: 0: 1: 0: 1: 0]$ fulfills this equation, indices 12:13:14:23:24:34

$$
\varphi^{-1}(u)=\mathrm{rs}\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

$v=[1: 1: 1: 0: 1: 0]$ does not fulfill this equation, hence it is not the Plücker coordinates of some subspace.

Basis of $\mathcal{G}_{q}(2,5)$:

$$
\begin{aligned}
& M_{1,2} M_{3,4}-M_{1,3} M_{2,4}+M_{1,4} M_{2,3}=0 \\
& M_{1,2} M_{3,5}-M_{1,3} M_{2,5}+M_{1,5} M_{2,3}=0 \\
& M_{1,2} M_{4,5}-M_{1,4} M_{2,5}+M_{1,5} M_{2,4}=0 \\
& M_{1,3} M_{4,5}-M_{1,4} M_{3,5}+M_{1,5} M_{3,4}=0 \\
& M_{2,3} M_{4,5}-M_{2,4} M_{3,5}+M_{2,5} M_{3,4}=0
\end{aligned}
$$

$$
\begin{aligned}
& \varphi^{-1}([0: 0: 0: 0: 1: 2: 1:-1:-2:-3])=\operatorname{rs}\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 & 1
\end{array}\right] . \\
& \text { indices } 12: 13: 14: 15: 23: 24: 25: 34: 35: 45
\end{aligned}
$$

Theorem

The balls $B_{2 t}(\mathcal{U})$ of radius $2 t$ (w.r.t. the subspace distance) around some $\mathcal{U} \in \mathcal{G}_{q}(k, n)$ can be described by linear equations in the Plücker embedding.

Theorem

The balls $B_{2 t}(\mathcal{U})$ of radius $2 t$ (w.r.t. the subspace distance) around some $\mathcal{U} \in \mathcal{G}_{q}(k, n)$ can be described by linear equations in the Plücker embedding.

Example in $\mathcal{G}_{2}(2,4)$

- Let $U_{0}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$ and $t=1$. Then

$$
B_{2}\left(\operatorname{rs}\left(U_{0}\right)\right)=\left\{\mathcal{V} \in \mathcal{G}_{2}(2,4) \mid M_{3,4}(V)=0\right\}
$$

- Let $U=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$. Then $B_{2}(\operatorname{rs}(U))=$

$$
\left\{\mathcal{V} \in \mathcal{G}_{2}(2,4) \mid M_{1,2}(V)+M_{1,4}(V)+M_{2,3}(V)+M_{3,4}(V)=0\right\}
$$

We can describe the balls in the Grassmannian as varieties in the Plücker embedding.

Question: Can we describe CDCs as varieties in the Plücker embedding?

We can describe the balls in the Grassmannian as varieties in the Plücker embedding.

Question: Can we describe CDCs as varieties in the Plücker embedding?

Answer: Yes, for lifted MRD codes!

Definition

An $[m \times n, \delta]_{q^{-}} M R D$ code is a subspace of $\mathbb{F}_{q}^{m \times n}$ such that $\operatorname{rank}(A-B) \geq \delta$ for all A, B in the code, of dimension $\max (m, n)(\min (m, n)-\delta+1)$.

Definition

An $[m \times n, \delta]_{q^{-}} M R D$ code is a subspace of $\mathbb{F}_{q}^{m \times n}$ such that $\operatorname{rank}(A-B) \geq \delta$ for all A, B in the code, of dimension $\max (m, n)(\min (m, n)-\delta+1)$.

Theorem

If C is an $[k \times(n-k), \delta]_{q}-M R D$ code (where $\left.k \leq n-k\right)$, then the lifted MRD (LMRD) code

$$
\mathcal{C}=\left\{\operatorname{rs}\left[I_{k} A\right] \mid A \in C\right\} \in \mathcal{G}_{q}(k, n)
$$

is a constant dimension code with minimum subspace distance 2δ and cardinality $q^{(n-k)(k-\delta+1)}$.

Gabidulin's $m \times n$ MRD construction $(n \leq m)$:
Take n linearly independent elements of $\mathbb{F}_{q^{m}}: g_{1}, \ldots, g_{n}$.
Construct a block code over $\mathbb{F}_{q^{m}}$ with generator matrix

$$
\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
g_{1}^{q} & g_{2}^{q} & \cdots & g_{n}^{q} \\
\vdots & & & \\
g_{1}^{q^{n-\delta}} & g_{2}^{q^{n-\delta}} & \cdots & g_{n}^{q^{n-\delta}}
\end{array}\right)
$$

and expand all coordinates as column vectors with $\mathbb{F}_{q^{m}} \cong \mathbb{F}_{q}^{m}$.

Gabidulin's $m \times n$ MRD construction $(n \leq m)$:
Take n linearly independent elements of $\mathbb{F}_{q^{m}}: g_{1}, \ldots, g_{n}$.
Construct a block code over $\mathbb{F}_{q^{m}}$ with generator matrix

$$
\left(\begin{array}{cccc}
g_{1} & g_{2} & \ldots & g_{n} \\
g_{1}^{q} & g_{2}^{q} & \ldots & g_{n}^{q} \\
\vdots & & & \\
g_{1}^{q^{n-\delta}} & g_{2}^{q^{n-\delta}} & \ldots & g_{n}^{q^{n-\delta}}
\end{array}\right)
$$

and expand all coordinates as column vectors with $\mathbb{F}_{q^{m}} \cong \mathbb{F}_{q}^{m}$.

2×2 MRD code with $\delta=2$

Let $\mathbb{F}_{2^{2}}=\mathbb{F}_{2}[\alpha]$ (i.e. $\alpha^{2}+\alpha+1=0$) and consider the generator matrix $\left(\begin{array}{ll}1 & \alpha\end{array}\right)$.
block code: $\left\{(0,0), \quad(1, \alpha), \quad\left(\alpha, \alpha^{2}\right), \quad\left(\alpha^{2}, \alpha^{3}\right)\right\}$
MRD code: $\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\right\}$

Plücker coordinates of lifted MRD codes:

Theorem

The restriction of the set of Plücker coordinates of a lifted MRD code $\mathcal{C} \in \mathcal{G}_{q}(k, n)$ with minimum distance δ to the set of the second to the $k(n-k)+1$ th coordinate forms a linear code C^{p} over \mathbb{F}_{q} of length $k(n-k)$, dimension $(n-k)(k-\delta+1)$ and minimum distance $d_{\min } \geq \delta$.

Example in $\mathcal{G}_{2}(2,4)$ with $\delta=2$

Gabidulin	lifting	Plücker coordinates
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$	$[1: 0: 0: 0: 0: 0]$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$	$[1: 1: 0: 0: 1: 1]$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right)$	$[1: 0: 1: 1: 1: 1]$
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$	$[1: 1: 1: 1: 0: 1]$

Example in $\mathcal{G}_{2}(2,4)$ with $\delta=2$

Gabidulin	lifting	Plücker coordinates
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$	$[1: 0: 0: 0: 0: 0]$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$	$[1: 1: 0: 0: 1: 1]$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right)$	$[1: 0: 1: 1: 1: 1]$
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$	$[1: 1: 1: 1: 0: 1]$

parity-check matrix: $H^{p}=\left(\begin{array}{cccc}1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$ equations that describe the lifted Gabidulin code: $M_{1,2}=1, M_{1,4}+M_{2,3}=0$, and $M_{1,3}+M_{2,3}+M_{2,4}=0$

The algorithm

Input: \mathcal{R}, t
(1) Find the equations defining $B_{2 t}(\mathcal{R})$ in the Plücker coordinates.
(2) Solve the system of equations, that arise from $\bar{M} \bar{H}^{p}=0$, together with the equations of $B_{2 t}(\mathcal{R})$, the shuffle relations and the equation $M_{1, \ldots, k}=1$.
Output: The solutions $\bar{M}=\left[M_{1 \ldots k}: \ldots: M_{n-k+1 \ldots n}\right]$ of this system of equations.

Example

Consider the code from the Example before. We would like to decode up to radius 2. Assume we received

$$
\mathcal{R}_{1}=\operatorname{rs}\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Equations for the ball:

$$
B_{2}\left(\mathcal{R}_{1}\right)=\left\{\mathcal{V}=\operatorname{rs}(V) \in \mathcal{G}_{2}(2,4) \mid M_{1,4}(V)+M_{2,3}(V)=0\right\} .
$$

System of linear equations to solve:

$$
\begin{aligned}
M_{14}+M_{23} & =0 \\
M_{13}+M_{14}+M_{24} & =0 \\
M_{12}+M_{23} & =0 \\
M_{12} & =1
\end{aligned}
$$

The Plücker Embedding
A First List Decoding Algorithm

Example

This system has the two solutions $(1,1,1,0)$ and $(0,1,1,1)$ for $\left(M_{13}, M_{14}, M_{23}, M_{24}\right)$.

Gabidulin	lifting	Plücker coordinates
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$	$[1: 0: 0: 0: 0: 0]$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 & 1\end{array}\right)$	$[1: 1: 0: 0: 1: 1]$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right)$	$[1: 0: 1: 1: 1: 1]$
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$	$[1: 1: 1: 1: 0: 1]$

Example

This system has the two solutions $(1,1,1,0)$ and $(0,1,1,1)$ for $\left(M_{13}, M_{14}, M_{23}, M_{24}\right)$.

Gabidulin	lifting	Plücker coordinates
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$	$[1: 0: 0: 0: 0: 0]$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$	$[1: 1: 0: 0: 1: 1]$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$	$[1: 0: 1: 1: 1: 1]$
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$	$[1: 1: 1: 1: 0: 1]$

Verify with $\mathcal{R}_{1}=\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

Example

Now assume we received

$$
\mathcal{R}_{2}=\operatorname{rs}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

As previously, we compute $B_{2}\left(\mathcal{R}_{1}\right)=\left\{\mathcal{V}=\operatorname{rs}(V) \in \mathcal{G}_{2}(2,4) \mid\right.$ $\left.M_{1,2}(V)+M_{1,3}(V)+M_{2,3}(V)+M_{2,4}(V)+M_{3,4}(V)=0\right\}$. Combining with the parity check equations and the shuffle relation we obtain the following system of equations to solve:

$$
\begin{aligned}
M_{13}+M_{14}+M_{24} & =0 \\
M_{14}+M_{23} & =0 \\
M_{12}+M_{13}+M_{23}+M_{24}+M_{34} & =0 \\
M_{12} M_{34}+M_{13} M_{24}+M_{14} M_{23} & =0 \\
M_{12} & =1
\end{aligned}
$$

The Plücker Embedding
A First List Decoding Algorithm

Example

This system has three solutions $(1,0,0,1),(0,1,1,1)$, and $(1,1,1,0)$ for $\left(M_{13}, M_{14}, M_{23}, M_{24}\right)$.

Gabidulin	lifting	Plücker coordinates
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$	$[1: 0: 0: 0: 0: 0]$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 \\ 0 & 1 & 1\end{array}\right)$	$[1: 1: 0: 0: 1: 1]$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right)$	$[1: 0: 1: 1: 1: 1]$
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$	$[1: 1: 1: 1: 0: 1]$

Example

This system has three solutions $(1,0,0,1),(0,1,1,1)$, and $(1,1,1,0)$ for $\left(M_{13}, M_{14}, M_{23}, M_{24}\right)$.

Gabidulin	lifting	Plücker coordinates
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$	[1:0:0:0:0:0]
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$	[1:1:0:0:1:1]
$\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1\end{array}\right)$	$[1: 0: 1: 1: 1: 1]$
$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$	$\operatorname{rs}\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)$	$[1: 1: 1: 1: 0: 1]$

Verify with $\mathcal{R}_{2}=\operatorname{rs}\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1\end{array}\right)$.

Complexity Estimates:

- Number of variables : $\binom{n}{k}$
- Number of linear equations from the ball:

$$
\sum_{l=0}^{k-t-1}\binom{n-k}{k-l}\binom{k}{l}=\binom{n}{k}-\sum_{l=k-e}^{k}\binom{n-k}{k-l}\binom{k}{l}
$$

- Number of linear equations from the LMRD code : $(\delta-1)(n-k)(+1$ for the identity part)
- Number of bilinear shuffle relations : $\binom{n}{2 k}$

Complexity Estimates:

- Number of variables: $\binom{n}{k}$
- Number of linear equations from the ball:

$$
\sum_{l=0}^{k-t-1}\binom{n-k}{k-l}\binom{k}{l}=\binom{n}{k}-\sum_{l=k-e}^{k}\binom{n-k}{k-l}\binom{k}{l}
$$

- Number of linear equations from the LMRD code : $(\delta-1)(n-k)(+1$ for the identity part)
- Number of bilinear shuffle relations : $\binom{n}{2 k}$

Using all equations and variables $\rightarrow \mathcal{O}\left(n^{x \cdot k}\right) \quad(x \geq 3)$

(1) Constant Dimension Codes

(2) The Plücker Embedding

- Balls inside $\mathcal{G}_{q}(k, n)$
- Lifted MRD Codes
- A First List Decoding Algorithm
(3) Conclusion
- We showed how to embed $\mathcal{G}_{q}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$ and that it forms a variety (with bilinear equations) in the embedding.
- We showed how to embed $\mathcal{G}_{q}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$ and that it forms a variety (with bilinear equations) in the embedding.
- The balls $B_{2 t}(\mathcal{U})$ can be described by linear equations in the Plücker embedding.
- We showed how to embed $\mathcal{G}_{q}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$ and that it forms a variety (with bilinear equations) in the embedding.
- The balls $B_{2 t}(\mathcal{U})$ can be described by linear equations in the Plücker embedding.
- Lifted MRD codes can be described by linear equations in the Plücker embedding.
- We showed how to embed $\mathcal{G}_{q}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$ and that it forms a variety (with bilinear equations) in the embedding.
- The balls $B_{2 t}(\mathcal{U})$ can be described by linear equations in the Plücker embedding.
- Lifted MRD codes can be described by linear equations in the Plücker embedding.
- Solving all these equations describes a list decoding algorithm of lifted MRD codes (not only for subcodes of lifted Gabidulin codes).
- We showed how to embed $\mathcal{G}_{q}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$ and that it forms a variety (with bilinear equations) in the embedding.
- The balls $B_{2 t}(\mathcal{U})$ can be described by linear equations in the Plücker embedding.
- Lifted MRD codes can be described by linear equations in the Plücker embedding.
- Solving all these equations describes a list decoding algorithm of lifted MRD codes (not only for subcodes of lifted Gabidulin codes).
- Algorithm can be extended to multi-component lifted MRD codes, and to received spaces of different dimension.
- We showed how to embed $\mathcal{G}_{q}(k, n)$ into $\mathbb{P}^{\binom{n}{k}-1}$ and that it forms a variety (with bilinear equations) in the embedding.
- The balls $B_{2 t}(\mathcal{U})$ can be described by linear equations in the Plücker embedding.
- Lifted MRD codes can be described by linear equations in the Plücker embedding.
- Solving all these equations describes a list decoding algorithm of lifted MRD codes (not only for subcodes of lifted Gabidulin codes).
- Algorithm can be extended to multi-component lifted MRD codes, and to received spaces of different dimension.
- Work in progress:
- Reduce the number of equations and variables needed for the algorithm.
- Similar algorithm for other families of codes.

Thank you for your attention!

Takk!

