On Transform-domain Decoding of Gabidulin Codes

Wenhui Li, Vladimir Sidorenko, Di Chen

Institute of Communications Engineering, Ulm University
WCC, Bergen, April 19, 2013

Abstract

- For a Gabidulin code, we propose a transform-domain algorithm correcting both errors and erasures.
- The transform-domain approach allows to simplify derivations, proofs, and decoding algorithms.
- We generalize this algorithm for interleaved Gabidulin codes.

Outline

(1) Introduction
(2) Definitions

3 Decoding a single Gabidulin code

4 Decoding of interleaved Gabidulin codes

Outline

(2) Definitions

(3) Decoding a single Gabidulin code

4 Decoding of interleaved Gabidulin codes

Gabidulin codes

Gabidulin code $\mathcal{G}\left(q^{m} ; n, k\right)$ is a linear (n, k) code of length n and dimension k over the field $\mathbb{F}=\mathbb{F}_{q^{m}}, n \leq m$.

Codewords in vector form: $c=\left(\begin{array}{ccc}c_{1} & \ldots & c_{n}\end{array}\right), \quad c_{i} \in \mathbb{F}_{q^{m}}$
Codewords in matrix form: $C=\left(\begin{array}{ccc}c_{11} & \ldots & c_{1 n} \\ \vdots & \vdots & \vdots \\ c_{m 1} & \ldots & c_{m n}\end{array}\right), \quad c_{i j} \in \mathbb{F}_{q}$

Rank metric

For $a, b, c \in \mathbb{F}_{q^{m}}^{n}$
rank norm: $\operatorname{rank}_{q} c \triangleq \operatorname{rank} C$ rank distance: $\quad d(a, b) \triangleq \operatorname{rank}_{q}(a-b)$

For Gabidulin code $\mathcal{G}\left(q^{m} ; n, k\right)$
Code distance $d=n-k+1$ achieves the Singleton type bound Channel: $\quad e=r-c, \quad \tau=\operatorname{rank}_{q} e$

If $d(r, c)=\tau<d / 2$ then the error vector e will be corrected by a BMD decoder with complexity $\mathcal{O}\left(m^{2}\right)$ operations in $\mathbb{F}_{q^{m}}$

- "Standard" decoders: Gabidulin 1985, Roth 1991 Paramonov-Tretjakov 1991, Richter-Plass 2004
- Other decoders: Loidreau 2005, Wachter-Zeh et al. 2012

Rank metric

For $a, b, c \in \mathbb{F}_{q^{m}}^{n}$
rank norm: $\operatorname{rank}_{q} c \triangleq \operatorname{rank} C$
rank distance: $\quad d(a, b) \triangleq \operatorname{rank}_{q}(a-b)$

For Gabidulin code $\mathcal{G}\left(q^{m} ; n, k\right)$
Code distance $d=n-k+1$ achieves the Singleton type bound
Channel: $\quad e=r-c, \quad \tau=\operatorname{rank}_{q} e$
If $d(r, c)=\tau<d / 2$ then the error vector e will be corrected by a BMD decoder with complexity $\mathcal{O}\left(m^{2}\right)$ operations in $\mathbb{F}_{q^{m}}$

- "Standard" decoders: Gabidulin 1985, Roth 1991, Paramonov-Tretjakov 1991, Richter-Plass 2004
- Other decoders: Loidreau 2005, Wachter-Zeh et al. 2012

Motivation

Lifting construction for Network coding (Kötter-Kschischang 2008)

Codeword of the subspace code:

$$
V=\left(I_{m \times m}, C_{m \times n}\right)=\left(\begin{array}{ccc|ccc}
1 & & & c_{11} & \ldots & c_{1 n} \\
& \ddots & & \vdots & \vdots & \vdots \\
& & 1 & c_{m 1} & \ldots & c_{m n}
\end{array}\right)
$$

where $C \in \mathcal{G}\left(q^{m} ; n, k\right), m \geq n$.

To increase efficiency let us use interleaving of several Gabidulin codes

Motivation

Lifting construction for Network coding (Kötter-Kschischang 2008)

Codeword of the subspace code:

$$
V=\left(I_{m \times m}, C_{m \times n}\right)=\left(\begin{array}{ccc|ccc}
1 & & & c_{11} & \ldots & c_{1 n} \\
& \ddots & & \vdots & \vdots & \vdots \\
& & 1 & c_{m 1} & \ldots & c_{m n}
\end{array}\right)
$$

where $C \in \mathcal{G}\left(q^{m} ; n, k\right), m \geq n$.
To increase efficiency let us use interleaving of several Gabidulin codes

$$
V=\left(I_{m \times m} \mid C^{(1)}, C^{(2)}, \ldots, C^{(L)}\right), \quad C^{(i)} \in \mathcal{G}\left(q^{m} ; n, k\right)
$$

Interleaved Gabidulin code $\mathcal{I G}$

In matrix form:

$$
C=\left(C^{(1)}, C^{(2)}, \ldots, C^{(L)}\right), \quad C^{(i)} \in \mathcal{G}\left(q^{m} ; n, k\right)
$$

In vector form:

$$
c=\left(c^{(1)}, c^{(2)}, \ldots, c^{(L)}\right), \quad c^{(i)} \in \mathcal{G}\left(q^{m} ; n, k\right)
$$

$\mathcal{I G}$ code is an $(L n, L k)$ linear code over $\mathbb{F}_{q^{m}}$ with rank distance

$$
d=n-k+1
$$

For $m=n, \mathcal{I G}$ is an MRD code.
Errors and erasures correction is necessary for network coding.

Known results

Loidreau and Overbeck (2006) considered another variant of interleaved Gabidulin code, where a codeword is

$$
c=\left(\begin{array}{c}
c^{(1)} \\
c^{(2)} \\
\vdots \\
c^{(L)}
\end{array}\right), \quad c^{(i)} \in \mathcal{G}\left(q^{m} ; n, k\right)
$$

They suggested an algebraic decoder correcting errors only

- with complexity $\mathcal{O}\left(L m^{3}\right)=\mathcal{O}\left(m^{3}\right)$ operations in $\mathbb{F}_{q^{m}}$
- which corrects error vectors e if $\operatorname{rank}_{q} e \leq \frac{L}{L+1}(d-1)$
- with probability of failure $P_{f}<4 q^{-m}$

Known results

In [SJB], a time domain algorithm for $\mathcal{I G}$ codes having complexity $\mathcal{O}\left(m^{2}\right)$ operations in $\mathbb{F}_{q^{m}}$ was suggested.

Standard approach:
(1) solve the key equation to find "positions" of errors,
(2) find error values.

To correct (errors only) by a single Gabidulin code Silva and Kschischang [SK] suggested an elegant solution for the second decoding step using a transform-domain approach.
[SJB] V. Sidorenko, L. Jiang, M. Bossert, "Skew-Feedback Shift-Register Synthesis and Decoding Interleaved Gabidulin Codes," IEEE Trans. Inform. Theory, vol. IT-57, pp. 621-632, Febr. 2011.
[SK] D. Silva and F. R. Kschischang, "Fast encoding and decoding of Gabidulin codes," in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, Jul. 2009, pp. 2858-2862

Our contribution

- For a single Gabidulin code we propose a transform-domain decoding algorithm. The algorithm is extended for $\mathcal{I G}$ codes. Time complexity of the algorithms is $\mathcal{O}\left(m^{2}\right)$ operations in the field $\mathbb{F}_{q^{m}}$.
- It corrects all error words of rank τ if

$$
t \leq \tau_{\max } \triangleq \frac{L}{L+1}(d-1)
$$

- where probability $P_{f}(\tau)$ of decoding failure is

$$
P_{f}(\tau) \leq 3.5 q^{-m\left\{(L+1)\left(\tau_{\max }-\tau\right)+1\right\}}<\frac{4}{q^{m}}
$$

Outline

(2) Definitions

(3) Decoding a single Gabidulin code

4 Decoding of interleaved Gabidulin codes

Skew polynomials and linearized polynomials

Consider $\mathbb{F}=\mathbb{F}_{q^{m}}$, where q is power of a prime, with the Frobenius automorphism $\theta(a)=a^{q}, \theta^{i}(a)=\theta\left(\theta^{i-1}(a)\right)$.
Define a ring structure on the set of skew polynomials $a(x)$

$$
\mathbb{F}[x ; \theta]=\left\{a(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \mid a_{i} \in \mathbb{F} \text { and } n \in \mathbb{N}\right\} .
$$

The addition in $\mathbb{F}[x ; \theta]$ is usual. The multiplication is defined by the basic rule

$$
x a=\theta(a) x
$$

and extended to all elements of $\mathbb{F}[x ; \theta]$ by associativity and distributivity.
Denote the corresponding linearized q-polynomial by $a_{(q)}(x)$, where

$$
a_{(q)}(x)=\sum_{j=0}^{n} a_{j} \theta^{j}(x)=a_{n} x^{q^{n}}+\cdots+a_{1} x^{q^{1}}+x
$$

θ-transform

Let us fix $n \leq m$ linearly independent over \mathbb{F}_{q} elements $h_{1}, \ldots, h_{n} \in \mathbb{F}_{q^{m}}$ and define the following $n \times n$ transform matrix Φ over $\mathbb{F}_{q^{m}}$

$$
\Phi=\left(\begin{array}{cccc}
h_{1} & h_{2} & \ldots & h_{n} \\
\theta\left(h_{1}\right) & \theta\left(h_{2}\right) & \ldots & \theta\left(h_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\theta^{n-1}\left(h_{1}\right) & \theta^{n-1}\left(h_{2}\right) & \ldots & \theta^{n-1}\left(h_{n}\right)
\end{array}\right) .
$$

The Moore matrix Φ is nonsingular and has the inverse matrix Φ^{-1}.

Gabidulin code

Definition

A Gabidulin code \mathcal{G} is a linear (n, k) code of length n and dimension k over the field $\mathbb{F}_{q^{m}}, n \leq m$, with parity check matrix

$$
H=\left(\begin{array}{cccc}
h_{1} & h_{2} & \ldots & h_{n} \\
\theta\left(h_{1}\right) & \theta\left(h_{2}\right) & \ldots & \theta\left(h_{n}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\theta^{n-k-1}\left(h_{1}\right) & \theta^{n-k-1}\left(h_{2}\right) & \ldots & \theta^{n-k-1}\left(h_{n}\right)
\end{array}\right)
$$

consisting of the first $n-k$ rows of the matrix Φ.

Outline

(1) Introduction

(2) Definitions
(3) Decoding a single Gabidulin code

4 Decoding of interleaved Gabidulin codes

Errors and erasures

Channel with errors only: $r=c+e, \quad \operatorname{rank}_{q} e=\tau$, then

$$
e=a B
$$

where

$$
a \in \mathbb{F}_{q^{m}}^{\tau}, B \in \mathbb{F}_{q}^{\tau \times n}, \operatorname{rank}_{q} a=\operatorname{rank}_{q} B=\tau
$$

Channel with errors and erasures

$$
\begin{gathered}
e=e_{\mathrm{C}}+e_{\mathrm{F}}+e_{\mathrm{R}} \\
e=a B=a_{\mathrm{C}} B_{\mathrm{C}}+a_{\mathrm{F}} B_{\mathrm{F}}+a_{\mathrm{R}} B_{\mathrm{R}}
\end{gathered}
$$

where blue symbols are known and

$$
\begin{aligned}
a_{\mathrm{C}} \in \mathbb{F}_{q^{m}}^{\varkappa}, B_{\mathrm{C}} \in \mathbb{F}_{q}^{\varkappa \times n}, & \operatorname{rank} a_{\mathrm{C}}=\operatorname{rank} B_{\mathrm{C}}=\varkappa, \\
a_{\mathrm{F}} \in \mathbb{F}_{q^{m}}^{\varepsilon}, B_{\mathrm{F}} \in \mathbb{F}_{q}^{\varepsilon \times n}, & \operatorname{rank} a_{\mathrm{F}}=\operatorname{rank} B_{\mathrm{F}}=\varepsilon, \\
a_{\mathrm{R}} \in \mathbb{F}_{q^{m}}^{\rho}, B_{\mathrm{R}} \in \mathbb{F}_{q}^{\rho \times n}, & \operatorname{rank} a_{\mathrm{R}}=\operatorname{rank} B_{\mathrm{R}}=\rho .
\end{aligned}
$$

Errors and erasures polynomials

Define row erasure skew polynomial $\sigma_{R}(x)$
$\sigma_{R(q)}\left(a_{R, i}\right)=0, i=1, \ldots, \rho$, then $\sigma_{R(q)}(x)=\operatorname{minpoly}\left(a_{R}\right)$ Define full error skew polynomial $\sigma_{F}(x)$

$$
\sigma_{F(q)}\left(\sigma_{R(q)}\left(a_{F, i}\right)\right)=0, i=1, \ldots, \varepsilon
$$

Denote

$$
\sigma_{F R}(x)=\sigma_{F}(x) \sigma_{R}(x)
$$

Define

$$
f=\left(f_{1}, \ldots, f_{\varkappa}\right)=B_{C} h^{T}
$$

and column erasure polynomial

$$
\lambda_{C(q)}(x)=\operatorname{minpoly}(f)
$$

Given a skew polynomial $\lambda(x)$ of degree \varkappa, we define a reciprocal skew polynomial $\bar{\lambda}(x)$ having coefficients $\bar{\lambda}_{i}=\theta^{i-\varkappa}\left(\lambda_{\varkappa-i}\right)$ for $i=0, \ldots, \varkappa$.

Modified syndrome

The syndrome vector:

$$
s=\left(s_{1}, \ldots, s_{d-1}\right)=r H^{T}=e H^{T} .
$$

The syndrome polynomial:

$$
s(x)=\sum_{i=1}^{n-k} s_{i} x^{i-1}
$$

The modified syndrome polynomial $s_{R C}(x)$, incorporates known information about row and column erasures:

$$
s_{R C}(x)=\sigma_{R}(x) s(x) \bar{\lambda}_{C}(x) .
$$

Key equation for a single Gabidulin code

Theorem (Silva-Kschischang-Kötter)

The following equation holds

$$
\begin{equation*}
\sigma_{F}(x) s_{R C}(x) \equiv \omega(x) \quad \bmod x^{n-k} \tag{1}
\end{equation*}
$$

where $\operatorname{deg} \omega(x)<\tau$ and the error evaluator polynomial $\omega(x)$ is defined by the first τ components of the modified syndrome $s_{R C}(x)$.

Given the modified syndrome $s_{R C}(x)$, a solution $\sigma_{F}(x)$ of (1) can be found by a skew shift-register synthesis algorithm or by the Euclid's algorithm with complexity $\mathcal{O}\left(m^{2}\right)$.

Transformed error vector

The transformed error vector and polynomial

$$
\tilde{e}=e \Phi^{T}
$$

and the transformed error polynomial

$$
\tilde{e}(x)=\sum_{i=1}^{n} \tilde{e}_{i} x^{i-1}
$$

Theorem (Error vector)

The transformed error polynomial $\tilde{e}(x)$ satisfies the following equation

$$
\begin{equation*}
\left.\sigma_{F R}(x) \widetilde{e}_{(} x\right) \bar{\lambda}_{C}(x) \equiv \omega(x) \quad \bmod x^{n} \tag{2}
\end{equation*}
$$

where the polynomial $\omega(x)$ is defined by (1).

Finding error vector

Known: $\sigma_{R}(x), \bar{\lambda}_{C}(x), s_{R C}(x), \sigma_{F}(x)$
(1) The error evaluator polynomial:

$$
\omega(x)=\sigma_{F}(x) s_{R C}(x) \quad \bmod x^{n-k}
$$

(2) Compute $\sigma_{F R}(x)=\sigma_{F}(x) \sigma_{R}(x)$

By Theorem(Error vector):

$$
\sigma_{F R}(x) \widetilde{e}_{(}(x) \bar{\lambda}_{C}(x) \equiv \omega(x) \quad \bmod x^{n}
$$

(3) Compute $s_{C}(x)=\left.\sigma_{F R}(x) \backslash w(x)\right|_{0} ^{n-1}$
(9) The transformed error word: $\tilde{e}(x)=s_{C}(x) /\left.\bar{\lambda}_{C}(x)\right|_{0} ^{n-1}$
(5) The error word: $e=\tilde{e}\left(\Phi^{-1}\right)^{T}$

Algorithm 1. Decoding of a single Gabidulin codeतN/ rememem

1 input: Received word $r \in \mathbb{F}_{q^{m}}^{n}$, vector a_{R} of row erasures, matrix B_{C} of column erasures

2 begin

3 Row erasure polynomial: $\sigma_{R(q)}(x)=\operatorname{minpoly}\left(a_{R}\right)$
4
Column erasure polynomial: $f=B_{C} h^{T}, \quad \lambda_{C(q)}(x)=\operatorname{minpoly}(f)$
Syndrome: $s=r H^{T}$
Modified syndrome: $s_{R C}(x)=\sigma_{R}(x) s(x) \bar{\lambda}_{C}(x)$
Find $\sigma_{F}(x)$ by solving the key equation (1) using the Berlekamp-Massey type algorithm in [SJB]; in case of non single solution output decoding failure

The error evaluator polynomial $\omega(x)=\sigma_{F}(x) s_{R C}(x) \bmod x^{n-k}$
$\sigma_{F R}(x)=\sigma_{F}(x) \sigma_{R}(x)$
The transformed error word $\tilde{e}(x)=\sigma_{F R}(x) \backslash w(x) /\left.\bar{\lambda}_{C}(x)\right|_{0} ^{n-1}$
The error word $e=\tilde{e}\left(\Phi^{-1}\right)^{T}$
12 end
13 output: The codeword $c=r-e$ or decoding failure

Comparison with time-domain algorithms

In time-domain algorithms, instead of Lines 8-12 one should do the following more complicated steps:

- One polynomial multiplication to find $\sigma_{F R}(x)$,
- Solve a system of linear equations (41) in [SKK] to find $\beta=\left(\beta_{1}, \ldots, \beta_{\varkappa}\right)$,
- Compute $\sigma_{C(q)}(x)=\operatorname{minpoly}(\beta)$,
- Compute $\sigma(x)=\sigma_{C}(x) \sigma_{F}(x) \sigma_{R}(x)$,
- Find a basis for the root space of $\sigma_{(q)}(x)$,
- Solve a system of linear equations (36) in [SKK] to find error locators,
- Compute error locations,
- Compute the error word.

Decoding of a single Gabidulin code

Theorem

Algorithm 1 corrects ε full errors, ρ row erasures and \varkappa column erasures as long as

$$
2 \varepsilon+\rho+\varkappa \leq n-k=d-1 .
$$

Time complexity of Algorithm 1 is $\mathcal{O}\left(m^{2}\right)$ operations in $\mathbb{F}_{q^{m}}$.

Outline

(1) Introduction

(2) Definitions
(3) Decoding a single Gabidulin code

4 Decoding of interleaved Gabidulin codes

Assume a transmitted codeword

$$
c=\left(c^{(1)} \ldots c^{(L)}\right) \in \mathbb{F}_{q^{m}}^{L n}
$$

and a received word word

$$
r=\left(r^{(1)} \ldots r^{(L)}\right) \in \mathbb{F}_{q^{m}}^{L n .}
$$

The error word is

$$
e=\left(e^{(1)} \ldots e^{(L)}\right) \in \mathbb{F}_{q^{m}}^{L n},
$$

where $e=r-c$. Denote rank $e=\tau$, then the error word is

$$
e=a B=a\left(B^{(1)} \ldots B^{(L)}\right), \quad \text { where } a \in \mathbb{F}_{q^{m}}^{\tau}, B \in \mathbb{F}_{q}^{\tau \times L n},
$$

where for every component code we have the following error vector

$$
e^{(\ell)}=a B^{(\ell)}=a_{\mathrm{C}} B_{\mathrm{C}}^{(\ell)}+a_{\mathrm{F}} B_{\mathrm{F}}^{(\ell)}+a_{\mathrm{R}} B_{\mathrm{R}}^{(\ell)} .
$$

Vector a is common for all interleaved codes. This allows to get more equations for the common error span polynomial $\sigma_{F}(x)$.

Theorem (Key equation for interleaved Gabidulin codes)

The following equation holds for $\ell=1, \ldots, L$

$$
\begin{equation*}
\sigma_{F}(x) s_{R C}^{(\ell)}(x) \equiv \omega^{(\ell)}(x) \quad \bmod x^{n-k} \tag{3}
\end{equation*}
$$

where $\operatorname{deg} \omega^{(\ell)}(x)<\tau$ and the error evaluator polynomial $\omega^{(\ell)}(x)$ is defined by the first τ components of the modified syndrome $s_{R C}^{(\ell)}(x)$.

Theorem (Error vector)

The transformed error polynomials $\tilde{e}^{(\ell)}(x)$ satisfies the following equations

$$
\sigma_{F R}(x) \widetilde{e}^{(\ell)}(x) \bar{\lambda}_{C}^{(\ell)}(x) \equiv \omega^{(\ell)}(x) \quad \bmod x^{n}
$$

where the polynomials $\omega^{(\ell)}(x)$ are defined by (3).

Algorithm 2. Decoding of interleaved codes

1 input: Received word $r=\left(r^{(1)}, \ldots, r^{(L)}\right) \in \mathbb{F}_{q^{m}}^{L n}, a_{R}, B_{C}^{(\ell)}, \ell=1, \ldots, L$ Row erasure polynomial: $\sigma_{R(q)}(x)=\operatorname{minpoly}\left(a_{R}\right)$
2 for $\ell=1, \ldots, L$ do
3
4
5
Column erasure polynomials: $f^{(\ell)}=B_{C}^{(\ell)} h^{T}, \lambda_{C(q)}^{(\ell)}(x)=\operatorname{minpoly}\left(f^{(\ell)}\right)$ Syndromes: $\quad s^{(\ell)}=r^{(\ell)} H^{T}$
Modified syndromes: $s_{R C}^{(\ell)}(x)=\sigma_{R}(x) s^{(\ell)}(x) \bar{\lambda}_{C}^{(\ell)}(x)$
6 Find $\sigma_{F}(x)$ by solving the key equation (3) using the Berlekamp-Massey type algorithm in [SJB]; in case of non single solution output decoding failure
7 for $\ell=1, \ldots, L$ do
$e=\left(e^{(1)}, \ldots, e^{(L)}\right)$
output: The codeword $c=r-e$ or decoding failure

Theorem

The fraction $P_{f}(\varepsilon)$ of full error vectors of rank $e_{F}=\varepsilon$ uncorrectable by Algorithm 2 in presence of ρ row erasures and $\varkappa_{1}, \ldots, \varkappa_{L}$ column erasures is upper bounded by

$$
P_{f}(\varepsilon) \leq 3.5 q^{-m\left\{(L+1)\left(\varepsilon_{\max }-\varepsilon\right)+1\right\}}<\frac{4}{q^{m}}
$$

if

$$
\begin{equation*}
L \leq \varepsilon \leq \varepsilon_{\max } \triangleq \frac{L}{L+1}(\bar{d}-1) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{L} \quad P_{f}(\varepsilon)=0 \text { for } \varepsilon<d_{\min } / 2 \tag{5}
\end{equation*}
$$

are the average and minimum code distances respectively after erasings in interleaved (n, k) Gabidulin codes, $d=n-k+1$. Time complexity of the algorithm is $\mathcal{O}\left(L m^{2}\right)$ operations in $\mathbb{F}_{q^{m}}$.

Discussion and future work

- Complexity: $\mathcal{O}\left(m^{2}\right)$ operations over $\mathbb{F}_{q^{m}}$ and $\mathcal{O}\left(L m^{2}\right)$.
- Fast methods:
- for multiplication of linearized polynomials were found in [SK] and [WAS].
- Fast solution of the key equations - in [SB].
- We need:
- a fast method for finding a minimal power linearized polynomial, given a basis of its roots, and
- a fast method for division of skew polynomials.
[SK] D. Silva and F. R. Kschischang, "Fast encoding and decoding of Gabidulin codes," in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, Jul. 2009, pp. 2858-2862
[WAS] A. Wachter, V. Afanassiev, V. Sidorenko, "Fast Decoding of Gabidulin Codes," Designs, Codes and Cryptography, April, 2012.
[SB] V. Sidorenko, M. Bossert, "Fast skew-feedback shift-register synthesis", Designs, Codes and Cryptography, April, 2012, pp. 1-13.

Acknowledgement

The authors are thankful to

- Antonia Wachter-Zeh
- Erik Gabidulin,
for helpful discussions.

Acknowledgement

The authors are thankful to

- Antonia Wachter-Zeh
- Erik Gabidulin,
for helpful discussions.

Thank you!

Skew-feedback shift-registers

Figure: θ-skew-feedback shift-register (λ, σ)

- Given \mathbb{F} and an automorphism θ. When $\theta=i d$ (i.e., $\theta(a)=a)$ we have a classical linear-feedback shift-register.
- For $\mathbb{F}=\mathbb{F}_{q^{m}}$ and the Frobenius automorphism $\theta(a)=a^{q}$ we have a linearized-feedback shift-register.

Linearized polynomials

- Extention field: $\mathbb{F}_{q^{m}}$,
- Frobenius power: For any integer $i, \quad x^{[i]} \triangleq x^{q^{i}}$

Definition

A q-linearized polynomial (or q-polynomial) over \mathbb{F}_{Q} is a polynomial of the form

$$
f(x)=\sum_{i=0}^{t} f_{i} x^{[i]}, \quad f_{i} \in \mathbb{F}_{Q}
$$

Symbolic product

$$
f(x) \otimes g(x)=f(g(x))
$$

Algorithm 1. Decoding the Gabidulin code

1 input: Received word $r \in \mathbb{F}_{q^{m}}^{n}$

2 begin

3 Compute syndrome $s=r H^{T}$
Solve the key equation using the PTRP type algorithm, get $\sigma(x)$ and $t=\lambda$.

Find a basis $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q^{m}}$ for the root space of $\sigma(x)$ get the vector $a=\left(a_{1}, \ldots, a_{t}\right)$.

Compute the matrix B using Gabidulin's algorithm.
Compute error word $e=a B$.
end
9 output: Codeword $c=r-e$.
Algorithm 1 corrects errors of rank up to $(d-1) / 2$ with the total complexity $\mathcal{O}\left(n^{2}\right)$ operations in $\mathbb{F}_{q^{m}}$.

