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Abstract

In this paper the (effective) bias of certain generalised linear approximations to the S-box are considered. Whereas,
in the literature, the cryptanalyst typically restricts this search to linear approximations over Z2, we here consider linear
approximations over Z4 and, more generally still, consider approximations which are linear in the sense that they can
be completely factorised into the tensor product of length-two vectors. Consequently, significantly higher biases can be
found in comparison to Z2-linear approximations.

I. Introduction and Basic Theory

Linear cryptanalysis of a binary block cipher, as conceived by Matsui [3], attempts to recover key

bits by approximating core rounds of the block cipher by a series of Z2-linear expressions, and then

concatenating these linear approximations. The block cipher to be approximated is parameterised by

a secret key which is typically (although not always) added into the cipher by means of XOR. If this

is the case then the binary linear approximation to the block cipher core is key-invariant to within a

global constant. If some subset of the key bits are not added using XOR, then this subset is often

taken to be fixed, so that a complete linear approximation can be established that holds for a subset

of all possible key configurations. The linear approximation can be used to relate certain input bits to

certain output bits of the core rounds of a block cipher, where the approximation holds with probability
1
2
± b, where b is called the bias. The cryptanalyst can then use a set of known plaintext/ciphertext

pairs to ascertain key bits of the first and/or last rounds of the cipher (which are outside the core),

by guessing the key bits, and then checking whether the relevant output and/or input bits of the core

rounds are correct with probability 1
2

or with probability 1
2
± b. If it is the latter then, given a large

enough set of plaintext/ciphertext pairs, the key guess is probably correct.

To counteract this form of attack many modern block ciphers, including the AES (Rijndael), make

it as difficult as possible to approximate the constituent functions of the Substitution-Boxes (S-boxes)

within the cipher by Z2-linear functions. Let x and y be short for the 2n input and output boolean

variables, (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1), that define the n input and n output bits of an n×n

S-box, respectively. Also let f be any Z2-linear combination of the variables of x, g be any Z2-linear

combination of the variables of y, and let A be a subset of the size 2n set S where S contains all

2n (x,y) pairs that define the given S-box. Then, to be precise, a n × n S-box is considered to be
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optimally resistant to Linear Cryptanalysis if the following conditions hold,

f(x) = g(y) ∀(x,y) ∈ A

||A| − 2n−1| ≤ 2
n
2 n even

||A| − 2n−1| ≤ 2
n−1

2 n odd

(1)

although, for the n odd case, it is an open problem to prove that the right-hand side is really the

lowest possible value. The S-box, an n-bit to n-bit invertible mapping, is completely described by the

set of (x,y) pairs, S, and A contains the complete subset of the elements of S for which f(x) = g(y)

holds.

Typically approximation is done, for binary ciphers, by finding the nearest Z2-linear approximation

to selected nonlinear segments of the cipher. These approximations are then pieced together and the

biases of each segment simply multiplied together under the important assumption of virtual pairwise

independence of any two segments whose outputs are combined. The largest Z2-linear approximations

can be found via spectral analysis with respect to (wrt) the Walsh-Hadamard Transform (WHT).

This paper shows how one can, more generally, choose to approximate the constituent functions of a

binary S-box by any linear function over any weighted alphabet. However this does not imply that

it is straightforward to piece these generalised linear approximations together in exactly the same way

as for standard linear cryptanalysis. In other words, for a block cipher which adds in the key using

XOR, the way in which the generalised linear approximations are concatenated is, in general, key-

dependent. Techniques to piece together these generalised linear approximations are left to future

research. In this paper we simply investigate the biases of certain generalised linear approximations to

certain S-boxes. Crucial to our approach is the use of the tensor product to define a very general form

of linearity. Specifically we state that a tensor-linear sequence is any normalised length N sequence

(with truth-table outputs ordered lexicographically) which can be fully tensor-decomposed according to

the factors of N . For example, when N = 2n, then a tensor-linear length-N sequence can be written

in the form,

(a0, b0)⊗ (a1, b1)⊗ . . .⊗ (an−1, bn−1)

We observe that the rows of the N×N Walsh-Hadamard Transform (WHT) encompass all tensor-linear

sequences (to within a global multiplicative offset) which can be written in the form,

(±1,±1)⊗ (±1,±1)⊗ . . .⊗ (±1,±1)

To be explicit here, as an example, is the 4× 4 WHT matrix:

(
1 1
1 −1

)
⊗

(
1 1
1 −1

)
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =


(1, 1) ⊗ (1, 1)
(1,−1) ⊗ (1, 1)
(1, 1) ⊗ (1,−1)
(1,−1) ⊗ (1,−1)


Thus when we are correlating our n-variable binary S-Box function, f(x), with rows of the WHT, we

are in fact correlating with bipolar tensor-linear sequences. Note that, in the cryptographic literature,
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the more conventional way to write the action of the WHT on f(x) is as follows:

Fk = 2−n
∑

x∈Zn
2

(−1)f(x)+x·k (2)

where k ∈ Zn
2 , f : Zn

2 → Z2, and x · k is the inner product of x and k. We define the Peak-to-Average

Power Ratio (PAR) with respect to (wrt) the WHT as,

PAR(f) = 2nmax∀k(|Fk|)2 (3)

In terms of the more familiar cryptographic measure of bias,

PAR(f) = bias2 × 2n+2 (4)

The value of PAR ranges from 1.0 for a completely flat spectrum, to 2n for a linear function. PAR

with respect to the WHT measures the goodness of the highest possible Z2-linear approximation to f .

The higher PAR is, the better the approximation.

More generally, we can define the PAR of f with respect to any normalised set of transforms, T,

which produces sets of spectra, {Fk}, using (3), so we can, instead, maximise PAR wrt the set of

transforms, T. We now have,

PAR(f) = 2nmax∀k,∀U∈T(|Fk|)2 (5)

Once again, the higher PAR is, the better the approximation. In this paper we examine aspects of

the nonlinearity of certain S-boxes that have been proposed in the cryptographic literature, and this

nonlinearity is quantified in terms of PAR of the spectra of the constituent boolean functions with

respect to selected sets, T, of complex unitary transforms with linear rows 3. From the evaluations of

this paper one can conclude that, although (by design) it is hard to find good Z2-linear approximations

to the S-boxes of modern block ciphers, much better generalised linear approximations exist, and these

improved approximations may perhaps be useful in the context of novel cryptanalysis of the block

cipher in which the S-Box is used.

II. S-Box Nonlinearity

This section details the best (highest) and worst (lowest) Peak-to-Average power ratio (PAR) of

various S-boxes in the literature with respect to various sets of Linear Unitary Transforms (LUTs). Let

our S-Box have n binary inputs, x = (x0, x1, . . . , xn−1), and m binary outputs, y = (y0, y1, . . . , ym−1).

Then we can describe our S-Box by the boolean functions,

yi = fi(x), 0 ≤ i < m, fi : Zn
2 → Z2

3Linearity here refers to ’tensor-linearity’, where each length 2n row of the ’Linear Unitary Transform’ (LUT) matrix can be

written as a tensor-product of length 2 complex vectors [7].
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Then we wish to find the largest (and smallest) generalised linear approximations, taken over all

functions, f : Zn
2 → Z2, of the form,

f(x) =
m−1∑
i=0

cifi(x), ci ∈ Z2 (6)

and we will use PAR to quantify the goodness of the linear approximation - a low PAR means a bad

approximation, and a high PAR means a good approximation.

Note that, although the metric of nonlinearity, γ, is strictly only defined wrt the Walsh-Hadamard

Transform (WHT), we can relate a generalised form of γ to the PAR of a given function, f : Zn
2 → Z2,

by,

γ(f) = 2
n
2
−1(2

n
2 −

√
PAR(f)) (7)

However, for brevity, the results of this paper will only be quoted in terms of PAR.

We will compute largest and smallest PARs of f wrt the WHT, the HN transform set, the HI

transform set, and the HIN transform set, where the WHT transform matrix comprises tensor products

of H =

(
1 1
1 −1

)
, the HN transform matrix comprises all 2n combinations of tensor products of H

and N =

(
1 i

1 −i

)
, the HI transform matrix comprises all 2n combinations of tensor products of H

and I =

(
1 0
0 1

)
, and the HIN transform matrix comprises all 3n combinations of tensor products of

H, I, and N. To be precise,the largest PAR of f wrt the transform set, T, is computed by correlating

(−1)f with all rows of all of the transforms in T, and finding the highest magnitude correlation. The

largest PAR is then obtained by squaring this highest magnitude and normalising appropriately. In

contrast, the smallest PAR of f wrt the transform set, T, is computed by first finding the maximum

correlation magnitudes taken over all rows of U, where U ∈ T, one maximum per matrix, U. Then

the smallest PAR is obtained by selecting the smallest of these maximum magnitudes, then squaring

and normalising this value. Unless otherwise indicated, throughout this paper the ’largest PAR’ of f

wrt the transform set, T, will be simply referred to as the ’PAR’ of f .

There are an infinite number of Linear Unitary Transforms (LUTs) so the above tensor combinations

of H, I, and N acting on f only give a lower bound on the actual PAR of f with respect to all LUTs,

but we will show that even this small subset of transforms can identify higher biases than are achievable

with respect to the WHT. For small S-Boxes we will also compute the HNF transform of f , where

HNF comprises all 4n combinations of tensor products of H, N, F0, and F1, where, F0 =

(
1 ω

1 −ω

)

and F1 =

(
1 ω3

1 −ω3

)
, where ω is the eighth complex root of 1, such that ω2 = i. The HNF finds

Z8-linear approximations to the S-box functions.

In the following we use the above transform matrices to examine every possible generalised linear

relationship between a subset of inputs and outputs of the specific S-box. This is accomplished by

applying the transform matrices to all possible f , where f is given by (6). The largest and smallest

biases are obtained from the output spectra from these transforms and recorded in the tables in terms
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of PAR. One should note that the spectra examined by the HI set of transforms includes that covered

by the WHT. Similary WHT is contained within HN, and HI and HN are both contained in HIN,

and both contained in HNF. In general, if the set of transforms, T, is contained within the set of

transforms, U, then the PAR of a function with respect to T acts as a lower bound on the PAR of the

function with respect to U.

Finally it is important to stress that we are only, in this paper, looking at the transform spectra of

Z2-linear combinations of the outputs of the constituent S-box functions, as indicated by (6). More

generally still we could examine generalised linear approximations of generalised linear combinations,

f , of the S-box outputs. We do not consider this further generalisation in this paper, although

preliminary investigations indicate the existence of extremely high biases for every S-box examined.

A. DES - 6 Input, 4 Output

DES is the well-known Data Encryption Standard [4].

Largest PARs

WHT HN HI HIN HNF

S-Box 1 20.25 20.25 24.5 24.5 20.25

S-Box 2 16.0 16.0 18.0 18.0 16.00

S-Box 3 16.0 16.0 16.0 21.125 16.00

S-Box 4 16.0 18.0 18.0 18.0 19.90

S-Box 5 25.0 25.0 25.0 25.0 25.00

S-Box 6 12.25 13.625 16.0 16.0 14.45

S-Box 7 20.25 20.25 21.125 21.125 20.25

S-Box 8 16.0 16.0 21.125 21.125 16.42

Smallest PARs

WHT HN HI HIN HNF

S-Box 1 4.0 6.25 8.0 9.0 7.25

S-Box 2 4.0 6.25 8.0 9.0 6.58

S-Box 3 6.25 6.625 9.0 9.0 7.66

S-Box 4 6.25 8.5 9.0 9.0 9.27

S-Box 5 4.0 5.125 9.0 9.0 5.87

S-Box 6 4.0 6.25 9.0 9.0 7.54

S-Box 7 4.0 5.625 8.0 8.0 7.29

S-Box 8 6.25 6.25 9.0 9.0 7.06

For DES, the PARs with respect to the HN transform are not much better then those with respect

to the WHT. However, improved correlations are found by considering HI and HIN transforms. The

resistance to linear attacks of the DES S-boxes is already quite weak with respect to WHT, whereas

for Rijndael and Serpent, say, the S-boxes have been designed to be ’optimally’ nonlinear with respect
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to WHT. Note that the HNF transform improves on the HN transform, but usually the HI and HIN

transforms find stronger biases than the HNF transform, apart from S-Box 4.

B. Serpent - 4 Input, 4 Output

Largest PARs

WHT HN HI HIN HNF

S-Box 0 4.0 8.0 8.0 8.0 8.0

S-Box 1 4.0 8.0 8.0 8.0 8.0

S-Box 2 4.0 8.0 8.0 8.0 8.0

S-Box 3 4.0 5.0 8.0 8.0 5.83

S-Box 4 4.0 8.0 8.0 8.0 8.0

S-Box 5 4.0 8.0 8.0 8.0 8.0

S-Box 6 4.0 8.0 8.0 8.0 8.0

S-Box 7 4.0 5.0 8.0 8.0 6.83

Smallest PARs

WHT HN HI HIN HNF

S-Box 0 4.0 4.0 4.0 4.5 4.0

S-Box 1 4.0 4.0 4.0 4.5 4.0

S-Box 2 4.0 4.0 4.5 4.5 4.0

S-Box 3 4.0 4.0 4.5 4.5 4.0

S-Box 4 4.0 4.0 4.0 4.5 4.0

S-Box 5 4.0 4.0 4.0 4.5 4.0

S-Box 6 4.0 4.0 4.0 4.5 4.0

S-Box 7 4.0 4.0 4.5 4.5 4.0

Note that all Serpent S-boxes have significantly closer linear approximations with respect to HI or

HIN transforms. A PAR of 4.0 implies a nonlinearity of γ = 4.0, whereas a PAR of 8.0 implies a

nonlinearity of γ = 2.34.

C. Rijndael - 8 Input, 8 Output

Largest PARs

WHT HN HI HIN

S-Box 4.0 14.125 18.0 18.0

Smallest PARs

WHT HN HI HIN

S-Box 4.0 7.031 12.25 12.25
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A PAR of 4.0 is equivalent to a nonlinearity of γ = 112, and a PAR of 18.0 is equivalent to a nonlinearity

of γ = 94.06.

D. Khazad - 8 Input, 8 Output

Largest PARs

WHT HN HI HIN

S-Box 16.0 16.0 22.78 22.78

Smallest PARs

WHT HN HI HIN

S-Box 5.06 7.53 11.28 12.16

The biases for Khazad are noticeably stronger than for, say, Rijndael. Khazad is not optimised for the

WHT transform, and the HN transform does not improve much on the WHT. However, both HI and

HIN transforms do uncover significantly stronger biases than the WHT. There is an interesting trade-

off here between the Khazad S-box and the Rijndael S-box. The Khazad S-box is much simpler to

implement, as it is built out of a combination of 4×4 miniboxes. But the price paid for this simplicity

is a reduced nonlinearity with respect to the WHT. However, the difference in nonlinearity between

Khazad and Rijndael is somewhat moderated when one considers more general linear approximations.

E. Whirlpool - 8 Input, 8 Output

Largest PARs

WHT HN HI HIN

S-Box 12.25 14.28 22.78 22.78

Smallest PARs

WHT HN HI HIN

S-Box 4.0 7.56 12.25 12.25

The biases for Whirlpool are noticeably stronger than for, say, Rijndael, and similar to Khazad.

Whirlpool is not optimised for the WHT transform, and the HN transform does not improve much

on the WHT. However, both HI and HIN transforms do uncover significantly stronger biases than

the WHT.

F. MISTY1 - 7/9 Input, 7/9 Output

MISTY1 uses two S-boxes, the first has 7 inputs and 7 outputs, and the second has 9 inputs and 9

outputs. Matsui argues that the reason for choosing odd numbers of binary variables as i/o is because

one can find functions with stronger nonlinearity (lowest possible PAR = 2.0 wrt WHT) as compared

to functions of even numbers of binary variables (lowest possible PAR = 4.0 wrt WHT). It is therefore
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of interest to see whether this advantage is carried over to more generalised linear approximations.

Here are the results for MISTY1:

SBox S7 - 7 binary inputs, 7 binary outputs

Largest PARs

WHT HN HI HIN

S-Box 2.0 10.0 16.0 16.0

Smallest PARs

WHT HN HI HIN

S-Box 2.0 5.0 9.0 9.0

SBox S9 - 9 binary inputs, 9 binary outputs

Largest PARs

WHT HN HI HIN

S-Box 2.0 32.0 32.0 ?

Smallest PARs

Smallest PARs: WHT HN HI HIN

S-Box 2.0 4.0 8.0 ?

The results for MISTY1 show that, although the S-Boxes exhibit high nonlinearity wrt WHT,

they have much lower nonlinearity wrt more general linear approximations. In particular, they can

be approximated strongly by rows of the HI transform. This is perhaps not surprising as S7 and S9

comprise boolean functions of relatively low degree, and the HI transform implicitly involves statistical

fixing of bits [6]. In terms of bias, S7 has a bias of 1
16

wrt WHT and 1√
8

= 0.354 wrt the HI transform.

Similarly, S9 has a bias of 1
32

wrt WHT and 1
8

wrt the HI transform. From the (rather little) experience

the author has obtained by finding the largest generalised linear approximations to the constituent

boolean functions of a ’well-chosen’ S-box, it appears that, for a boolean function of n variables, the

largest approximation is associated with a maximum PAR ' 2d
n
2
e. This, paradoxically, suggests that

PAR wrt generalised linear approximation is minimised by choosing n even. But, for the case of

MISTY1, n is 7 or 9, and the largest approximations are associated with PARs of 2d
7
2
e = 16.0 and

2d
9
2
e = 32.0. The results suggest that the argument for higher nonlinearity wrt WHT with n odd is

reversed when one considers nonlinearity wrt more general linear approximations. In other words, for

an n input, n output S-box, if it is true that the highest possible PAR wrt general linear approximation

is ' 2d
n
2
e, then n should be chosen to be even. In any case, the largest PARs of 16.0 and 32.0 for S7

and S9 above show a significant increase over the WHT PARs of 2.0, and this improvement is more

significant than that achieved for S-boxes with even numbers of input/output variables.
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III. Comments

It is clear from the results of this paper that higher biases are possible across state-of-the-art S-

boxes by using generalised linear approximations than by using standard Z2-linear approximations.

This raises the following questions:

What is the lowest possible largest PAR of a function, f , with respect to all possible Linear Unitary

Transforms, where f is constructed as in (6) from any possible binary S-box with a fixed number of

input bits and output bits?

How would one design such an S-box so that any f constructed from the S-box using (6) achieves a

minimum largest PAR wrt all Linear Unitary Transforms?

The approximation techniques considered in this paper, and in [8],[6] and [7] may, perhaps, be

useful in certain types of cryptanalytic attack. As is known, the output spectra covered by the WHT

transform identify tensor-linear approximations which are not key-dependent for block ciphers that

add in the round-key using XOR. However, for any other transform, the approximations are key-

dependent. But they could still, perhaps, be useful in the context of attacks which make use of

approximate Multivariate Generalised Linear system solvers.

In [7] we formalise many of the ideas that have been discussed in this paper, and in [8] and [6]. These

tensor-linear approximations essentially utilise in a cryptographic context the Quantum Entanglement

metric previously proposed in [5].
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