# Generalised Rudin-Shapiro Constructions 

Matthew G. Parker ${ }^{1}$<br>Code Theory Group, Inst. for Informatikk, Høyteknologisenteret i Bergen, University of Bergen, Bergen 5020, Norway. E-mail: matthew@ii.uib.no. Web: http://www.ii.uib.no/~matthew/MattWeb.html

C. Tellambura<br>School of Computer Science and Software Engineering, Monash University, Clayton, Victoria 3168, Australia. E-mail: chintha@dgs.monash.edu.au. Phone/Fax: +61 39905 3196/5146


#### Abstract

A Golay Complementary Sequence (CS) has Peak-to-Average-Power-Ratio (PAPR) $\leq 2.0$ for its one-dimensional continuous Discrete Fourier Transform (DFT) spectrum. Davis and Jedwab showed that all known length $2^{m}$ CS, (GDJ CS), originate from certain quadratic cosets of Reed-Muller $(1, m)$. These can be generated using the Rudin-Shapiro construction. This paper shows that GDJ CS have PAPR $\leq 2.0$ under all unitary transforms whose rows are unimodular linear (Linear Unimodular Unitary Transforms (LUUTs)), including one- and multi-dimensional generalised DFTs. We also propose tensor cosets of GDJ sequences arising from Rudin-Shapiro extensions of near-complementary pairs, thereby generating many infinite sequence families with tight low PAPR bounds under LUUTs.


Key words:
Complementary,Bent,PAPR,Golay,Fourier,Multidimensional,Quadratic,RudinShapiro, Covering Radius,DFT,Transform,Unitary,Reed-Muller

[^0]Tensor Permutation: Tensor permutation of $m r$-state variables, $x_{i}$, takes $x_{i}$ to $x_{\pi(i)}$, where permutation $\pi$ is any permutation of integers $Z_{m}$.
Sequence representations for linear functions, $x_{i}$, are of the form $x_{0}=0101010101 \ldots, x_{1}=001100110011 \ldots$, $x_{2}=0000111100001111 \ldots$, and so on.

Definition $1 \mathbf{L}_{\mathbf{m}}$ is the infinite set of all linear functions in $m$ binary variables over all alphabets, $Z_{n}$, $1 \leq n \leq \infty$,

$$
\begin{equation*}
\mathbf{L}_{\mathbf{m}}=\left\{\beta \oplus\left(0, \alpha_{0}\right) \oplus\left(0, \alpha_{1}\right) \oplus \ldots \oplus\left(0, \alpha_{m-1}\right)\right\}, \bmod n \tag{1}
\end{equation*}
$$

where $\oplus$ means 'tensor sum', $\beta, \alpha_{j} \in Z_{n} \forall j, \operatorname{gcd}(\beta, n)=\operatorname{gcd}\left(\alpha_{j}, n\right)=1$.
Definition $2 \mathbf{F 1}_{\mathbf{m}} \subset \mathbf{L}_{\mathbf{m}}$ is the infinite set of all one-dimensional linear Fourier functions in $m$ binary variables over all alphabets, $Z_{n}, 1 \leq n \leq \infty$,

$$
\begin{gather*}
\mathbf{F} \mathbf{1}_{\mathbf{m}}=\left\{(0, \delta) \oplus(0,2 \delta) \oplus(0,4 \delta) \oplus \ldots \oplus\left(0,2^{m-1} \delta\right), \bmod n\right.  \tag{2}\\
1 \leq n \leq \infty, 0 \leq \delta<n, \operatorname{gcd}(\delta, n)=1\}
\end{gather*}
$$

Definition $3 \mathbf{F m}_{\mathbf{m}} \subset \mathbf{L}_{\mathbf{m}}$ is the infinite set of all m-dimensional linear Fourier functions in $m$ binary variables over all alphabets, $Z_{n}, 1 \leq n \leq \infty$,

$$
\begin{align*}
& \mathbf{F m}_{\mathbf{m}}=\left\{\left(0, \delta+c_{0}\right) \oplus\left(0, \delta+c_{1}\right) \oplus\left(0, \delta+c_{2}\right) \oplus \ldots \oplus\left(0, \delta+c_{n-1}\right) \bmod n\right.  \tag{3}\\
& \left.2 \leq n \leq \infty, n \text { even }, 0 \leq \delta<n / 2, \quad \operatorname{gcd}(\delta, n)=1, c_{i} \in\{0, n / 2\}\right\}
\end{align*}
$$

Definition 4 A $2^{m} \times 2^{m}$ Linear Unimodular Unitary Transform (LUUT) $\mathbf{L}$ has rows taken from $\mathbf{L}_{\mathbf{m}}$ such that $\mathbf{L L}^{\dagger}=2^{m} \mathbf{I}_{\mathbf{m}}$, where $\dagger$ means conjugate transpose, $\mathbf{I}_{\mathbf{t}}$ is the $2^{t} \times 2^{t}$ identity matrix, and a row, $\mathbf{u}$, of $\mathbf{L}$ 'times' a column, $\mathbf{v}$, of $\mathbf{L}^{\dagger}$ is computed as $\mathbf{u} \odot(-\mathbf{v})$.

## 1 Introduction

Length $N=2^{m}$ Complementary Sequences (CS) are (Almost) Orthogonal to $\mathbf{F 1}_{\mathbf{m}}[4,3]$. Length $2^{m} \mathrm{CS}$ over $Z_{2^{h}}$, as formed using the Davis-Jedwab construction, $\mathbf{D J}_{\mathbf{m}}$, are also Roughly Orthogonal to each other [3,8]. This paper shows that $\mathbf{D J} \mathbf{J}_{\mathbf{m}}$ is (Almost) Orthogonal to $\mathbf{L}_{\mathrm{m}}$, and therefore each member of $\mathbf{D J}_{\mathbf{m}}$ has a Peak-to-Average Power Ratio (PAPR) $\leq 2.0$ under all Linear Unimodular Unitary Transforms (LUUTs) of length $2^{m}$. The properties of $\mathbf{D} \mathbf{J}_{\mathbf{m}}$ are shown to follow directly from a generalisation of the Rudin-Shapiro construction $[10,9,4,5,1]$. We then propose tensor cosets of $\mathbf{D J}_{\mathbf{m}}$, identifying near-complementary seed pairs whose power sum has PAPR $\leq v$ under certain LUUTs, where $v$ is small. We grow sequence sets from these pairs by repeated application of Rudin-Shapiro so that these sets also have PAPR $\leq v$ under certain LUUTs. In this way we extend [3,8] by proposing further infinite sequence families with tight one-dimensional Fourier PAPR bounds, and of degree higher than quadratic. We also confirm and extend recent results of [2] who construct families of Bent sequences using Bent sequences as seed pairs, although not in the context of Rudin-Shapiro.

## 2 Complementary Sequences (CS)

Definition $5[4,3]$ Length $N$ sequences $\mathbf{s} \mathbf{0}$ and $\mathbf{s} \mathbf{1}$ are a CS pair if the sum of their one-dimensional Fourier power spectrums is flat and equal to $2 N$.

Implication 1 [4,3] A length $N$ CS, s, has a Peak-to-Average-Power-Ratio (PAPR) for its one-dimensional Fourier power spectrum constrained by,

$$
\begin{equation*}
1.0 \leq P A P R(\mathrm{~s}) \leq \frac{2 N}{N}=2.0 \tag{4}
\end{equation*}
$$

Theorem 1 [3] s is a Golay-Davis-Jedwab (GDJ) CS if of length $2^{m}$ and expressible as a function of $m$ variables over $Z_{2^{h}}$ as,

$$
\begin{equation*}
\mathbf{s}\left(x_{0}, x_{1}, \ldots, x_{m-1}\right)=2^{h-1} \sum_{k=0}^{m-2} x_{\pi(k)} x_{\pi(k+1)}+\sum_{k=0}^{m-1} c_{k} x_{k}+d \tag{5}
\end{equation*}
$$

where $\pi$ is a permutation of the symbols $\{0,1, \ldots, m-1\}, c_{k}, d \in Z_{2^{h}}$, and the $x_{k}$ are linear functions over $Z_{2^{h}}$. We refer to the set of GDJ CS over $Z_{2^{h}}$ as $\mathbf{D J}_{\mathbf{m}, \mathbf{h}}$, and refer to $\mathbf{D} \mathbf{J}_{\mathbf{m}, \infty}$ as $\mathbf{D} \mathbf{J}_{\mathbf{m}}$.

There are $\left(\frac{m!}{2}\right) 2^{h(m+1)}$ sequences in $\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{h}}$, and $\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{h}}$ has minimum Hamming Distance $\geq 2^{m-2}$. Thus, for distinct $\mathbf{s} \mathbf{0}, \mathbf{s} \mathbf{1} \in \mathbf{D J}_{\mathbf{m}, \mathbf{1}}, \mathbf{s} \mathbf{0} \odot \mathbf{s} \mathbf{1} \leq 2^{m-1}$.

## 3 Distance of $\mathrm{DJ}_{\mathrm{m}}$ from $\mathrm{L}_{\mathrm{m}}$

Theorem $2 \mathbf{D J}_{\mathbf{m}}$ is (Almost) Orthogonal to $\mathbf{L}_{\mathbf{m}}$.
Proof Overview: We prove for $\mathbf{D J}_{\mathbf{m}, \mathbf{1}}$ by using the Rudin-Shapiro construction $[10,9]$ to simultaneously construct $\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{1}}$ and $\mathbf{L}_{\mathbf{m}}$. We then extend the proof to $\mathbf{D} \mathbf{J}_{\mathbf{m}}$. Let $\mathbf{s} \mathbf{0}_{\mathbf{j}}, \mathbf{s 1}_{\mathbf{j}}$ be a CS pair in $\mathbf{D} \mathbf{J}_{\mathbf{m}}$. More specifically, let $\mathbf{s} \mathbf{0}_{\mathbf{0}}, \mathbf{s 1}_{\mathbf{0}}$ be the length 1 sequences, $\mathbf{s} \mathbf{0}_{\mathbf{0}}=(0), \mathbf{s 1}_{\mathbf{0}}=(1)$, where $\mathbf{s} \mathbf{0}_{\mathbf{0}}, \mathbf{s} \mathbf{1}_{\mathbf{0}} \in \mathbf{D J}_{\mathbf{0}, \mathbf{1}}$. The RudinShapiro sequence construction is as follows:

$$
\begin{equation*}
\mathrm{so}_{\mathrm{j}}=\mathrm{s} \mathbf{0}_{\mathbf{j}-\mathbf{1}}\left|\mathrm{s} \mathbf{1}_{\mathrm{j}-\mathbf{1}}, \quad \mathrm{s}_{\mathbf{j}}=\mathrm{s} \mathbf{0}_{\mathbf{j}-\mathbf{1}}\right| \overline{\mathrm{s} 1_{\mathbf{j}-1}} \tag{6}
\end{equation*}
$$

where $\mathbf{s 0}_{\mathbf{j}}^{\mathbf{j}}, \mathbf{s}_{\mathbf{j}} \in \mathbf{D J}_{\mathbf{j}, \mathbf{1}}, \overline{\mathbf{s}}$ means negation of $\mathbf{s}$, and $\mid$ means sequence concatenation. Example 1 : $\mathbf{s 0}_{\mathbf{1}}=01, \mathbf{s 1 _ { 1 }}=00 \Rightarrow \mathbf{s 0 _ { \mathbf { 2 } }}=0100, \mathbf{s 1}_{\mathbf{2}}=0111$.
More generally we generate the $\operatorname{RM}(1, m)$ coset of $x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{m-2} x_{m-1}$
using all $2^{m}$ combinations of $m$ iterations of the two constructions,

$$
\begin{array}{lrl}
A: & \mathbf{s 0}_{\mathbf{j}}=\mathbf{s 0}_{\mathbf{j}-\mathbf{1}} \mid \mathbf{s} \mathbf{1}_{\mathbf{j}-\mathbf{1}}, & \mathbf{s 1}_{\mathbf{j}}=\mathbf{s \mathbf { 0 } _ { \mathbf { j } - \mathbf { 1 } }} \mid \overline{\mathbf{s} \mathbf{j}_{\mathbf{j}-\mathbf{1}}} \\
& \text { and }  \tag{7}\\
B: & \mathbf{s 0}_{\mathbf{j}}=\overline{\mathbf{s 0}_{\mathbf{j}-\mathbf{1}}} \mid \mathbf{s} \mathbf{1}_{\mathbf{j}-\mathbf{1}}, & \mathbf{s 1}_{\mathbf{j}}=\overline{\mathbf{s} \mathbf{0}_{\mathbf{j}-\mathbf{1}}} \mid \overline{\mathbf{s} \mathbf{1}_{\mathbf{j}-1}}
\end{array}
$$

Algebraically, constructions (7) become,

$$
\begin{align*}
& \mathbf{s 0}_{\mathbf{j}}(x)=x_{j-1}\left(\mathbf{s 0}_{\mathbf{j}-\mathbf{1}}\left(x^{\prime}\right)+\mathbf{s} \mathbf{1}_{\mathbf{j}-\mathbf{1}}\left(x^{\prime}\right)\right)+\mathbf{s}_{\mathbf{j}-\mathbf{1}}\left(x^{\prime}\right) \\
& \mathbf{s} \mathbf{1}_{\mathbf{j}}(x)=\mathbf{s} \mathbf{0}_{\mathbf{j}}(x)+x_{j-1} \\
& \text { and } \\
& B: \begin{array}{l}
\mathbf{s 0}_{\mathbf{j}}(x)=x_{j-1}\left(\mathbf{s 0}_{\mathbf{j}-\mathbf{1}}\left(x^{\prime}\right)+\mathbf{s 1}_{\mathbf{j}-\mathbf{1}}\left(x^{\prime}\right)+1\right)+\mathbf{s 0}_{\mathbf{j}-\mathbf{1}}\left(x^{\prime}\right)+1 \\
\mathbf{s 1}_{\mathbf{j}}(x)=\mathbf{s 0}_{\mathbf{j}}(x)+x_{j-1}
\end{array} \quad \begin{array}{c}
\text { where } x=\left(x_{0}, x_{1}, \ldots, x_{j-1}\right), x^{\prime}=\left(x_{0}, x_{1}, \ldots, x_{j-2}\right)
\end{array} \tag{8}
\end{align*}
$$

We generate $\mathbf{D J}_{\mathbf{m}, \mathbf{1}}$ from this coset by permutation of the indices, $i$, of $x_{i}$ (tensor permutation). There are $\frac{m!}{2}$ such tensor permutations, (ignoring reversals).
Example 2: Let s0 $\mathbf{3}_{\mathbf{3}}=x_{0} x_{1}+x_{1} x_{2}+x_{2}+1=11100010$. Permuting $x_{0} \rightarrow x_{1}, x_{1} \rightarrow x_{0}, x_{2} \rightarrow x_{2}$, gives $\mathbf{s 0}_{3}^{\prime}=x_{0} x_{1}+x_{0} x_{2}+x_{2}+1=11100100$, where $\mathbf{s 0}_{\mathbf{3}}, \mathbf{s 0}_{3}^{\prime} \in \mathbf{D J}_{\mathbf{m}, \mathbf{1}}$.
We prove Theorem 2 for construction (6). The proof for construction (7) with subsequent tensor permutation is straightforward. Let $\mathbf{f}_{\mathbf{j}}$ be a sequence in $\mathbf{L}_{\mathbf{j}}$ (Definition 1 ), and let $\mathbf{f}_{\mathbf{0}}$ be the length 1 sequence, $\mathbf{f}_{0}=(\beta)$, where $\beta \in Z_{n}, 1 \leq n \leq \infty$. Let $p_{j}, q_{j}$ be complex numbers satisfying,

$$
\begin{align*}
& \quad p_{j}=\mathbf{f}_{\mathbf{j}} \odot \mathbf{s 0}_{\mathbf{j}}, \quad q_{j}=\mathbf{f}_{\mathbf{j}} \odot \mathbf{s} \mathbf{1}_{\mathbf{j}}  \tag{9}\\
& \text { Let } \quad \mathbf{f}_{\mathbf{j}}=\mathbf{f}_{\mathbf{j}-\mathbf{1}} \oplus\left(0, \alpha_{j-1}\right), \bmod n \tag{10}
\end{align*}
$$

$\alpha_{j-1} \in Z_{n}, 1 \leq n \leq \infty, \operatorname{gcd}\left(\alpha_{j-1}, n\right)=1$. Using (10) $\forall \alpha_{j}$ we generate $\mathbf{L}_{\mathbf{j}}$. Combining (9), (6) and (10),

$$
\begin{align*}
p_{j} & =\mathbf{f}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{s 0}_{\mathbf{j}-\mathbf{1}}+\epsilon^{\alpha_{j-1}} \mathbf{f}_{\mathbf{j}-\mathbf{1}} \odot \mathbf{s}_{\mathbf{j}-\mathbf{1}} \tag{11}
\end{align*}=p_{j-1}+\epsilon^{\alpha_{j-1}} q_{j-1},
$$

where $\epsilon=\exp (2 \pi \sqrt{-1} / n)$. Applying,

$$
\begin{equation*}
|\phi p+\theta q|^{2}+|\phi p-\theta q|^{2}=2\left(|\phi|^{2}|p|^{2}+|\theta|^{2}|q|^{2}\right) \tag{13}
\end{equation*}
$$

for the special case $|\phi|^{2}=|\theta|^{2}=1$, to (11) and (12) we get,

$$
\begin{equation*}
\left|p_{j}\right|^{2}+\left|q_{j}\right|^{2}=2\left(\left|p_{j-1}\right|^{2}+\left|q_{j-1}\right|^{2}\right)=2^{j}\left(\left|p_{0}\right|^{2}+\left|q_{0}\right|^{2}\right) \tag{14}
\end{equation*}
$$

Noting that $\left|p_{0}\right|^{2}=\left|q_{0}\right|^{2}=1$, it follows that $\left|p_{j}\right|^{2} \leq 2^{j+1},\left|q_{j}\right|^{2} \leq 2^{j+1}$. Theorem 2 follows directly for a subset of $\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{1}}$ comprising sequences generated by (6). The proof follows for the $\mathrm{RM}(1, m)$ coset of $x_{0} x_{1}+x_{1} x_{2}+\ldots x_{m-2} x_{m-1}$ by replacing construction (6) with constructions (7). Further extension to $\mathbf{D J}_{\mathbf{m}, \mathbf{1}}$ follows by observing that identical tensor-permuting of $\mathbf{f}$ and $\mathbf{s}$ leaves the argument of (11)(12) unchanged. The proof for $\mathbf{D} \mathbf{J}_{\mathbf{m}}$ follows.

## 4 Transform Families With Rows From $\mathbf{L}_{\mathrm{m}}$

From Theorem 2 sequences from $\mathbf{D} \mathbf{J}_{\mathbf{m}}$ have (Almost) flat spectrum under all LUUTs (see Definition 4). By Parseval's theorem the PAPR of sequences from $\mathbf{D} \mathbf{J}_{\mathbf{m}}$ under such transforms is $\leq 2.0$ This section highlights two important LUUT sub-classes, firstly the one-dimensional Consta-Discrete Fourier Transforms (CDFTs), and secondly the $m$-dimensional Constahadamard Transforms (CHTs). An $N \times N$ Consta-DFT (CDFT) matrix has rows from $\mathbf{F} 1_{\mathrm{m}}$ and is defined over $Z_{n}$ by,

$$
\left(\begin{array}{ccccc}
0 & d & 2 d & \cdots & (N-1) d  \tag{15}\\
0 & d+k & 2(d+k) & \cdots & (N-1)(d+k) \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
0 & d+(N-1) k & 2(d+(N-1) k) & \cdots & (N-1)(d+(N-1) k)
\end{array}\right)
$$

$1 \leq n \leq \infty, N \mid n, k=\frac{n}{N}, d \in Z_{k}, \operatorname{gcd}(d, k)=1$, (including the case $d=0$, $k=1$, which is the $N \times N \mathrm{DFT}$ ).

A radix- $2 N=2^{m}$-point CHT matrix has rows from $\mathbf{L}_{\mathbf{m}}$ over $Z_{n}$ and is defined by the $m$-fold tensor sum of CHT kernels,

$$
\left(\begin{array}{cc}
0 & \delta_{0}  \tag{16}\\
0 & \delta_{0}+\frac{n}{2}
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & \delta_{1} \\
0 & \delta_{1}+\frac{n}{2}
\end{array}\right) \oplus \ldots \oplus\left(\begin{array}{cc}
0 & \delta_{m-1} \\
0 & \delta_{m-1}+\frac{n}{2}
\end{array}\right)=\oplus_{i=0}^{m-1}\left(\begin{array}{cc}
0 & \delta_{i} \\
0 & \delta_{i}+\frac{n}{2}
\end{array}\right)
$$

$2 \leq n \leq \infty, n$ even, $0 \leq \delta_{i}<\frac{n}{2} \operatorname{gcd}\left(\delta_{i}, \frac{n}{2}\right)=1$, (including the case $\delta_{i}=0$, $n=2$ ). The Hadamard Transform (HT) is $\oplus^{m} \mathbf{H}$, where $\mathbf{H}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ over $Z_{2}$, and the Negahadamard Transform (NHT) is $\oplus^{m} \mathbf{N}$, where $\mathbf{N}=\left(\begin{array}{ll}0 & 1 \\ 0 & 3\end{array}\right)$ over $Z_{4}$.

### 4.1 The (Almost) Constabent Properties of $\mathbf{D J}_{\mathbf{m}}$

Definition 6 [6] A length $2^{m}$ sequence, s, is Bent, Negabent, Constabent, if it has PAPR $=1.0$ under HT, NHT, and CHT, respectively. It is (Almost) Bent, (Almost) Negabent, (Almost) Constabent, if it has PAPR $\leq 2.0$ under HT, NHT, and CHT, respectively.

From Theorem 2, $\mathbf{D J}_{\mathbf{m}}$ is (Almost) Constabent. More particularly,
Theorem 3 [6] $\mathbf{D J}_{\mathbf{m}, \mathbf{1}}$ is Bent for $m$ even, and (Almost) Bent, with PAPR $=2.0$, for $m$ odd.

Theorem $4[6] \mathbf{D J}_{\mathbf{m}, \mathbf{1}}$ is Negabent for $m \neq 2 \bmod 3$, and (Almost) Negabent, with $P A P R=2.0$, for $m=2 \bmod 3$.

Corollary $5[6] \mathbf{D J}_{\mathbf{m}, \mathbf{1}}$ is Bent and Negabent for $m$ even, $m \neq 2 \bmod 3$.

## 5 Seeded Extensions of $\mathrm{DJ}_{\mathrm{m}}$

$\mathbf{D} \mathbf{J}_{\mathbf{m}}$ is recursively constructed using the initial length 1 CS pair, $\mathbf{s \mathbf { 0 } _ { \mathbf { 0 } }}=$ (0) and $\mathbf{s}_{\mathbf{0}}=(1) . \mathbf{D} \mathbf{J}_{\mathbf{m}}$ is (Almost) Orthogonal to $\mathbf{L}_{\mathbf{m}}$ precisely because $\left|\mathbf{f} \odot \mathbf{s} \mathbf{0}_{\mathbf{0}}\right|^{2}+\left|\mathbf{f} \odot \mathbf{s}_{\mathbf{0}}\right|^{2}=2.0, \forall \mathbf{f} \in \mathbf{L}_{\mathbf{0}} .2 .0$ is the lowest possible value. We can, instead, take any pair of length- $t$ starting sequences $\mathbf{s} \mathbf{0}_{\mathbf{0}}$ and $\mathbf{s} \mathbf{1}_{\mathbf{0}}$, such that,

$$
\begin{equation*}
\left|\mathbf{f} \odot \mathbf{s} \mathbf{0}_{\mathbf{0}}\right|^{2}+\left|\mathbf{f} \odot \mathbf{s} \mathbf{1}_{\mathbf{0}}\right|^{2} \leq v t, \quad \forall \mathbf{f} \in \mathbf{E}_{\mathbf{0}} \tag{17}
\end{equation*}
$$

where $\mathbf{E}_{0}$ is any desired set of length- $t$ sequences, and $v$ is a real value $\geq 2.0$. Let $t=w 2^{u}, w$ odd. We define an ordered subset of $u$ integers, $\mathbf{U}=\left\{q_{0}, q_{1}, \ldots, q_{u-1}\right\}$ for integers $q_{i}, \mathbf{U} \subset \mathbf{Z}_{\mathbf{m}}, q_{i} \neq q_{k}, i \neq k$. We also define $\mathbf{Z}_{\mathbf{m}}^{\prime}=\mathbf{Z}_{\mathbf{m}} \not \subset \mathbf{U} . \mathbf{x}_{\mathbf{U}}$ is the set of two-state variables $\left\{x_{q_{0}}, x_{q_{1}}, \ldots, x_{q_{u-1}}\right\}$ over which a starting seed is described, $\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}^{\prime}}$ is the set of two-state variables $\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\} \not \subset \mathbf{x}_{\mathbf{U}}$ over which $\mathbf{D J} \mathbf{J}_{\mathbf{m}-\mathbf{u}, \mathbf{h}}$ is described, and $\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}}=\mathbf{x}_{\mathbf{U}} \cup \mathbf{x}_{\mathbf{Z}_{\mathbf{m}}^{\prime}}$, where $\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}}$ is a set of length $2^{m-u} t$ linear functions over $Z_{2^{h}} . \mathbf{s} \mathbf{0}_{\mathbf{0}}$ and $\mathbf{s} \mathbf{1}_{\mathbf{0}}$ are functions of $y$ and $\mathbf{x}_{\mathbf{U}}$, where $y$ has $w$ states. $\mathbf{s} \mathbf{0}_{\mathbf{1}}$ and $\mathbf{s} \mathbf{1}_{\mathbf{1}}$ are functions of $y$, $\mathbf{x}_{\mathbf{U}}$, and $x_{g}, g \in \mathbf{Z}_{\mathbf{m}}^{\prime}$. We refer to $x_{g}$ as the 'glue' variable. We then identify sets of seed functions $\boldsymbol{\Theta}\left(y, \mathbf{x}_{\mathbf{U}}, x_{g}\right)$ derived from $\mathbf{s}_{\mathbf{0}}, \mathbf{s} \mathbf{s}_{\mathbf{0}}$ which satisfy (17) for certain fixed (preferably small) $v$.


Theorem 6 The length $t 2^{m-u}$ sequence family $\boldsymbol{\Gamma}\left(y, \mathbf{x}_{\mathbf{Z}_{\mathbf{m}}}\right)=\boldsymbol{\Theta}\left(y, \mathbf{x}_{\mathbf{U}}, x_{g}\right)+$ $\mathbf{D J}_{\mathbf{m}-\mathbf{u}}\left(\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}^{\prime}}\right)$ has correlation $\leq \sqrt{v t 2^{m-u}}$ with the length $t 2^{m-u}$ sequence set $\mathbf{E}_{\mathbf{0}} \oplus \mathbf{L}_{\mathbf{m}-\mathbf{u}}$, where $v$ is given by (17), and $g \in \mathbf{Z}_{\mathbf{m}}^{\prime}$.

Theorem 6 allows us to construct favourable 'tensor cosets' of $\mathbf{D} \mathbf{J}_{\mathbf{m}}$ by first identifying a starting pair of sequences with desirable correlation properties,
i.e. a pair which satisfy (17) for small $v$, and where $\mathbf{E}_{\mathbf{0}}$ may be, say, $\mathbf{F} \mathbf{1}_{\mathbf{u}}, \mathbf{F m}_{\mathbf{u}}$, $\mathbf{L}_{\mathbf{u}}$, or something else. We don't consider $\boldsymbol{\Theta}$ which are, themselves, line graph extensions of smaller seeds, $\boldsymbol{\Theta}^{\prime}$, i.e. $\boldsymbol{\Theta}$ satisfying the following degenerate form are forbidden: $\boldsymbol{\Theta}\left(y, \mathbf{x}_{\mathbf{U}}, x_{g}\right)=\mathbf{\Theta}^{\prime}\left(y, \mathbf{x}_{\mathbf{U}}^{\prime}, x_{a}\right)+x_{a} x_{b}+x_{b} x_{c}+\ldots+x_{q} x_{g}$, for some $a, b, c, \ldots, q, g \notin \mathbf{U}^{\prime}$ but $\in \mathbf{U}$. We identify tensor symmetries leaving PAPR invariant. The symmetry depends on $\mathbf{E}_{\mathbf{0}}$.

Lemma 7 If $\mathbf{E}_{\mathbf{0}}=\mathbf{F u}_{\mathbf{u}}$ the PAPR associated with Rudin-Shapiro extensions of a specific $\boldsymbol{\Theta}\left(y, \mathbf{x}_{\mathbf{U}}, x_{g}\right)$ is invariant for all possible choices and orderings of $\mathbf{U}$ where $|\mathbf{U}|=u$ is fixed by $\boldsymbol{\Theta}$.

We now give a few example constructions which all follow from Theorem 6, coupled with Theorems 3 and 4.

Corollary $\mathbf{8}^{2}$ Let $\mathbf{s} \mathbf{0}_{\mathbf{0}}\left(\mathbf{x}_{\mathbf{U}}\right)$ and $\mathbf{s} \mathbf{1}_{\mathbf{0}}\left(\mathbf{x}_{\mathbf{U}}\right)$ be any two length $t=2^{u}$ Bent Functions in $u$ variables over $Z_{2}$, where $u$ is even. Then $\boldsymbol{\Gamma}\left(\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}}\right)$ comprises (Almost) Bent functions, and when $h=1$, comprises Bent functions for $m-u$ even and functions with PAPR $=2.0$ under the HT for $m-u$ odd.

Example 3: Let $\mathbf{s} \mathbf{0}_{\mathbf{0}}\left(\mathbf{x}_{\mathbf{U}}\right)=x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}, \mathbf{s} \mathbf{1}_{\mathbf{0}}\left(\mathbf{x}_{\mathbf{U}}\right)=x_{0} x_{1}+x_{0} x_{2}+x_{2} x_{3}$ over $Z_{2} . \mathbf{s} \mathbf{0}_{\mathbf{0}}, \mathbf{s} 1_{\mathbf{0}}$ are in $\mathbf{D J}_{4,1}$ so both are Bent. However they do not form a complementary pair. By $j=m-u$ applications of (8) over $Z_{2^{h}}$ with tensor permutation we can use these two sequences to generate the (Almost) Bent family,

$$
\begin{aligned}
& \boldsymbol{\Gamma}\left(\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}}\right)=2^{h-1}\left(x_{g}\left(x_{q_{1}} x_{q_{2}}+x_{q_{0}} x_{q_{2}}\right)+x_{q_{0}} x_{q_{1}}+x_{q_{1}} x_{q_{2}}+x_{q_{2}} x_{q_{3}}+\right. \\
& \left.\sum_{k=0}^{3} b_{k} x_{q_{k}}\right)+2^{h-1} \sum_{k=0}^{j-1} x_{r_{k}} x_{r_{k+1}}+\sum_{k=0}^{j-1} c_{k} x_{r_{k}}+d=\boldsymbol{\Theta}\left(\mathbf{x} \mathbf{U}, x_{g}\right)+\mathbf{D} \mathbf{J}_{\mathbf{j}, \mathbf{h}}\left(\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}^{\prime}}^{\prime}\right)
\end{aligned}
$$

$$
\text { where } \mathbf{U}=\left\{q_{0}, q_{1}, \ldots, q_{u-1}\right\}, \mathbf{Z}_{\mathbf{m}}^{\prime}=\left\{r_{0}, r_{1}, \ldots, r_{m-u-1}\right\}, q_{i} \neq q_{k}, r_{i} \neq r_{k}, i \neq k, b_{k} \in Z_{2}, c_{k}, d \in Z_{2^{h}}
$$ $g \in \mathbf{Z}_{\mathbf{m}}^{\prime}$. By Lemma 7 PAPR invariance is achieved by all possible assignments of $q_{i}, r_{i}$ to $\mathbf{Z}_{\mathbf{m}}$. For $h=1$ $\boldsymbol{\Gamma}\left(\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}}\right)$ is Bent for $j$ even, and has PAPR $=2.0$ under HT for $j$ odd.

Corollary 9 Let $\mathbf{s} \mathbf{0}_{\mathbf{0}}(x)$ and $\mathbf{s} \mathbf{1}_{\mathbf{0}}(x)$ be any two length $t=2^{u}$ Bent and Negabent Functions in $u$ variables over $Z_{2}$, where $u$ is even, and $u \neq 2 \bmod 3$. Then $\boldsymbol{\Gamma}\left(\mathbf{x}_{\mathbf{z}_{\mathbf{m}}}\right)$ comprises (Almost) Bent and (Almost) Negabent functions in $m=u+j$ variables over $Z_{2^{h}}$ and, when $h=1$, comprises Bent and Negabent functions for $j=0 \bmod 6$.

Example 3 is also an example for Corollary 9. Corollaries 2 and 9 and a similar one for Negabent sequences allows us to 'seed' many more Bent, Negabent and Bent/Negabent sequences with degree higher than quadratic.

### 5.1 Families with Low PAPR Under all CDFTs

We now identify, computationally, sets of length- $t$ sequence pairs over $Z_{2}$ which, by the application of (8), can be used to generate families of length

[^1]$N=t 2^{m-u}$ sequences over $Z_{2^{h}}$ which have PAPR $\leq v$ under all length- $N$ CDFTs. In particular we find pairs of length $t=2^{u}$, and present sets of length $2^{m}$ with PAPR $\leq v \leq 4.0$ in Table 1. In [3,8] constructions are provided for quadratic cosets of $\mathrm{RM}(1, m)$ with PAPR upper bounds $\leq 2^{k}, k \geq 1$ under all length- $N$ CDFTs. The seeded constructions of this paper further refine these PAPR upper bounds to include non-powers-of-two. We also present low PAPR constructions not covered in [3,8].

Corollary 10 Let $\mathbf{s} \mathbf{0}_{\mathbf{0}}$ and $\mathbf{s} \mathbf{1}_{\mathbf{0}}$ be length $t=2^{u}$ binary sequences whose onedimensional Fourier power spectrum sum is found, computationally, to have a maximum $=v t$. Then the set of length $2^{m}$ sequences over $Z_{2^{h}}$, constructed from $\mathbf{s 0}_{\mathbf{0}}, \mathbf{s 1}_{\mathbf{0}}$, has one-dimensional Fourier PAPR $\leq v$. Table 1 shows such sets for $u=0,1,2$ and $\mathbf{U} \subset\{0,1,2,3,4\}$, for cases $v \leq 4.0^{3}$.

For the CHT examples previously discussed all choices and orderings of seed variables leave PAPR invariant (Lemma 7). In the case of CDFT PAPR, Lemma 7 does not hold. However tensor shifts of variables do leave PAPR invariant. This leads us to modify our definition as follows. $\mathbf{U}$ is now the ordered subset of $u$ integers, $\mathbf{U}=\left\{z+q_{0}, z+q_{1}, \ldots, z+q_{u-1}\right\}$ for integers $z, q_{i}$ such that $\mathbf{U} \subset \mathbf{Z}_{\mathbf{m}}$ and $q_{i}<q_{i+1}$.

Lemma 11 If $\mathbf{E}_{\mathbf{0}}=\mathbf{F} \mathbf{1}_{\mathbf{u}}$ then the PAPR associated with Rudin-Shapiro extensions of a specific $\boldsymbol{\Theta}\left(y, \mathbf{x}_{\mathbf{U}}, x_{g}\right)$ is invariant for all possible shifts of $\mathbf{U}$, i.e. for all possible values of $z$, given fixed $q_{i}$.

For example, it is found, computationally, that the normalised sum of the power spectrums of $\mathbf{s} \mathbf{0}_{\mathbf{0}}=x_{0} x_{1}+x_{1}+x_{0}$, and $\mathbf{s} \mathbf{1}_{\mathbf{0}}=x_{0} x_{1}$ under the continuous one-dimensional Fourier Transform has a maximum of 3.5396 . Here is the complete set having PAPR $\leq 3.5396$,

$$
\begin{align*}
& \mathbf{3 a}_{\mathbf{a}} \boldsymbol{\Gamma}^{\mathbf{1}}={ }_{\mathbf{3} \mathbf{a}} \boldsymbol{\Theta}\left(\mathbf{x}_{\mathbf{U}}, x_{g}\right)+\mathbf{D} \mathbf{J}_{\mathbf{m}-\mathbf{u}, \mathbf{h}}\left(\mathbf{x}_{\mathbf{Z}_{\mathbf{m}}^{\prime}}\right), \quad \mathbf{U}=\{z, z+1\}, g \in \mathbf{Z}_{\mathbf{m}}^{\prime} \\
& { }_{\mathbf{3} \mathbf{a}} \boldsymbol{\Theta}(p, q, \tau)=2^{h-1}\left(p q+\tau(q+p)+b_{1} q+b_{0} p\right),  \tag{18}\\
& \quad \text { where } \quad b_{0}, b_{1} \in\{0,1\}, \quad x_{i} \in Z_{2^{h}}, \forall i
\end{align*}
$$

The $e$ of $\mathbf{e}^{\boldsymbol{\Gamma}^{\mathbf{s o}}}$ and ${ }_{\mathbf{e}} \boldsymbol{\Theta}$ is an arbitrary categorisation label for the specific seed, and the $s_{i}$ of ${ }_{\mathbf{e}} \boldsymbol{\Gamma}^{\mathbf{s} 0, s_{1}, \ldots, \mathbf{s}_{\mathbf{u}-\mathbf{2}}}$ describe the tensor-shift-invariant pattern of variable indices, where $s_{i-1}=q_{i}-q_{i-1}$. For instance, for our example ${ }_{3 \mathrm{a}} \boldsymbol{\Gamma}^{\mathbf{1}}$, we could choose $\mathbf{U}=\{2,3\}$, where the seed is built from the ANF form ${ }_{\mathbf{3}} \boldsymbol{\Theta}$, e.g. the ANF form $x_{2} x_{0}+x_{3} x_{0}+x_{2} x_{3}+x_{2}+x_{1} x_{5}+x_{5} x_{4}+x_{4} x_{0}+x_{1}+1$ has a PAPR $\leq 3.5396$, where we have constructed our seed over $x_{2}, x_{3}$, and $x_{0}$, 'attached' the line graph $x_{1} x_{5}+x_{5} x_{4}+x_{4} x_{0}$ to it, connecting at $x_{g}=x_{0}$, and added the linear term $x_{1}$. The following set has PAPR $\leq 3.8570$,

[^2]${ }_{\mathbf{3}} \boldsymbol{\Gamma}^{\mathbf{2}}={ }_{\mathbf{3} \mathbf{a}} \boldsymbol{\Theta}\left(\mathrm{x}_{\mathbf{U}}, x_{g}\right)+\mathbf{D} \mathbf{J}_{\mathbf{m}-\mathbf{u}, \mathbf{h}}\left(\mathrm{x}_{\mathbf{Z}_{\mathbf{m}}^{\prime}}\right), \quad \mathbf{U}=\{z, z+2\}, g \in \mathbf{Z}_{\mathbf{m}}^{\prime}$
${ }_{3 \mathrm{a}} \Gamma^{\mathbf{2}}$ has exactly the same algebraic structure as ${ }_{3 \mathrm{a}} \Gamma^{\mathbf{1}}$, but ${ }_{3 \mathrm{a}} \Theta$ is, instead, constructed over $x_{0}, x_{2}, x_{g}$. Sets ${ }_{\mathbf{3 a}} \Gamma^{\mathbf{s}}$ are quadratic sets so, when $h=1$, the union of the sets ${ }_{3 \mathbf{a}} \Gamma^{\mathbf{s}}$ with $\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{1}}$ is a set of binary quadratic forms, so retains minimum Hamming distance of $2^{m-2}$. Table 1 shows $\boldsymbol{\Gamma}$-sets using $1,2,3$-variable seeds with PAPR $\leq 4.0$. We also use reversal symmetry to halve the number of inequivalent representatives for some $\boldsymbol{\Gamma}$ sets, (indicated by 'with R'). ${ }_{1} \boldsymbol{\Gamma}$ of Table 1 is an alternative derivation for a complementary set of size 4 . The size of each $\boldsymbol{\Gamma}$-set is also shown in Table 1, relative to the size, $D$, of $\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{h}}$.

Table 1
Rudin-Shapiro Extensions Using $u+1=1,2,3$-Variable Seeds

| $\Gamma$ | $\frac{\Theta(x g)}{2^{h-1}}=\frac{\Theta(\tau)}{2^{h-1}}$ | $v$ | $\|\boldsymbol{\Gamma}\|$ |
| :---: | :---: | :---: | :---: |
| ${ }_{0} \Gamma$ | 0 | 2.0000 | D |
| $\Gamma$ | $\frac{\Theta\left(x_{z}, x_{g}\right)}{2 h-1}=\frac{\Theta(p, \tau)}{2^{h-1}}$ | $v$ | $\|\boldsymbol{\Gamma}\|$ |
| ${ }_{1} \Gamma$ | $b_{0} p$ | 4.0000 | $2^{1-h} D$ |
| $\Gamma$ | $\frac{\boldsymbol{\Theta ( \mathbf { x } _ { \mathbf { U } } , x _ { g } )}}{2^{h-1}}=\frac{\boldsymbol{\Theta ( p , q , \tau )}}{2^{h-1}}$ | $v$ | $\|\boldsymbol{\Gamma}\|$ |
| ${ }_{2} \Gamma^{1}$ | $\begin{gathered} p q \tau+ \\ \{p q+q, q\}+b_{0} p \text { with } \mathrm{R} \end{gathered}$ | 3.0000 | $\frac{2^{3-2 h}}{m} D$ |
| $3 \Gamma^{1}$ | $p q+b_{1} q+b_{0} p$ | 3.5396 | $\frac{2^{2-2 h}}{m} D$ |
| $3 \mathrm{a} \Gamma^{1}$ | $p q+\tau(q+p)+b_{1} q+b_{0} p$ | 3.5396 | $\frac{2^{2-2 h}}{m} D$ |
| ${ }_{3} \Gamma^{2}$ |  | 3.8570 | $\frac{2^{2-2 h}(m-2)}{m(m-1)} D$ |
| $3 \mathrm{a} \Gamma^{2}$ |  | 3.8570 | $\frac{2^{2-2 h}(m-2)}{m(m-1)} D$ |
| $3 \Gamma^{3}$ |  | 3.9622 | $\frac{2^{2-2 h}(m-3)}{m(m-1)} D$ |
| $3 \mathrm{a} \Gamma^{3}$ |  | 3.9622 | $\frac{2^{2-2 h}(m-3)}{m(m-1)} D$ |
| $3 \Gamma^{4}$ |  | 3.9904 | $\frac{2^{2-2 h}(m-4)}{m(m-1)} D$ |
| $3 \mathrm{a} \Gamma^{4}$ |  | 3.9904 | $\frac{2^{2-2 h}(m-4)}{m(m-1)} D$ |
| $3 \Gamma^{5}$ |  | 3.9976 | $\frac{2^{2-2 h}(m-5)}{m(m-1)} D$ |
| $3 \mathrm{a} \Gamma^{5}$ |  | 3.9976 | $\frac{2^{2-2 h}(m-5)}{m(m-1)} D$ |
| ${ }_{4} \Gamma^{1}$ | $\tau(p+q)+b_{1} q+b_{0} p$ | 4.0000 | $\frac{2^{2-2 h}}{m} D$ |
| $4_{4} \Gamma^{2}$ |  | 4.0000 | $\frac{2^{2-2 h}(m-2)}{m(m-1)} D$ |
| $4_{4} \Gamma^{3}$ |  | 4.0000 | $\frac{2^{2-2 h}(m-3)}{m(m-1)} D$ |
| ${ }_{4} \Gamma^{4}$ |  | 4.0000 | $\frac{2^{2-2 h}(m-4)}{m(m-1)} D$ |
| $4_{4} \Gamma^{5}$ |  | 4.0000 | $\frac{2^{2-2 h}(m-5)}{m(m-1)} D$ |
| $b_{0}, b_{1} \in\{0,1\}, \quad D=\left\|\mathbf{D} \mathbf{J}_{\mathbf{m}, \mathbf{h}}\right\|=\left(\frac{m!}{2}\right) 2^{h(m+1)}$ |  |  |  |

## 6 Discussion and Conclusions

We have shown that Golay-Davis-Jedwab Complementary Sequences, $\mathbf{D J}_{\mathbf{m}}$, are (Almost) Orthogonal to the set $\mathbf{L}_{\mathbf{m}}$ of all linear functions in $m$ binary variables. We identified two sets of transforms, namely the one-dimensional Consta-Discrete Fourier Transforms, and $m$-dimensional Constahadamard Transforms, both of whose rows are from $\mathbf{L}_{\mathbf{m}}$. Using the Rudin-Shapiro construction we identified many seeds from which to construct infinite sequence families
with (Almost) Constabent properties, and other seeds with low PAPR under one-dimensional Consta-DFTs. In this way we identified new low PAPR families not necessarily limited to quadratic degree.

## References

[1] J.Brillhart,P.Morton, "A Case Study in Mathematical Research: The Golay-Rudin-Shapiro Sequence," American Mathematical Monthly, Vol 103, Part 10, pp 854-869, 1996
[2] A.Canteaut,C.Carlet,P.Charpin,C.Fontaine, "Propagation Characteristics and Correlation-Immunity of Highly Nonlinear Boolean Functions," EUROCRYPT 2000, Lecture Notes in Comp. Sci., Vol 1807, pp. 507-522, 2000
[3] J.A.Davis,J.Jedwab, "Peak-to-mean Power Control in OFDM, Golay Complementary Sequences and Reed-Muller Codes," IEEE Trans. Inform. Theory, Vol 45, No 7, pp 2397-2417, Nov 1999
[4] M.J.E.Golay, "Complementary Series", IRE Trans. Inform. Theory, Vol IT-7, pp 82-87, Apr 1961
[5] T.Høholdt,H.E.Jensen,J.Justesen, "Autocorrelation Properties of a Class of Infinite Binary Sequences," IEEE Trans on Information Theory, Vol 32, No 3, pp 430-431, May 1986
[6] M.G.Parker, "The Constabent Properties of Golay-Davis-Jedwab Sequences," Int. Symp. Information Theory, Sorrento, Italy, June 25-30, 2000
[7] M.G.Parker,C.Tellambura, "Golay-Davis-Jedwab Complementary Sequences and Rudin-Shapiro Constructions," To be Submitted, Preprint available on /~matthew/MattWeb.html, 2000
[8] K.G.Paterson, "Generalized Reed-Muller Codes and Power Control in OFDM Modulation," IEEE Trans. Inform. Theory, Vol 46, No 1, pp. 104-120, Jan. 2000
[9] W.Rudin, "Some Theorems on Fourier Coefficients", Proc. Amer. Math. Soc., No 10, pp. 855-859, 1959
[10] H.S.Shapiro, "Extremal Problems for Polynomials", M.S. Thesis, M.I.T., 1951


[^0]:    Some preliminary definitions:
    Length $N$ vectors $\mathbf{a}, \mathbf{b}$, where $\mathbf{a} \in Z_{P}^{N}, \mathbf{b} \in Z_{Q}^{N}$, and $a_{j}, b_{j}$ are sequence elements of $\mathbf{a}$ and $\mathbf{b}$, respectively. We define,
    Correlation: $\mathbf{a} \odot \mathbf{b}=\sum_{j=0}^{N-1} \epsilon^{\mu a_{j}-\lambda b_{j}}$, where $\epsilon=\exp (2 \pi \sqrt{-1} / \operatorname{lcm}(P, Q)), \mu=\frac{\operatorname{lcm}(P, Q)}{P}, \lambda=\frac{\operatorname{lcm}(P, Q)}{Q}$, where lcm means 'least common multiple'.
    Orthogonal: $\mathbf{a}$ and $\mathbf{b}$ are 'Orthogonal' to each other if $\mathbf{a} \odot \mathbf{b}=0$.
    (Almost) Orthogonal: $\mathbf{a}$ and $\mathbf{b}$ are '(Almost) Orthogonal' to each other if $0 \leq|\mathbf{a} \odot \mathbf{b}| \leq \sqrt{2 N}$.
    Roughly Orthogonal: a and $\mathbf{b}$ are 'Roughly Orthogonal' to each other if $0 \leq|\mathbf{a} \odot \mathbf{b}| \leq B$, for some pre-chosen $B$ significantly less than $N$.
    $\overline{1}$ Supported by NFR Project Number 119390/431

[^1]:    2 This corollary has also recently been presented in Theorems 4 and 5 of [2], but not in the context of Rudin-Shapiro.

[^2]:    3 further results for $u=3$ can be found in [7]

