USING REDUNDANT NUMBER REPRESENTATIONS FOR EFFICIENT VLSI IM-
PLEMENTATION OF MODULAR ARITHMETIC
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Introduction ~ The VLSI implementation of multiplication is usually achieved as an addition of par-
tial products. Recent research bas proposed the use of Redundant Number Representations (RNR) to
limit the carry propagation inherent within these additions [1], enabling high-speed multiplier designs.
Multiplication over a modulus is oficn accomplished by interleaving the partial product additions with
a modular adjustment to prevent word growth [2]. However, for moduli other than 2V or 2¥ =+ 1, this
mmwmﬂmmmummumm‘mmummmw
ditions. This complication arises because the binary data is represented using consecutive powers of 2
(canonical basis). In this paper, an initial basis conversion of the dats is proposed. Conventional binary
logic is retained but naucuhnhﬁmwmhumofﬂ(ap-m) The order of 8,
mod M, is N if (§ 1 where (5™}, # 1 for n < N. N is equal to or alightly greater than the
}mw‘uﬂmwummmw.mdpmhmmmw
bit rotation. By concatenating r basis conversions (BCs), multiplications by 83°.67°.....4"7", mod
M, are achieved using only bit rotations. M:tulhwnbwbmmm(nc)ﬁﬂxmth
design of fully symmetric and systolic general modular multipliers, requiring no modular adjustment.
In general, these new bases are redundant, some or all of the integers 0,1,..., M — 1 having multiple
representations in the new basis. Whereas conventional RNR schemes ease the additive task, the RNRs
discussed here oase lhemﬂhphuhuhnk,modﬂuwmtbangehmmhdbyad@t’ﬁdmin‘
of the dsta wordlength.

Modular Multiplication Using Basis Conversion Consider the product,
= (ab)y, (1)

and the following conditions,
" 'GWNBI)'--'pn—l}'
2. p has order N, mod M, where N is not much greater than the input wordlength [log,(A)].
3. The minimum number of bits required to form a canonical S-basis, mod M, is equal to or
slightly less than N.
If the above conditions are met, (1) is conveniently accomplished by converting a and b to a S-basis,
then computing (1) using bit rotation, (Fig 1). If b is known beforehand, then log,(b), mod M can
be passed directly to the rotation module (Fig 2). For example, if M = 547 (s prime), and 8 = 8,
where 3 has order 14, mod 547, then a 2 — 3 BC enables the rotational computation of the products,
¢ = (a.3")ger 0 < n < 13. The input is conventional 10-bit, 2-basis data, the o/p 14-bit 3-basis data
(RNR).U¢=342=0101010110M
st g0 . . . 32 3 3
= 0 0 1000111 0 0 0 =342
{Note, a minimum of 12 bits are necessary to represent every integei from 0. ..548 iu a canonical 3-basis).
The product is performed by rotating a’ n times within a 14-bit wordlength. f n = 0,
3 32 . 8?7 3 8
@)= 1 1 0000000100 0 1 =204

The Number Theoretic Transform (NTT) is given by,

N-1
X[ = (Z .[uw) &)

where £ has order N, mod M.
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The BC-based multiplier can be used to compute all products inherent within the NTT. For i
the previous example can form part of a 14-point NTT, mod 547, (Fig 3). Alll‘diltinctptoduchof
s[n] are achieved using one 2 ~ 3 BC.

Modular Multiplieation Using Concatenated Basis Conversion Conxaidez (1) again, and the follow-
ing conditions for the concatenation of * BCs,

1. dbe{[[/zs A} where 0 < n; < N:.

2. £ has order N;, mod M, 0 < i < r, where all N; are equal to or slightly larger than
[loga(A1)].

3. The minimurn number of bits required to form a canonical S;-basis, mod M, is equal to or
slightly less than N;, 0< i< r.

If the above conditions are met for » = 2, (1) is conveniently accomplished as shown in Fig 4, where
b= F3°.672. As a opecial case, if ged(Ng, Ny) = 1, then an element g exists, such that,

9=(8 )y 0<no<No 0Sn <Ny 3

and Fig ¢ can compute all distinet products, a.¢% a.g9%,...,a.¢¥"~1 mod M. Extending the previous
example: Choose I = 847, fp = 3 and ) = 46 to implement products of the form, (a.3"°.46™}, .,
0 < no < 13, 0 < n; < 12. (Note, 5, bas order 13, mod 547, and 12 bits are necessary to represent
every integer from 0...546 in a canonical 3 or 46 basis). The multiplier uses 2 — 3 and 3 — 46 BCa,
interleaved with rotaiion modules. This system can form part of & 14.13 = 182-point NTT, mod 547.

Systolic Baxis Converters Although basis conversion can be accomplished using ROMs, it is highly
desirable {o use syatolic arzays operating at the bit-level. The authors are currently developing & — 5 BC
architectures of the form shown in Fig 6. These are modifications of the standard sum-carry cell, where
consecutive rows and columns represent consecutive powers of @ and B, respectively. The designs are
fully-pipelined down to the cell level, where each cell is identical, comprises as little as three or four bits,
and can be specified by a small state transition table. Instead of bits representing consecutive powers of
the basis, two or three bits will be grouped to form a ’digit-set’, ({0,do}, {0,d:}, {0, d3},.. . etc), where
oach identical digit-set is weighted by consecutive powers of the basis. There are 'Modulus-Dependent’
and "Modulus-Independent’ BCs. The ’Modulus-Dependent’ BCs operate over specific moduli and use
small cells. However they require special border cells and data offsets and are, to date, hard to find. The
'Modulus-Independent’ BCs, on the other hand, exist for all bases and are easily found, but the cell sise
increases with basis. ’Modulus-Independent’ 2 — 7 and 7 — 2 BCs form part of the general modular
multiplier example, discussed next.

General Modular Multiplication Using Multiphutxu and Additive RNR By combining the ’rota-
tional’, multiplicative RNR, discussed in this paper with ‘partial-product’, additive RNR [1], general
modular multiplier designs are possible over a wide range of moduli, including prime and minimally-
composite moduli. As an example, consider a general modular multiplier where M = 329554487
(= 1123.203459), (Figs 6, 7, and 8). This can be implemented using basis-conversion of a and b from &
&hnnm;thewnmhonnl digit-set, {0, 1}, and of wordlength 26, to &’ and ¥, in & 7-baaix, using the

" digit-set {0, 1}, {0,2},{0,3}), and of wordlength 11 (Fig 6, Note, the digit-scts are duplicated as both
@ and b are being converted). This allows the product ¢’ = a’.l to be compuied by a parallel modular
multiplier (Fig 7) using the additively redundant digit-set, ({0, 1}, {0, 2}.{0,4}), before final conversion
of ¢ back to a 2-basis of wordlength 31 bits (Fig 8). (Note, the 7-basis input data is permuted sys-
tolically to a v/7-biais, prior to input into the parallel multiplier). A 28-bit, 2-basis, parallel modular
multiplier has been replaced by an (11 x 3)-bit 7-basis parallel modular multiplier. The minimal increase
in wordlength (from 29 to 33 bits) is offset by the regularity and elimination of modular adjustment
bardware. Multipliers of this form have a very high throughput and become increasingly competitive for
larger moduli and when used for higher arithmetic functions such as exponentiation.

Conclusion Novel, marginally redundant basis representations have been proposed to remove the
need for modulus adjustment within the modular multiplier and enable rotational solutions to a subeet
of products. By eoncatenating basis conversions, this subset of possible products increases. The multipli-
ers are well suited to xignal processing tasks such as the NTT, where multiplications by powers of a kernel
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required. Highly pipelined systolic basis converters were then outlined which operate on digit-sels’
instead of bits and, finally, the inherent symmetry exhibited by a low order basis over & given modulus
exploited to realise a general parallel modular multiplisr which is regular and comprises only » few
simple coll types. The redundancy due to the unusual basis representation is coupled with additive re-
dundaney, which Emits carry propagatiou, to schieve a very high throughput, systolic modular multiplier.

[1] 5.C.Xnowles,J.G.McWhirter, *The Application of Redundast Number Systems to the Design of
VLSI Recursive Filters®, Proc of IEE Coll an Maths for Sig Proc, pp 2143, '88

[3] E.P Brickell, "A Past Modular Multiplication Algarithm with Application to Two Key Cryptogzaphy,
Advences in Cryplogrephy, CRYPTO 88, PLENUM NY, pp 120-126, 88
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