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Abstract

A class of bipolar sequences is identified which has opti-
mally flat spectrum using the Complex Reverse Jacket
Transform (CRJT). This class is found to correspond
exactly to the family of Bent bipolar sequences using
the Walsh-Hadamard Transform. In total there are 576
such transforms for which this class has optimal spec-
trum of which the CRJT is one. The spectral properties
of odd-power-of-two length bipolar sequences are also
discussed.

1. Introduction

The Complex Reverse-Jacket Transform (CRJT)
[2] can be used for image compression and multi-
dimensional spectral analysis. It is a close relative of
the Walsh-Hadamard Transform (HT) and can also be
used, cryptographically, for S-box design [4]. Conven-
tionally, Bent Functions, derived from Bent Sequences,
have been used for S-box design, having an optimum
distance from the affine functions. Bent Sequences have
optimally flat spectra using the HT. In the same way
one could use Complex-Reverse-Jacket-Bent (CRJT-
Bent) sequences for the construction of CRJT Bent
Functions which are optimally distant from linear func-
tions of rows of the CRJT matrix [3]. CRJT-Bent se-
quences have optimally flat spectra using the CRJT.
This paper shows that Bent sequences are also CRJT-
Bent, and vice versa. It also identifies a total of 576
such transforms for which Bent sequences have optimal
spectra.

The CRJT can be expressed as follows,

C4.2t = [Pγ

4.2t ]
TC4.2t [Pς

4.2t ] (1)

where P
γ

4.2t and Pς
4.2t are permutation matrices, C4.2t

is defined as follows,

C4.2t = C4.20 ⊗
(

⊗t−1

i=0
H

)

(2)
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H =

(

1 1
1 −1

)

is the 2-point Discrete Fourier Trans-

form (DFT), and,

C4.20 =









1 1 1 1
1 −1 1 −1
1 −i −1 i

1 i −1 −i






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The permutation matrices are,

P
γ

4.2t =









1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0









⊗ It,

Pς
4.2t = It+1 ⊕ (

(

0 1
1 0

)

⊗ It) = Pς
4.20 ⊗ It

and It is the 2t × 2t identity matrix. For notational
convenience we abbreviate (1) to,

Ct = [Pγ
t
]TCt[P

ς
t
] (3)

and (2) to,
Ct = C0 ⊗Ht (4)

where Ht is the 2t × 2t Walsh-Hadamard transform.
For instance, C0 means C4.20 .

We show that, for t even, length 2t bipolar se-
quences having a flattest CRJT spectrum coincide with
bipolar sequences having a flattest HT spectrum, and
also coincide with bipolar sequences having a flattest
spectrum under the transform defined by the Kronecker
product of a 4-point Discrete Fourier Transform (DFT)
with repeated copies of the 2-point DFT. Computa-
tional results for lengths where t is odd are also pre-
sented.

2. The Complex Reverse Jacket Peak Factor

The CRJT obeys Parseval’s Theorem, i.e. the
transform conserves energy. It is therefore of interest



to know which subset of vectors have a CRJT spec-
trum which spreads out the energy most evenly, i.e.
which vectors have a flat or flattish CRJT spectrum.
One measure of the flatness is the Peak Factor of a
sequence, i.e. the Peak-to-Mean Power Ratio of the
sequence, and this is defined below.

Let D be the length 4.2t CRJT of the length 4.2t

vector a, specified by,

D = Cta

Definition 1 The CRJT Peak Factor (CRJTPF) of a

is defined as follows,

CRJTPF(a) = 2−(t+2)max{DiD
∗
i |0 ≤ i < 2t+2}

where the Di are the 2t+2 elements of the vector D. It
is easy to show that 1.0 ≤ CRJTPF(a) ≤ 2t+2 if a is
unimodular (unimodular means each element of a has
a magnitude of 1).

Definition 2 A unimodular sequence is described as
’Bent’ if it has a Peak Factor of 1.0 under the
Hadamard Transform (HT), i.e. it has a ’Hadamard
Peak Factor’ (HPF) of 1.0.

Definition 3 A unimodular sequence is CRJT-Bent if
it has a CRJTPF of 1.0.

2.1. The CRJT Peak Factor of Bipolar Se-

quences

The output permutation, Pγ , does not alter the
CRJT spectral values, but just re-orders them. So it is
sufficient to study the CRJTPF using the transform,

CtP
ς
t

(5)

The input permutations, as specified by Pς
t
, are

given below for lengths N = 4, 8, 16, respectively,

(0)(1)(2, 3)
(0)(1)(2)(3)(4, 6)(5, 7)
(0)(1)(2)(3)(4)(5)(6)(7)(8, 12)(9, 13)(10, 14)(11, 15)

The CRJTPF of a sequence can be computed by
first permuting the sequence using Pς

t
, then multiply-

ing the resultant vector by Ct, then point-multiplying
the resultant vector by it’s complex conjugate and find-
ing the maximum value of the resultant vector. Bipolar
sequences form equivalence classes under the CRJTPF
measure, as shown in Appendix A for lengths 4 and 8.
For lengths 4,8,16 it is found that the optimum equiv-
alence class has CRJTPFs 1.0, 2.0, 1.0, respectively.

2.2. Example

Consider the bipolar vector a = (1, 1,−1, 1). The
CRJTPF of this vector is computed as follows.

• Permute a using Pς
t

to give (1, 1, 1,−1).

• Premultiply the permuted vector by C4 to give
2(1, 1,−i, i).

• Point-multiply this resultant vector by it’s com-
plex conjugate and divide by 4 to get (1, 1, 1, 1).
The maximum value in this vector is 1 so
CRJTPF(a) = 1.0. Therefore a is CRJT-Bent.

• To compute the CRJTPF it wasn’t necessary to
perform the final permutation [Pγ

t
]T.

Lemma 1 For t odd, the CRJTPF of a length 2t+2

bipolar sequence is always > 1.0.

Proof of Lemma 1: For t odd, the vector D,
which is the CRJT of a bipolar vector, will have an
output magnitude of

√
2t+2 only if all the elements of

D are complex. But this is impossible because the
CRJT matrix has a subset of rows comprising only ±1,
so D has real elements.

As a result of Lemma 1 we only need to consider
CRJT-Bent bipolar sequences for t even.

3. Two Theorems Regarding CRJT-Bent Bipo-

lar Sequences

We state two Theorems for t even.

Theorem 1 CRJT-Bent bipolar sequences are invari-
ant (i.e. remain CRJT-Bent) under the permutation
P ς

t for all length 2t+2 bipolar sequences where t is even.

Theorem 2 CRJT-Bent bipolar sequences are also
Bent, and vice versa. These sequences only occur for
lengths 2t+2 when t is even.

The proofs for Theorems 1 and 2 occur as a result
of the proofs of Theorem 3 and Corollary 1 in Section
5.

As an example of Theorem 2, the CRJTPF of bipo-
lar sequences of length 2t+2 constructed from ’line
graphs’ which are Reed-Muller 1 cosets with a Reed-
Muller 2 coset leader with Algebraic Normal Form
x0x1 + x1x2 + x2x3 + . . . + xtxt+1, or any permuta-
tion of the t + 2 variables, were tested for various t

[5] (These are Golay-Davis-Jedwab (GDJ) sequences).
It is known that such sequence cosets have optimum
Hadamard Peak Factor (HPF) in each case (Bent when



t + 2 is even). It is found, computationally, that these
sequences always have optimal CRJTPF, where CR-
JTPF = HPF. In other words the CRJTPF for this
coset is 1.0 for t even, and 2.0 for t odd. The case
where t is even agrees with Theorem 2, and the case
where t is odd suggests a similar Theorem when the
CRJTPF = 2.0, at least for GDJ sequences, but this is
not proved in this paper.

4. A More General Theorem

Our method of proving Theorems 1 and 2 is to prove
a more general theorem, Theorem 3, and Corollary 1.
The 4-point Discrete Fourier Transform (DFT) is,

W2 =









1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i









Let Wt = W2 ⊗ Ht. Let G2 be any row/column
permutation of W2, and let Gt = G2⊗Ht. There are
576 G2 matrices, being (number of row permutations
× number of column permutations) = 24× 24 = 576.
Each row/column permutation produces a different G2

matrix.

Theorem 3 Bent bipolar sequences are exactly the
class of sequences with optimally flat spectrum using
Gt, and vice versa. Such sequences are ”Gt-Bent”.

A corollary of Theorem 3 is as follows,

Corollary 1 Gt-Bent bipolar sequences are G′
t-Bent,

and vice versa, where G′
t is a row/column permutation

of Gt.

Corollary 2 Length N = 2s Bent and/or Gt-Bent
bipolar sequences, s even, form equivalence classes un-
der any combination of permutations of the elements
i, i + N

4 , i + 2N
4 , i + 3N

4 , 0 ≤ i < N
4 .

5. Proofs of Theorems 1-3

Theorems 1 and 2 follow immediately from the
proofs of Theorem 3 and Corollary 1 as follows.

5.1. Proof of Theorem 3

Let B = [H2⊗Ht]a, and E = [G2 ⊗Ht]a for some
bipolar vector, a. Then [H2 ⊗ It]B = [I2 ⊗Ht]a, and
[G2 ⊗ It][H2 ⊗ It]B = [G2 ⊗Ht]a. Finally,

E = [G2H2 ⊗ It]B = [G2 ⊗Ht]a = Gta (6)

Therefore if B is the HT of a, then E is computed
by the action of G2H2 on length-4 independent subse-
quences of B. Let G2 = W2. Then,

G2H2 = W2H2 =









4 0 0 0
0 0 2 + 2i 2− 2i

0 4 0 0
0 0 2− 2i 2 + 2i









(7)

For t even and a Bent the elements of B are ±1 (af-
ter normalisation). Therefore the action of W2H2 on
length-4 subsequences of B produces elements of E

which all have magnitude 1 (after normalisation by 1
4 ).

The 24 matrices, G2, which are column permutations
of W2, produce 24 matrices, G2H2, which are column
permutations of (7) to within a sign-change, and there-
fore all give E with a flat spectrum for B Bent. The 24
row permutations of W2 only affect the position of the
elements in E, not their value. This proves that Bent
bipolar sequences are also optimally flat (’Gt-Bent’)
using any one of the 576 Gt transforms. Let us now
prove that bipolar sequences which are Gt-Bent are
also Bent. Initially let G2 = W2. Assume a is not
Bent. Can a be Wt-Bent? Let us try and make E a
flat spectrum. From (7), for each length-4 subsequence
of B, acted on by W2H2, E can only be flat if elements
at positions 1 and 2 are ±1. Call elements at positions
3 and 4, p and q (real). Then |(2±2i)p+(2∓2i)q| 6= 4
unless |p| = |q| = 1, in which case a is Bent. Therefore
if a is not Bent, then it cannot be Wt-Bent. Row-
column permutations of W2 do not change this argu-
ment. Hence Theorem 3 is proved.

5.2. Proof of Corollary 1

From Theorem 3: If a is Gt-Bent, then a is Bent.
If a is Bent then a is G′

t-Bent.

5.3. Proofs of Theorems 1 and 2

Theorems 1 and 2 follow by observing that Ct and
Ct are row/column permutations of Wt.

6. What About When t is Odd?

Computational results for low t suggest that, for t

odd, the optimum equivalence class is exactly the same
for both CRJT and HT. This is computationally proved
for t = 1 (length 8), and stated in Lemma 2 below.
It is already known that bipolar sequences with HPF
< 2.0 exist for t odd, t ≥ 15. The optimum HPF is
2.0 for t = 3, 5, 7, and it is not known for t = 9, 11, 13.
The study of optimum HPF for t odd is equivalent to
finding the minimum ’Covering Radius’ of the First-
Order Reed-Muller Code [1].



However a subsequent alternative proof of Lemma 2
suggests that the optimum equivalence class may not be
identical for both CRJT and HT when odd t becomes
large. Further work will seek to clarify this situation.

Lemma 2 Let t = 1 and a be a bipolar vector. The set
of length 8 bipolar sequences with CRJTPF = 2.0 are
exactly the set of bipolar sequences with HPF = 2.0.

Proof of Lemma 2: This has already been
proved computationally. This proof is given to show
why the property probably cannot be extended to
all odd t. When t = 1 the sequences with CR-
JTPF = 2.0 have a D vector whose elements, a + bi

(before normalisation), must be taken from the set
{±4,±4i,±2 ± 2i,±2,±2i, 0}. This value set is re-
stricted enough to ensure that the HPF is also 2.0.

However, when t = 3 for length 32 sequences,
a CRJTPF = 2.0 will probably not guarantee HPF
= 2.0 as there could be pathological elements such as

6 + 4i which satisfy 62+42

32 ≤ 2.0, but do not satisfy
(6+4)2

32 ≤ 2.0. We have not yet checked the length 32
case computationally. In general we do not expect the
equivalence of Lemma 2 to hold for t > 2.

7. Conclusion

This paper shows that the class of Bent bipolar se-
quences of length 2t, t even, also have optimally-flat
spectra using the Complex Reverse-Jacket Transform
(i.e. they are CRJT-Bent), and vice versa. More gen-
erally, there are 576 transform matrices which are row-
column permutations of the CRJT, and for each trans-
form, Bent bipolar sequences coincide with the class of
sequences with optimally flat magnitude spectra using
the transform. Computational results suggest the opti-
mal class coincides for t odd aswell, but the situation is
less clear here. CRJT-Bent sequences define functions
for S-boxes which are resistant to correlation attack us-
ing sequences constructed from linear combinations of
rows of the CRJT.

8. Appendix A

All bipolar sequences are represented in binary
form, 0 for 1, and 1 for −1.

Length 4 Bipolar Sequences

CRJTPF is 4.000000:

0000,0110,1001,1111,

CRJTPF is 2.000000:

0011,0101,1010,1100,

CRJTPF is 1.000000:

0001,0010,0100,0111,1000,1011,1101,1110,

There are 3 equivalence classes, 16 messages displayed

-------------------------------------------

Length 8 Bipolar Sequences

CRJTPF is 8.000000:

00000000,00111100,01010101,01101001,10010110,10101010,11000011,11111111,

CRJTPF is 4.500000:

00000001,00000010,00000100,00001000,00010000,00010101,00010110,00011100,

00100000,00101001,00101010,00101100,00110100,00111000,00111101,00111110,

01000000,01000011,01000101,01001001,01010001,01010100,01010111,01011101,

01100001,01101000,01101011,01101101,01110101,01111001,01111100,01111111,

10000000,10000011,10000110,10001010,10010010,10010100,10010111,10011110,

10100010,10101000,10101011,10101110,10110110,10111010,10111100,10111111,

11000001,11000010,11000111,11001011,11010011,11010101,11010110,11011111,

11100011,11101001,11101010,11101111,11110111,11111011,11111101,11111110,

CRJTPF is 4.000000:

00001111,00110011,01011010,01100110,10011001,10100101,11001100,11110000,

CRJTPF is 2.500000:

00000111,00001011,00001101,00001110,00010011,00011001,00011010,00011111,

00100011,00100101,00100110,00101111,00110001,00110010,00110111,00111011,

01000110,01001010,01001100,01001111,01010010,01011000,01011011,01011110,

01100010,01100100,01100111,01101110,01110000,01110011,01110110,01111010,

10000101,10001001,10001100,10001111,10010001,10011000,10011011,10011101,

10100001,10100100,10100111,10101101,10110000,10110011,10110101,10111001,

11000100,11001000,11001101,11001110,11010000,11011001,11011010,11011100,

11100000,11100101,11100110,11101100,11110001,11110010,11110100,11111000,

CRJTPF is 2.000000: (112 sequences)

00000011,00000101,00000110,00001001,00001010,00001100,00010001,00010010,

00010100,00010111,00011000,00011011,00011101,00011110,00100001,00100010,

00100100,00100111,00101000,00101011,00101101,00101110,00110000,00110101,

00110110,00111001,00111010,00111111,01000001,01000010,01000100,01000111,

01001000,01001011,01001101,01001110,01010000,01010011,01010110,01011001,

01011100,01011111,01100000,01100011,01100101,01101010,01101100,01101111,

01110001,01110010,01110100,01110111,01111000,01111011,01111101,01111110,

10000001,10000010,10000100,10000111,10001000,10001011,10001101,10001110,

10010000,10010011,10010101,10011010,10011100,10011111,10100000,10100011,

10100110,10101001,10101100,10101111,10110001,10110010,10110100,10110111,

10111000,10111011,10111101,10111110,11000000,11000101,11000110,11001001,

11001010,11001111,11010001,11010010,11010100,11010111,11011000,11011011,

11011101,11011110,11100001,11100010,11100100,11100111,11101000,11101011,

11101101,11101110,11110011,11110101,11110110,11111001,11111010,11111100,

There are 5 equivalence classes, 256 messages displayed

---------------------------------------
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