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Abstract: The natural Hilbert Space of quantum particles can implement maximum-

likelihood (ML) decoding of classical information. The ’Quantum Product Algorithm’ (QPA) is

computed on a Factor Graph, where function nodes are unitary matrix operations followed by

appropriate quantum measurement. QPA is like the Sum-Product Algorithm (SPA), but without

summary, giving optimal decode with exponentially finer detail than achievable using SPA. Graph

cycles have no effect on QPA performance. QPA must be repeated a number of times before

successful and the ML codeword is obtained only after repeated quantum ’experiments’. ML

amplification improves decoding accuracy, and Distributed QPA facilitates successful evolution.

Keywords: Factor Graphs, Quantum Computation, Quantum Algorithms, Sum Product

Algorithm, Graph Algorithms
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1 Introduction

Recent interest in Turbo Codes [2] and Low Density Parity Check Codes [4, 6] has fuelled

development of Factor Graphs and associated Sum-Product Algorithm [5, 1] (SPA), with ap-

plications to error-correction, signal processing, statistics, neural networks, and system the-

ory. Meanwhile the possibility of Quantum Computing has sparked much interest [9, 10], and

Quantum Bayesian Nets have been proposed to help analyse and design Quantum Computers

[12, 11]. This paper links these areas of research, showing that quantum resources can achieve

maximum-likelihood (ML) decoding of classical information. The natural Hilbert Space of a

quantum particle encodes a probability vector, and the joint-state of quantum particles realises

the ’products’ associated with SPA. SPA summary is omitted as quantum bits (qubits) nat-

urally encode the total joint-probability state. Dependencies between vector indices become

’entanglement’ in quantum space, with the Factor Graph defining dependency (entanglement)

between qubits. Graph function nodes are implemented as unitary matrix 2 -vector products

followed by quantum measurement. This is the Quantum Product Algorithm (QPA). As QPA

avoids summary it avoids problems encountered by SPA on graphs with short cycles. More-

over, whereas SPA is iterative, using message-passing and activating each node more than once,

QPA does not iterate but must successfully activate each node only once. However the (severe)

drawbacks with QPA are as follows: 1) Each function node must be repeatedly activated until

it successfully ’prepares’ it’s local variable nodes (qubits) in the correct entangled state - any

activation failure destroys evolution in all variable nodes already entangled with local variables.

2) Once a complete Factor Graph has successfully evolved, final quantum measurement only

delivers the ML codeword with a certain (largest) probability. Repeated successful evolutions

then determine the ML codeword to within any degree of confidence. This second drawback

can be overcome by suitable ”ML Amplification” of QPA output, prior to measurement.

Section 2 presents QPA, highlighting its ability to deliver the optimal output joint-state,

unlike SPA. Quantum systems describe the exact joint-state by appropriate ’entanglement’ with

and measurement of ancillary qubits. Section 3 considers a simple example of QPA on Quantum

Factor Graphs, showing that iteration on graphs with cycles is unnecessary because QPA avoids

premature summary. Section 4 shows how to amplify the likelihood of measuring the ML

codeword from QPA output. Unfortunately QPA must be repeated many times and/or executed

in parallel to have a hope of successful completion. Suitable distributed QPA scheduling is

discussed in Section 5, and it is argued that successful QPA completion is conceivable using

2’Unitary’ means that U satisfies UU
† = I, where † means ’conjugate transpose’.
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asynchronous distributed processing on many-node Factor Graphs. This paper does not deal

with phase properties of quantum computers. It is expected that the inclusion of phase and

non-diagonal unitary matrices will greatly increase functionality of the Quantum Factor Graph.

The aim of this paper is not to propose an immediately realisable implementation of a

quantum computer. Rather, it is to highlight similarities between graphs for classical message-

passing, and graphs that ’factor’ quantum computation. The paper also highlights the differ-

ences between the two graphs: whereas classical graphs can only ever compute over a tensor

product space, the quantum graph can compute over the complete entangled (tensor-irreducible)

space.

2 The Quantum Product Algorithm (QPA)

2.1 Preliminaries

Consider the Factor Graph of Fig 1.

x0 x1Uf

Figure 1: Two-Qubit Factor Graph

Let Uf =



















f0 0 0 0

0 f1 0 0

0 0 f2 0

0 0 0 f3



















, and Ug =



















g0 0 0 0

0 g1 0 0

0 0 g2 0

0 0 0 g3



















, where |gk|2 = 1 − |fk|2,
and f∗

kgk + fkg
∗
k = 0, ∀k.

’∗’ means complex conjugate.

Let Ufg =







Uf Ug

Ug Uf






. Ufg is unitary, and the Uf of Fig 1 and subsequent figures always

implies the action of Ufg together with the measurement of an ancillary qubit, z, as described

below. A qubit, xi, can be in states 0 or 1 or in a statistical superposition of 0 and 1. Let

qubits x0, x1 be initialised (by the black boxes) to states x0 = (α0, β0)
T and x1 = (α1, β1)

T ,

where αi, βi are complex probabilities such that |αi|2 + |βi|2 = 1. For instance, x0 is in states 0

and 1 with probabilities |α0|2 and |β0|2, respectively. Let an ancillary qubit, z, be initialised to

state 0, i.e. z = (1, 0). Then the initial joint probability product-state of qubits x0, x1, z is A =

(α0, β0)
T ⊗ (α1, β1)

T ⊗ (1, 0)T = (α0α1, β0α1, α0β1, β0β1, 0, 0, 0, 0)
T = (s0, s1, s2, s3, 0, 0, 0, 0)

T ,

where |s0|2 + |s1|2 + |s2|2 + |s3|2 = 1, and ’⊗’ is the tensor product. The element at vector index

v is the probability that the qubits are in state v. For instance, qubits x0x1z are in joint-state

010 with probability |s2|2. Subsequent measurement of a subset of the qubits projects the mea-
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sured qubits to a fixed substate with a certain probability, and ’summarises’ the vector for the

remaining non-measured qubits. Thus QPA is as follows,

• Compute S = UfgA.

• Measure qubit z. With probability pf = |s0f0|2 + |s1f1|2 + |s2f2|2 + |s3f3|2 we collapse

z to 0, and x0, x1 to joint-state Sf = µ0(s0f0, s1f1, s2f2, s3f3)
T . With probability pg =

|s0g0|2 + |s1g1|2 + |s2g2|2 + |s3g3|2 we collapse z to 1, and x0, x1 to joint-state Sg =

µ1(s0g0, s1g1, s2g2, s3g3)
T . µ0 and µ1 are normalisation constants. pf + pg = 1. Sf is our

desired QPA result. Successful QPA completion is self-verified when we measure z = 0.

In contrast, classical SPA computes Sf = UfA (with probability 1) and must then perform a

subsequent ’summary’ step on Sf before returning a result for each variable separately. This

result is,

x0 = |µ0|2(|s0f0|2 + |s2f2|2, |s1f1|2 + |s3f3|2)T , x1 = |µ1|2(|s0f0|2 + |s1f1|2, |s2f2|2 + |s3f3|2)T .

For instance, for x0 = 0 we sum the two classical 3 probabilities of Sf where x0 = 0 to get

|s0f0|2 + |s2f2|2. Similarly, for x0 = 1 we summarise to |s1f1|2 + |s3f3|2. It is in this sense that

SPA is a ’tensor-approximation’ of QPA.

We identify the following successively accurate computational scenarios (decoding modes)

for a space of N binary-state variables:

• Hard-Decision operates on a probability space,

(α0, β0) ⊗ (α1, β1) ⊗ . . . ⊗ (αN−1, βN−1), α, β ∈ {0, 1}

• Soft-Decision operates on a probability space,

(α0, β0) ⊗ (α1, β1) ⊗ . . . ⊗ (αN−1, βN−1), α, β ∈ {Real Numbers 0 → 1}

• Quantum Soft-Decision operates on a probability space,

(α0, β0) ⊗ (α1, β1) ⊗ . . . ⊗ (αN−1, βN−1), α, β ∈ {Complex Numbers}

• Entangled-Decision operates on a probability space,

(s0, s1, s2, . . . , s2N−1), s ∈ {Complex Numbers}

All four of the above Decision modes satisfies the probability restriction that the sum of the

magnitude-squareds of the vector elements is 1. Both Quantum Soft-Decision and Entangled-

Decision make use of the natural quantum statistical properties of matter, including the prop-

erty of Superposition. Moreover, Entangled-Decision operates over exponentially larger space.
3Classical SPA probabilities in this paper are always represented as the magnitude-squared of their quantum

counterparts
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Classical SPA operates in Soft-Decision mode. QPA operates in Entangled-Decision mode. In

the previous discussion it was assumed that the QPA was operating on input of the form,

(α0, β0)
T ⊗ (α1, β1)

T ⊗ (1, 0)T . More generally, QPA can operate on input and deliver output in

Entangled-Decision mode. This is in strong contrast to SPA which must summarise both input

and output down to Soft-Decision mode. It is this approximation that forces SPA to iterate

and to sometimes fail on graphs with cycles.

Consider the following example. If the diagonal of Uf is (1, 0, 0, 1), then Uf represents

XOR, and Fig 1 decodes to codeset C = {00, 11} (i.e. x0 + x1 = 0, mod 2). C has distance

2, which is optimal for length 2 binary codes: in general if Uf cannot be tensor-decomposed

then it represents a code C with good distance properties. Initially, let x0 = (
√

0.4,
√

0.6)T ,

x1 = (
√

0.6,
√

0.4)T . Then A = (
√

.24, 0.6, 0.4,
√

0.24, 0, 0, 0, 0)T , and Sf = 1√
2
(1, 0, 0, 1)T .

pf = 0.48, so, on average, 48 Sf outputs are computed for every 100 QPA attempts. The

ML codeword is both 00 and 11, and when Sf is measured, 00 and 11 are equally likely to be

returned. In contrast, classical SPA for the same input returns x0 = x1 = (1
2 , 1

2), implying

(wrongly) an equally likely decode to any of the words 00, 01, 10, 11. So even in this simplest

example the advantage of QPA over SPA is evident.

2.2 Product Space for Classical SPA

Because x0 and x1 are separated in Fig 1, their classical joint-state only represents tensor

product states (Soft-Decision mode). An equivalent Factor Graph to that of Fig 1 could

combine x0 and x1 into one quaternary variable which would reach all non-product quaternary

states. But this requires ’thickening’ of graph communication lines and exponential increase

in SPA computational complexity. Consequently only limited variable ’clustering’ is desirable,

although too little clustering ’thins out’ the solution space to an insufficient highly-factored

product space. This is the fundamental Factor Graph trade-off - good Factor Graphs achieve

efficient SPA by careful variable ’separation’, ensuring the joint product space is close enough

to the exact (non-summarised) non-product space.

2.3 Entangled Space for QPA

In contrast, although x0 and x1 are physically separated in Fig 1, quantum non-locality must

take into account correlations between x0 and x1. Their joint-state now occurs over the union

of product and (much larger) non-product (entangled) space (Entangled-Decision mode). An

entangled joint-state vector cannot be tensor-factorised over constituent qubits. QPA does not
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usually output to product space because the joint-state of output qubits is usually entangled.

In fact QPA is algorithmically simpler than SPA, as SPA is a subsequent tensor approximation

of QPA output at each local function.

2.4 Example

Let the diagonal of Uf be (1, 0, 0, 1). Initialise x0 and x1 to joint-product-state, x0 = 1√
3
(1,

√
2)T ,

x1 = 1√
2
(1, 1)T . With probability pf = 0.5 QPA measures z = 0 and computes the joint-state of

x0, x1 as Sf = 1√
3
(1, 0, 0,

√
2)T . A final measurement of qubits x0 and x1 yields codewords 11 and

00 with probability 2
3 , and 1

3 , respectively. In contrast SPA summarises Sf to x0 = x1 = 1
3 (1, 2).

Although a final ’hard-decision’ on x0 and x1 chooses, correctly, the ML codeword x0 = x1 = 1,

the joint-product-state output, 1
3(1, 2)T ⊗ 1

3 (1, 2)T = 1
9(1, 2, 2, 4)T assigns, incorrectly, a non-zero

probability to words 01 and 10.

2.5 A Priori Initialisation

To initialise x0 to (α0, β0)
T , we again use QPA. Let the diagonal of Uf (for the left-hand black

box of Fig 1) be (α0, β0). Then the diagonal of Ug is ±i(
α0

√
1−|α0|2
|α0| ,

β0

√
1−|β0|2
|β0| )T . Measurement

of z = 0 initialises x0 to (α0, β0)
T , and this occurs with probability pf = 0.5. x1 is initialised

likewise.

2.6 Comments

The major drawback of QPA is the significant probability of QPA failure, occurring when z is

measured as 1. This problem is amplified for larger Quantum Factor Graphs where a different

z is measured at each local function; QPA evolution failure at a function node not only

destroys the states of variables connected with that function, but also destroys all

states of variables entangled with those variables. QPA is more likely to succeed when

input variable probabilities are already skewed somewhat towards a valid codeword. Section 3

shows how QPA can operate successfully even when SPA fails.

3 Quantum Product Algorithm on Factor Graphs with Cycles

This section shows that graph cycles do not compromise QPA performance. Consider the Factor

Graph of Fig 2.

Functions Uf0 and Uf1 are both 8 × 8 XOR diagonal matrices with diagonal elements

(10010110). Acting on the combined four-qubit space, x0x1x2x3, they are the functions Uf0⊗I2
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x x
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U

U

f0

f1

Figure 2: Factor Graph with a Cycle

and I2⊗Uf1, respectively, with diagonal elements (1001011010010110) and (1100001100111100),

respectively, where I2 is the 2 × 2 identity matrix. QPA on Fig 2 performs the global function

UF = (Uf0 ⊗ I2) (I2 ⊗Uf1) on four-qubit space, with diagonal elements (1000001000010100),

forcing output into codeset C = {0000, 0110, 1011, 1101}. Functions Uf0, Uf1, and UF ’sieve’

the input joint-state, where UF is the combination of two ’sub-sieves’, Uf0 and Uf1. QPA

iteration (i.e. successfully completing a sub-function more than once on the same qubits) has

no purpose, as only one needs apply a particular sieve once. So graph cycles have no bearing

on QPA. (However iteration may be useful to maintain the entangled result in the presence of

quantum decoherence and noise). To underline cycle-independence, consider the action of SPA,

then QPA on Fig 2.

Initialise as follows (using classical probabilities),

x0x1x2x3 = (0.1, 0.9)T ⊗ (0.6, 0.4)T ⊗ (0.6, 0.4)T ⊗ (0.6, 0.4)T

Hard-decision gives x0x1x2x3 = 1000, which can then be decoded algebraically to codeword

0000. However optimal soft-decision would decode to either x3x2x1x0 = 1011 or 1101, with

equal probability. Because of the small graph cycle SPA fails to decode correctly, and settles to

the joint-product-state,

x0x1x2x3 = (0.108, 0.892)T ⊗ (0.521, 0.479)T ⊗ (0.521, 0.479)T ⊗ (0.601, 0.399)T . A final hard-

decision on this output gives non-codeword x0x1x2x3 = 1000 which can then be decoded alge-

braically, again to codeword 0000. In contrast, successful QPA outputs the optimal entangled

joint-state,

SF = 1√
2040

(
√

216, 0, 0, 0, 0, 0,
√

96, 0, 0, 0, 0,
√

864, 0,
√

864, 0, 0)T . Final measurement of SF al-

ways outputs a codeword from C, and with probability 2∗864
2040 outputs either 1011 or 1101. QPA

evolves on Fig 2 correctly with probability 0.204. Therefore 1000 attempts produce around 204
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correctly entangled joint-states.

To underline QPA advantage, consider the single variable extension of Fig 2 in Fig 3, where

x4 is initialised to (
√

0.5,
√

0.5)T .

x x

x x0 1

2 3

U

U

f0

f1

x4

Uf2

Figure 3: Extended Factor Graph with a Cycle

As x4 = x0 ⊕ x3, and our original code, C = {0000, 0110, 1011, 1101}, always had x0 = x3,

then x4 should always be 0. But SPA on Fig 3 computes x4 = (0.421, 0.579)T and subsequent

hard-decision gives x4 = 1. In contrast, successful QPA computes the optimal non-product

joint-state,

S
F ′ =

1
√

2040
(
√

216, 0, 0, 0, 0, 0,
√

96, 0, 0, 0, 0,
√

864, 0,
√

864, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
T

Final measurement of SF ′ always outputs x4 = 0. QPA evolves on Fig 3 correctly with

probability 0.204 ∗ 0.5 = 0.114.

4 Maximum-Likelihood (ML) Amplification

4.1 Preliminaries

The ML codeword is the one most likely to be measured from QPA output, with probability,

pM , say. For instance, if QPA output of Fig 1 is Sf = 1√
3
(1, 0, 0,

√
2)T , say, then 11 is the ML

codeword, and it is measured with probability pM = 2
3 . Numerous executions of QPA on the

same input will verify that 11 is, indeed, the ML codeword. However these numerous executions

must output to a length 2N final averaging probability vector (for N qubits). We do not want

to store such an exponential vector. Instead, therefore, we ’amplify’ the statistical advantage of

11 over 00 prior to measurement, thereby making 11 significantly more likely to be read. This

is achieved by computing the square of each quantum vector element as follows. Consider two
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independent QPA executions on the same input, both outputting Sf . Associate these outputs

with qubits x0,0, x1,0, and x0,1, x1,1. The joint-state of qubits x0,0, x1,0, x0,1, x1,1 is,

V0 = Sf ⊗ Sf =
1

3
(1, 0, 0,

√
2, 0, 0, 0, 0, 0, 0, 0, 0,

√
2, 0, 0, 2)T

Consider the unitary permutation matrix

P =

















































1000000000000000

0000010000000000

0000000000100000

0000000000000001

0100000000000000

0010000000000000

0001000000000000

0000100000000000

0000001000000000

0000000100000000

0000000010000000

0000000001000000

0000000000010000

0000000000001000

0000000000000100

0000000000000010

















































Only the ’1’ positions in the first four rows are important. Performing P on x0,0, x1,0, x0,1, x1,1,

gives,

PV0 =
1

3
(1, 0, 0, 2, 0, 0,

√
2, 0, 0, 0, 0, 0, 0,

√
2, 0, 0)T

We then measure qubits x0,1, x1,1. With probability pa0 = 5
9 we read x0,1 = x1,1 = 0, in which

case x0,0 and x1,0 are forced into joint state Sf,1 = 1√
5
(1, 0, 0, 2), which is the element-square

of Sf . A measurement of Sf,1 returns 11 with probability pM = 4
5 , which is a significant

improvement over pM = 2
3 . Likewise we compute the element fourth-powers of Sf by preparing

two independent qubit pairs in Sf,1 and permuting the (umeasured) joint state vector V1 =

Sf,1 ⊗ Sf,1 to give PV1, and then measuring the second pair of qubits. With probability pa1 =

17
25 we read this pair as 00, in which case the first two qubits are forced into the joint-state

Sf,2 = 1√
17

(1, 0, 0, 4), which is the element fourth-power of Sf . A measurement of Sf,2 returns

11 with probability pM = 16
17 , which is a further improvement over pM = 2

3 . In this way we

amplify the likelihood of measuring the ML codeword. To compute the element 2kth-power,

Sf,k, we require, on average, 2
pak

independent preparations, Sfk−1
, each of which requires, on

average, 2
pak−1

independent preparations, Sfk−2
, and so on.

We can perform QPA on large Factor Graphs, then amplify the result k times to ensure

a high likelihood of measuring the ML codeword, as described above. However the above

amplification acts on the complete graph with one operation, P. It would be preferable to

decompose P into 4 × 4 unitary matrices which only act on independent qubit pairs xi,0 and

xi,1, thereby localising amplification. Consider, once again, Fig 1. From the point of view of
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x0,1, x0,0 appears to be in summarised state 4 , sf = 1√
3
(1,

√
2)T . Similarly, from the point of

view of x0,0, x0,1 appears to be in state sf . Thus x0,0, x0,1 appear to be in joint product state

v0 = 1
3(1,

√
2,
√

2, 2)T . Consider unitary permutation matrix,

Q =







1000

0001

0100

0010







We compute Qv0 = 1
3(1, 2,

√
2,
√

2)T on qubits x0,0, x0,1 and measure qubit x0,1. With prob-

ability pa0 = 5
9 we read x0,1 = 0, in which case x0,0 is forced into joint state sf,1 = 1√

5
(1, 2),

which is the element-square of sf . Due to the exact form of our joint-state vector, Sf , this

single measurement is enough to also force x0,0x1,0 into joint state Sf,1. However, for a general

function Sf , we should perform Q on every qubit pair, xi,0xi,1, then measure xi,1 ∀i. This is

equivalent to performing P′ = Q⊗Q on (re-ordered) joint-state vector x0,0x0,1x1,0x1,1, and this

is identical to performing P on x0,0x1,0x0,1x1,1. The probability of measuring x1,0 = x1,1 = 0 is

the same whether P or Q is used. The same process is followed to achieve element 2kth powers.

4.2 The Price of Amplification

There is a statistical cost to qubit amplification. Let s = (α, β)T be the initial state of a qubit

x, where, for notational convenience, we assume that α and β are both real. Then α2 + β2 = 1

and, given 2k qubits all identically prepared in state s, the likelihood of preparing one qubit in

(unnormalised) state sk = (α2k

, β2k

)T is γk, where,

γk = γ2
k−1

rk+1

r2
k

, γ0 = 1

and rk = α2k

+ β2k

. For a qubit in state sk, the probability of selecting the ML codebit is,

PMk =
α2k+1

α2k+1 + β2k+1

(assuming α ≥ β). We can plot γk against PMk for various α2 as k varies, as shown in Fig 4.

Each of the 25 lines in Fig 4 refers to a different value of α2, for α2 from 0.5 up to 0.98 in

steps of 0.2. The initial state, s, when k = 0, occurs with probability γk = 1, and is marked

on the right-hand side of Fig 4 for each of the 25 lines. After one amplification step, k = 1,

and another 25 points are marked on the graph to the left of the points for k = 0, indicating

that a successful amplification step has occurred with probability γk ≤ 1. Similarly points for

k = 2, k = 3,..etc are marked successively to the left on Fig 4. The y-axis shows the ML

4
x0,0 is generally not in this summarised state, due to phase considerations, but the viewpoint is valid for our

purposes as long as subsequent unitary matrix operations on x0 only have one non-zero entry per row.
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Figure 4: Amplification Success Probability, γk, v ML Advantage, PMk

advantage, PMk, which can be achieved with probability γk after k steps for each value of α2.

For instance, when s = (α, β)T = (
√

0.62,
√

0.38)T , then an ML advantage of PMk = 0.9805

can be ensured after k = 3 steps, and this can be achieved with probability γk = 0.0223 given

23 = 8 independently prepared qubits, all in state s. Amplification is more rapid if s already has

significant ML advantage (i.e. when α is high). In contrast if α2 = 0.5 then no amplification of

that qubit is possible. This is quite reasonable as, in this case, both states 0 and 1 are equally

likely, so there is no ML state. Successive measurement of zero of all second qubits of each

qubit pair self-verifies that we have obtained successful amplification. If, at any step, k, the

second qubit of the qubit pair is measured as one then amplification fails and the graph local

to this qubit which has been successfully entangled up until now is completely destroyed.

5 Distributed QPA on Many-Node Factor Graphs

5.1 Preliminaries

In classical systems it is desirable to implement SPA on Factor Graphs which ’tensor-approximate’

the variable space using many small-state variables (e.g. bits), linked by small-dimensional

constituent functions, thereby minimising computational complexity. In quantum systems it is
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similarly desirable to implement QPA on Factor Graphs using many small-state variables (e.g.

qubits), linked by small-dimensional constituent unitary functions. Any Quantum Computa-

tion can be decomposed into a sequence of one or two-bit ’universal’ gate unitary operations

[3]5 . Computational complexity is minimised by using small-dimensional unitary matrices for

constituent functions. Moreover, fine granularity of the Factor Graph allows distributed node

processing. This appears to be essential for large Quantum Factor Graphs to have acceptable

probability of successful global evolution, as we will show. Distributed QPA allows variable

nodes to evolve entanglement only with neighbouring variable nodes so that, if a local function

measurement or amplification is unsuccessful, only local evolution is destroyed. Remember that

local evolution is OFTEN unsuccessful, as failure occurs when a local ancillary qubit, z, is

measured as 1, or when a local amplifying qubit is measured as 1. Therefore node localities

with high likelihood of successful evolution (i.e. with positively skewed input probabilities) are

likely to evolve first. These will then encourage other self-contradictory node localities to evolve

successfully. In contrast, non-distributed QPA on large Factor Graphs using one large global

function is very unlikely to ever succeed, especially for graphs encoding low-rate codes.

x x x x0 1 2 3

U U Uf01 f12 f23

X U

Figure 5: Distributed QPA (top) Non-Distributed QPA (bottom), 4-bit code

To illustrate the advangtage of distributed QPA, consider the low rate code of Fig 5, where

Ufij = diag(1, 0, 0, 1). Both top and bottom graphs represent the code C = {0000, 1111}, where

U is a combination of XOR sub-matrices, Uf01,Uf12, and Uf23. The top graph distributes

processing. We allow Uf01 and Uf23 to operate independently and in parallel. Moreover, if

Uf01 fails to establish, then it does not destroy any successful evolution of Uf23, as the two

localities are not currently entangled. Once both Uf01 and Uf23 have completed successfully,

5This also implies that any classical Factor Graph can be similarly decomposed.
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the subsequent probability of successful completion of Uf12 is, in general, likely to increase. So

distributing QPA increases likelihood of successful evolution of the complete Factor Graph. We

now demonstrate this graphically. Let qubits x0, x1, x2, x3 of Fig 5 initially be in states x0 =

(α0, β0)
T , x1 = (α1, β1)

T , x2 = (α2, β2)
T , x3 = (α3, β3)

T , where, for notational convenience, we

assume all values are real. Then α2
i + β2

i = 1, ∀i. The probability of successful completion of

Uf01 is pf01 = (α0α1)
2 + (β0β1)

2, and probability of successful completion of Uf23 is pf23 =

(α2α3)
2 + (β2β3)

2. Therefore the probability of successful completion of both Uf01 and Uf23

after exactly q parallel attempts (no less) is,

p0−3(q) = (1−pf01)
q−1(1−pf23)

q−1pf01pf23+(1−pf01)
q−1(1−(1−pf23)

q−1)pf01+(1−pf23)
q−1(1−(1−pf01)

q−1)pf23

Given successful completion of Uf01 and Uf23, the probability of subsequent successful

completion of Uf12 is,

p′f12 =
(α0α1α2α3)

2 + (β0β1β2β3)
2

pf01pf23

Therefore the probability of successful completion of Uf01 and Uf23, immediately followed by

successful completion of Uf12 is, p0→3(q) = p0−3(q − 1)p′f12, and the probability of successful

completion of Uf01 and Uf23, immediately followed by completion failure of Uf12 is, p0→3(q) =

p0−3(q − 1)(1 − p′f12). Therefore the probability of successful completion after exactly t steps

of Uf01 and Uf23 in parallel, followed by Uf12, is,

pe(t) =
t

∑

q=2

p0→3(q)
∑

v∈D(t−q)

∏

u∈v

p0→3(u)

where D(k) is the set of unordered partitions of k. Therefore the probability of successful

completion after at most t steps of Uf01 and Uf23 in parallel, followed by Uf12, is,

pm(t) =
t

∑

i=2

pe(i)

In contrast, for non-distributed QPA, the probability of successful completion, after at most t

steps, of U, (the bottom graph of Fig 5) is P (t) = 1 − (1 − (α0α1α2α3)
2 − (β0β1β2β3)

2)t. Figs

6 and 7 show plots of pm(t) and P (t) versus t for α0 = α1 = α2 = α3 = w as w varies, and

α0 = u, α1 = α2 = α3 = w = 0.9 as u varies, respectively. For Fig 7, low values of u indicate

a contradiction between x0 and the other three variables. In particular the contradiction is so

pronounced when α0 = 0.0 that successful QPA completion is highly unlikely. More generally,

this indicates that severe internal Factor Graph contradictions are fatal to QPA (as they are

14



for SPA). Both Fig 6 and 7 indicate that, due to initial latency of distributed processing,

non-distributed QPA appears marginally faster for the first few steps. However, after a few

steps distributed QPA in general becomes marginally faster. In fact results are unfairly biased

towards the non-distributed case, as it is assumed that attempts to complete U and Ufij have

the same space-time-complexity cost, whereas U is far more costly. Hence, even for this smallest

example, Distributed QPA outperforms non-Distributed QPA.

2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

p m
(t

) 
an

d 
P

(t
)

w2=0.5

w2=0.7

w2=0.9

− p
m

(t)

− − P(t)

w2=0.5

w2=0.7

w2=0.9

− p
m

(t)

− − P(t)

w2=0.5

w2=0.7

w2=0.9

− p
m

(t)

− − P(t)

Figure 6: No of Steps v Non-Distributed and Distributed QPA: Completion Probabilities

The example of Fig 5 only achieves marginal advantage using Distributed QPA because the

example has so few nodes. The advantage is more pronounced in Fig 8.

Fig 8 represents the code C = {000000000, 111111111} 6 , where Uijk = diag(1, 0, 0, 1, 0, 1, 1, 0).

We allow Uf012, Uf345, and Uf678 to operate independently and in parallel. If Uf012 fails to

establish, then it does not destroy any successful evolution of Uf345 or Uf678, as the three lo-

calities are not currently entangled. Once Uf012, Uf345, and Uf678 have completed successfully,

the probability of successful subsequent completion of Uf258 is, in general, amplified. Let qubits

xi, 0 ≤ i < 9 of Fig 8 initially be in states xi = (αi, βi)
T , where, for notational convenience, we

assume all values are real. Then α2
i + β2

i = 1, ∀i. Let the probability of successful completion

6This code is trivial but demonstrates a ’worst-case’ low-rate scenario. In general, codes of higher rate, with

or without cycles, decode more quickly.
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Figure 7: No of Steps v Non-Distributed and Distributed QPA: w2 = 0.9, α0 varies

after at most t steps of Uf012, Uf345, and Uf678 in parallel, followed by Uf258, be pm(t), and

the probability of successful completion, after at most t steps, of a non-distributed version of

Fig 8 be P (t). Appendix A derives pm(t) and Pt for this case. Figs 9 and 10 show plots of pm(t)

and P (t) versus t for αi = w, ∀i, as w varies, and α0 = u, αi = w = 0.9, ∀i, i 6= 0, as u varies,

respectively. For Fig 10 low values of u indicate contradiction between x0 and the other eight

qubits. The contradiction is so pronounced when α0 = 0.0 that successful QPA completion is

highly unlikely.

Figs 11 and 12 show plots of pm(t) and P (t) versus t for α0 = α1 = u, αi = w = 0.9, ∀i, i 6=
0, 1, and α0 = α8 = u, αi = w = 0.9, ∀i, i 6= 0, 8, respectively, as u varies. Both figures indicate

contradictions between two qubits and the rest, but the scattered nature of contradictions

for Fig 12 (x0 and x8 are connected to different local functions) enhances Distributed QPA

performance compared to Fig 11.

Figs 6-12 indicate that distributed QPA completes significantly faster than non-distributed

QPA, in particular for cases requiring many steps, t. Even more so as the presented results are

unfairly biased towards the non-distributed case, as it is assumed that attempts to complete

non-distributed U or each constituent Ufijk have the same space-time-complexity cost, whereas

U is far more costly. We conclude that Distributed QPA is essential for large Quantum Factor
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Figure 8: Distributed QPA, 9-qubits

Graphs.

5.2 Free-Running Distributed QPA

Consider the notional Factor Graph of Fig 13. Each (square) function node activates time-

independently on its local (circular) variable nodes. Functions successfully completed are

marked with an ’X’. After a certain time, say, three ’areas of success’ evolve, due to gen-

eral agreement between input variable states at these localities. This means that variables on

the perimeter of each region of success are ’encouraged’ to agree with the ’general view’ of the

associated region of success. Unfortunately, in the bottom left of the graph is a variable (dark

circle) which strongly contradicts with the rest of the graph. No area of success evolves around

it, and it is difficult for other areas of success to ’swallow’ it. Assuming the contradiction is not

too strong then, eventually, after numerous attempts, the complete graph is marked with ’X’s

and the Graph evolves successfully. At this point the contents of each qubit variable can be

amplified, and final measurement of all qubits provides the ML codeword with high probability.

The advantage of a free-running strategy, where each function node is free to activate asyn-

chronously, is that regions of general agreement develop first and influence other areas of the

graph to ’follow their opinion’. Fig 13 also shows that one ’bad’ (contradictory) qubit can be a
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Figure 9: No of Steps v Non-Distributed and Distributed QPA, 9 qubits

fatal stumbling block to successful evolution of the whole graph (as it can for SPA on classical

graphs). Thus Distributed QPA requires Fault-Tolerance, where only an arbitrary subset of

entangled nodes are required as a final result (node redundancy). The free-running schedule of

Fig 13 naturally avoids the ’bad’ qubits, but sufficient evolution occurs when enough function

nodes complete. Alternatively, bad qubits could be set to (
√

0.5,
√

0.5) after a time-out. A

more detailed proposal of Fault-Tolerant QPA is left for future work.

Fig 13 also serves to illustrate the ’template’ for a Reconfigurable Quantum Graph Array.

One can envisage initialising an array of quantum variables so that two local variables can be

strongly or weakly entangled by identifying the mutual square function nodes with strongly

or weakly-entangling matrices, respectively. In particular, two neighbouring nodes may be

’locally disconnected’ by setting the function node joining them to a tensor-decomposable ma-

trix, (i.e. zero-entangling). The quantum computer is then measurement-driven. The concept

of measurement-driven quantum computation has also recently been pursued in [8], where a

uniform entanglement is set-up throughout the array 7 prior to computation via measurement.

Fig 14 shows the system view of QPA. A continual stream of pure qubits needs to be ini-

tialised and then entangled, and then amplified, so as to ensure at least one successful entangled

7It is interesting that this entanglement is strongly related to Rudin-Shapiro and quadratic constructions [7]
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Figure 10: No of Steps v Non-Distributed and Distributed QPA: w2 = 0.9, α0 varies, 9 qubits

and amplified output from the whole apparatus.

6 Phase QPA

The above discussions have ignored the capacity of Quantum Systems to carry phase informa-

tion. In fact QPA, as presented so far, is immune to phase modification, as classical probabilities

have no phase component. However QPA should be generalised to cope with phase shift in order

to decode quantum information. This is the subject of ongoing research.

7 Conclusion and Discussion

The Quantum Product Algorithm (QPA) on a Factor Graph has been presented for Maximum-

Likelihood (ML) Decoding of Classical ’soft’ information using quantum resources. The rela-

tionship of QPA to the Sum-Product Algorithm (SPA) has been indicated, where avoidance

of summary allows QPA to overcome small graph cycles. Quantum Factor Graphs use small

unitary matrices which each act on only a few qubits. QPA is measurement-driven and is

only statistically likely to succeed after many attempts. The ML codeword is obtained with

maximum likelihood by measuring the entangled vector resulting from successful QPA. To en-
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Figure 11: No of Steps v Non-Distributed and Distributed QPA: w2 = 0.9, α0 = α1 varies, 9

qubits

sure a high probability of measuring the ML codeword QPA output can be amplified prior to

measurement. The complete ML decoder is only successful after many attempts. Finally, free-

running Distributed QPA is proposed to improve the likelihood of successful QPA completion.

The free-running distributed structure suggests further benefit will be obtained by introducing

Fault-Tolerance in the form of redundant function and variable nodes. Phase aspects of QPA

have yet to be explored. This paper has been written to demonstrate the exponential capacity

of quantum systems, and their natural suitability for graph decompositions such as the Factor

Graph. The paper has not tried to deal with quantum noise and quantum decoherence, but one

can expect the Factor Graph form to ’gracefully’ expand to cope with the extra redundancy

necessary to protect qubits from decoherence and noise. When viewed in the context of entan-

gled space, it is surprising how successful classical message-passing algorithms are, even though

they are restricted to operate in tensor product space. This suggests that methods to improve

the likelihood of successful QPA completion may include the possibility of hybrid QPA/SPA

graphs, where SPA operates on non-cyclic and resolvable parts of the graph, leaving QPA to

cope with small cycles or unresolved areas of the graph.
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Figure 12: No of Steps v Non-Distributed and Distributed QPA: w2 = 0.9, α0 = α8 varies, 9

qubits

8 Appendix A - Deriving pm(t) and P (t) for Fig 8

The probability of successful completion of Uf012, is pf012 = (α0α1α2)
2 + (β0β1β2)

2, and simi-

larly for pf345 and pf678. Let h012 = (1−pf012)
q−1, h345 = (1−pf345)

q−1, h678 = (1−pf678)
q−1.

Then the probability of successful completion of Uf012, Uf345, and Uf678 after exactly q parallel

attempts is,

p0−3−6(q) = h012h345h678pf012pf345pf678 + (1 − h012)h345h678pf345pf678

+h012(1 − h345)h678pf012pf678 + h012h345(1 − h678)pf012pf345

+(1 − h012)(1 − h345)h678pf678 + (1 − h012)h345(1 − h678)pf345

+h012(1 − h345)(1 − h678)pf012

Given successful completion of Uf012, Uf345, and Uf678, the probability of subsequent

successful completion of Uf258 is,

p′f258 =
(α0α1α2α3α4α5α6α7α8)

2 + (β0β1β2β3β4β5β6β7β8)
2

pf012pf345p678

Therefore the probability of successful completion of Uf012, Uf345, and Uf678, immediately

followed by successful completion of Uf258 is, p0→8(q) = p0−3−6(q−1)p′f258, and the probability
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Figure 13: Free-Running Distributed QPA with one ’Bad’ Variable
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Figure 14: QPA with Amplification

of successful completion of Uf012, Uf345, and Uf678, immediately followed by completion failure

of Uf258 is, p0→8(q) = p0−3−6(q − 1)(1 − p′f258). The probability of successful completion after

exactly t steps of Uf012, Uf345, and Uf678 in parallel, followed by Uf258, is,

pe(t) =
t

∑

q=2

p0→8(q)
∑

v∈D(t−q)

∏

u∈v

p0→8(u)

where D(k) is the set of unordered partitions of k. Therefore the probability of successful

completion after at most t steps of Uf012, Uf345, and Uf678 in parallel, followed by Uf258, is,

pm(t) =
t

∑

i=2

pe(i)

In contrast, the probability of successful completion, after at most t steps, of a non-distributed

version of Fig 8 is P (t) = 1 − (1 − (α0α1α2α3α4α5α6α7α8)
2 − (β0β1β2β3β4β5β6β7β8)

2)t.
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