
Errata & addenda in the thesis (English version)

Constanza Riera

March 20, 2006

1 Errata

Chapter 5:

• Page 91, Corollary 5.12: in line -1, it should say “the logarithm (base 2) of the
Peak-to-Average Power Ratio of s, log2PART(s), is equal to...”

• Page 94, proof of Lemma 5.22: It should start: “log2(PARIH) is, as we saw
in theorem 5.14, the maximal value of the corank of the modified adjacency
matrix over all transforms in {I, H}n”.

• Page 94, Corollary 5.23: the statement should be: “deg(q) = max |IS|”.

• Page 94, Corollary 5.24: the statement should be: “deg(G) = λ(G)”.

Chapter 6:

• Page 98, Remark: where it says“deg(q(2, y)) =PARIH”, it should say“deg(q(2, y)) =
log2(PARIH)”.

• Page 98, Proof of Lemma 6.2: where it says “deg(q(2, y)) =PARIH”, it should
say“deg(q(2, y)) = log2(PARIH)”; also, instead of“the degree of q(1, y) is equal
to 2max |IS|” it should say “the degree of q(1, y) is equal to max |IS|”.

Chapter 7:

• Pages 108–110: Proof 2 has some errors. This would be the correct proof:

Proof: Let p = xixj + xiNi + xjNj + R, and s = (−1)p. Let Ni =
∑ρ

r=0 ur,
and Nj =

∑τ
t=0 vt, (note that they are not necessarily linear). Then, applying

theorem 3.7, Nis = 1+i√
2
ip

′
, where p′ : GF(2)n → Z4, with explicit formula1

p′ = 2

(
p(x) + xj

ρ∑
r=0

ur +
∑
r 6=s

urus

)
+ 3

(
xi + xj +

ρ∑
r=0

ui

)
. (1)

1We denote as λ0φ0+λ1φ1 or, more generally, as
∑

λiφi, with λi ∈ Z4 and φi Boolean functions,
the result of embedding the output of the φi’s into Z4, multiply them by a scalar λi ∈ Z4, and
adding the output mod 4.
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Define δ, δ2 ∈ {D}n as δ =
√

2
1+i

∏
k=i,j

(
1 0
0 i

)
k

. Applying δ to Nis, we get

s′ = δNis = ipi , where

pi = 2

(
p(x) + xj

ρ∑
r=0

ur +
∑
r 6=s

urus

)
+ 3

ρ∑
r=0

ui. (2)

This is the result of the action of LC(i). Now we apply LC(j); that is, we
first apply Nj to s′. One can see that the result is Njs

′ = 1+i√
2
ip

′′
, where

p′′ : GF(2)n → Z4, with explicit formula

p′′ = 2

(
xixj + xi

τ∑
t=0

vt + xj

(
ρ∑

r=0

ur +
τ∑

t=0

vt

)

+
∑
t6=u

vtvu +
∑
r,t

urvt +

ρ∑
r=0

ur + R

)

+ 3(xi + xj +
τ∑

t=0

vt)

(3)

Then we apply δ to Njs
′ to get s′′ = δNjs

′ = ipij , where

pij = 2

(
xixj + xi

τ∑
t=0

vt + xj

(
ρ∑

r=0

ur +
τ∑

t=0

vt

)

+
∑
t6=u

vtvu +
∑
r,t

urvt +

ρ∑
r=0

ur + R

)
+ 3

τ∑
t=0

vt

(4)

Now we apply LC(i) again; that is, we first apply Ni to s′′. One can see that
the result is Nis

′′ = 1+i√
2
ip

′′′
, where p′′′ : GF(2)n → Z4, with explicit formula

p′′′ = 2

(
xixj + xi

τ∑
t=0

vt + xj

ρ∑
r=0

ur

+
∑
r,t

urvt +

ρ∑
r=0

ur +
τ∑

t=0

vt + R

)
+ 3(xi + xj)

(5)

Then we apply δ to Nis
′′ to get s′′′ = δNis

′′ = (−1)p′iji , where

p′iji = xixj + xi

τ∑
t=0

vt + xj

ρ∑
r=0

ur +
∑
r,t

urvt +

ρ∑
r=0

ur +
τ∑

t=0

vt + R (6)

Define δ2 = −
∏
k=i,j

(
0 −1
1 0

)
k

. If we apply now δ2 to s′′′, we get

piji = xixj + xi

τ∑
t=0

vt + xj

ρ∑
r=0

ur +
∑
r,t

urvt + R, (7)
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which is by definition 7.2 the formula for pivot on the hypergraph associated

to p. Note that this proofs theorem 7.4: Let d =

(
1 0
0 i

)
, and let d′ =(

0 −1
1 0

)
. We see that we have applied:

– In position i: d′dNddN = d′
(

0 1
−1 0

)
H = H

– In position j: −1
e3πi/4 d

′ddNd = (−1)d′
(

0 −1
1 0

)
H = H

– Remaining positions: I

Chapter 8:

• In page 117, Corollary 8.4 says that:

(Njt−1 · · ·Nj0)m(−1)p =
1

2t/2

∑
a∈GF (2)t

ib(a+1)/2c[ma](−1)pa+x·a

where x = (xj0 , . . . , xjt−1) and b(a + 1)/2c means “the floor function for
(a+1)/2”.

The correct formula would be

(Njt−1 · · ·Nj0)m(−1)p =
1

2t/2

∑
a∈GF (2)t

iwt(a)[ma](−1)pa+x·a

where x = (xj0 , . . . , xjt−1) and ‘wt(a)’ means ‘the weight of a as a binary
string’.

2 Addenda

• Page 111, proof of theorem 7.7: Proof: Let f ∈ Fn,t. Then, it fulfils the
condition of definition 7.2 for every edge ij such that t ≤ i, j ≤ n. By section
7.5, pivoting on any of such edges leaves the clique invariant. This means
that the number of flat spectra of f will be at least the number of times we
can pivot on the clique on the last n − t variables times the number of times
we can pivot on the complete bipartite graph

∑t−1
i=0

∑n−1
j=t xixj (not counting

repetitions), plus the identity transform. The number of times we can pivot
on the clique of the hypergraph is the same as the number of times we can
pivot on a clique of size n − t, which is as weel the number of flat spectra
of the clique w.r.t. {I, H}n. By lemma 4.7, this number is 2n−t−1. Now, we
can pivot on each edge of the complete bipartite graph, but note that now the
pivoting changes the graph, so a new pivot may not be possible (depending on
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h(x0, . . . , xt−1)). Avoiding repetitions, that makes one pivot for every vertex
on the first t variables, plus the identity transform. In total, then, we get the
lower bound (t + 1)2n−t−1.

Let f ∈ Fn,t such that its degree is t. Take h(x0, x1, . . . , xt−1) = x0x1 · · ·xt−1.
Then, it’s easy to see that after doing pivot on any edge mentioned above, the
resultant function does not fulfil the condition of definition 7.2.

• Page 112, proof of theorem 7.8: Proof: Let f ∈ Fn,t. By theorem 7.7, its num-
ber of flat spectra w.r.t. {I, H}n is at least (t + 1)2n−t−1; furthermore, we can
see that all the flat spectra correspond to graph operations, so the resulting
state is associated to a graph. It can be proven (see [74]) that the graph oper-
ation Local Complementation at the vertex j is realised by the application of
Nj to the bipolar vector of the function, followed by a diagonal transform, and
that implies that the result of applying Nj to the bipolar vector of a function
associated to a (simple, non-directed) graph is always flat. On the other hand,
the result of applying the identity transform to the bipolar vector of a function
associated to a graph is always flat. Therefore, the number of flat spectra of
f w.r.t. {I, H, N}n is at least n + 1 times its number of flat spectra w.r.t.
{I, H, N}n; i.e. (n + 1)(t + 1)2n−t−1.
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