Errata & addenda in the thesis (English version)

Constanza Riera

March 20, 2006

1 Errata

Chapter 5:

- Page 91, Corollary 5.12: in line -1, it should say "the logarithm (base 2) of the Peak-to-Average Power Ratio of s, $log_2 PAR_T(s)$, is equal to..."
- Page 94, proof of Lemma 5.22: It should start: " $log_2(PAR_{IH})$ is, as we saw in theorem 5.14, the maximal value of the corank of the modified adjacency matrix over all transforms in $\{I, H\}^{n}$ ".
- Page 94, Corollary 5.23: the statement should be: " $\deg(q) = \max |IS|$ ".
- Page 94, Corollary 5.24: the statement should be: "deg $(G) = \lambda(G)$ ".

Chapter 6:

- Page 98, Remark: where it says " $\deg(q(2, y)) = \operatorname{PAR}_{IH}$ ", it should say " $\deg(q(2, y)) = \log_2(\operatorname{PAR}_{IH})$ ".
- Page 98, Proof of Lemma 6.2: where it says " $\deg(q(2, y)) = \operatorname{PAR}_{IH}$ ", it should say " $\deg(q(2, y)) = \log_2(\operatorname{PAR}_{IH})$ "; also, instead of "the degree of q(1, y) is equal to $2^{\max|IS|}$ " it should say "the degree of q(1, y) is equal to $\max|IS|$ ".

Chapter 7:

• Pages 108–110: Proof 2 has some errors. This would be the correct proof:

Proof: Let $p = x_i x_j + x_i \mathcal{N}_i + x_j \mathcal{N}_j + R$, and $s = (-1)^p$. Let $\mathcal{N}_i = \sum_{r=0}^{\rho} u_r$, and $\mathcal{N}_j = \sum_{t=0}^{\tau} v_t$, (note that they are not necessarily linear). Then, applying theorem 3.7, $N_i s = \frac{1+i}{\sqrt{2}} i^{p'}$, where p': $\mathrm{GF}(2)^n \to \mathbb{Z}_4$, with explicit formula¹

$$p' = 2\left(p(x) + x_j \sum_{r=0}^{\rho} u_r + \sum_{r \neq s} u_r u_s\right) + 3\left(x_i + x_j + \sum_{r=0}^{\rho} u_i\right).$$
(1)

¹We denote as $\lambda_0 \phi_0 + \lambda_1 \phi_1$ or, more generally, as $\sum \lambda_i \phi_i$, with $\lambda_i \in \mathbb{Z}_4$ and ϕ_i Boolean functions, the result of embedding the output of the ϕ_i 's into \mathbb{Z}_4 , multiply them by a scalar $\lambda_i \in \mathbb{Z}_4$, and adding the output mod 4.

Define $\delta, \delta_2 \in \{D\}^n$ as $\delta = \frac{\sqrt{2}}{1+i} \prod_{k=i,j} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}_k$. Applying δ to $N_i s$, we get $s' = \delta N_i s = i^{p_i}$, where

$$p_i = 2\left(p(x) + x_j \sum_{r=0}^{\rho} u_r + \sum_{r \neq s} u_r u_s\right) + 3\sum_{r=0}^{\rho} u_i.$$
 (2)

This is the result of the action of LC(*i*). Now we apply LC(*j*); that is, we first apply N_j to s'. One can see that the result is $N_j s' = \frac{1+i}{\sqrt{2}} i^{p''}$, where p'': GF(2)^{*n*} $\rightarrow \mathbb{Z}_4$, with explicit formula

$$p'' = 2\left(x_i x_j + x_i \sum_{t=0}^{\tau} v_t + x_j \left(\sum_{r=0}^{\rho} u_r + \sum_{t=0}^{\tau} v_t\right) + \sum_{t \neq u} v_t v_u + \sum_{r,t} u_r v_t + \sum_{r=0}^{\rho} u_r + R\right) + 3(x_i + x_j + \sum_{t=0}^{\tau} v_t)$$
(3)

Then we apply δ to $N_j s'$ to get $s'' = \delta N_j s' = i^{p_{ij}}$, where

$$p_{ij} = 2\left(x_i x_j + x_i \sum_{t=0}^{\tau} v_t + x_j \left(\sum_{r=0}^{\rho} u_r + \sum_{t=0}^{\tau} v_t\right) + \sum_{t \neq u} v_t v_u + \sum_{r,t} u_r v_t + \sum_{r=0}^{\rho} u_r + R\right) + 3\sum_{t=0}^{\tau} v_t$$
(4)

Now we apply LC(*i*) again; that is, we first apply N_i to s''. One can see that the result is $N_i s'' = \frac{1+i}{\sqrt{2}} i^{p'''}$, where p''': $\mathrm{GF}(2)^n \to \mathbb{Z}_4$, with explicit formula

$$p''' = 2\left(x_i x_j + x_i \sum_{t=0}^{\tau} v_t + x_j \sum_{r=0}^{\rho} u_r + \sum_{r,t}^{\rho} u_r v_t + \sum_{r=0}^{\rho} u_r + \sum_{t=0}^{\tau} v_t + R\right) + 3(x_i + x_j)$$
(5)

Then we apply δ to $N_i s''$ to get $s''' = \delta N_i s'' = (-1)^{p'_{iji}}$, where

$$p'_{iji} = x_i x_j + x_i \sum_{t=0}^{\tau} v_t + x_j \sum_{r=0}^{\rho} u_r + \sum_{r,t} u_r v_t + \sum_{r=0}^{\rho} u_r + \sum_{t=0}^{\tau} v_t + R \qquad (6)$$

Define $\delta_2 = -\prod_{k=i,j} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}_k$. If we apply now δ_2 to s''', we get

$$p_{iji} = x_i x_j + x_i \sum_{t=0}^{\tau} v_t + x_j \sum_{r=0}^{\rho} u_r + \sum_{r,t} u_r v_t + R,$$
(7)

which is by definition 7.2 the formula for pivot on the hypergraph associated to p. Note that this proofs theorem 7.4: Let $d = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, and let $d' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. We see that we have applied: - In position i: $d'dNddN = d' \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} H = H$ - In position j: $\frac{-1}{e^{3\pi i/4}}d'ddNd = (-1)d' \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} H = H$ - Remaining positions: I

Chapter 8:

• In page 117, Corollary 8.4 says that:

$$(N_{j_{t-1}}\cdots N_{j_0})m(-1)^p = \frac{1}{2^{t/2}}\sum_{a\in GF(2)^t} i^{\lfloor (a+1)/2 \rfloor} [m_a](-1)^{p_a+x\cdot a}$$

where $x = (x_{j_0}, \ldots, x_{j_{t-1}})$ and $\lfloor (a+1)/2 \rfloor$ means "the floor function for (a+1)/2".

The correct formula would be

$$(N_{j_{t-1}}\cdots N_{j_0})m(-1)^p = \frac{1}{2^{t/2}}\sum_{a\in GF(2)^t} i^{wt(a)}[m_a](-1)^{p_a+x\cdot a}$$

where $x = (x_{j_0}, \ldots, x_{j_{t-1}})$ and 'wt(a)' means 'the weight of a as a binary string'.

2 Addenda

• Page 111, proof of theorem 7.7: *Proof:* Let $f \in \mathcal{F}^{n,t}$. Then, it fulfils the condition of definition 7.2 for every edge ij such that $t \leq i, j \leq n$. By section 7.5, pivoting on any of such edges leaves the clique invariant. This means that the number of flat spectra of f will be at least the number of times we can pivot on the clique on the last n - t variables times the number of times we can pivot on the complete bipartite graph $\sum_{i=0}^{t-1} \sum_{j=t}^{n-1} x_i x_j$ (not counting repetitions), plus the identity transform. The number of times we can pivot on a clique of size n - t, which is as weel the number of flat spectra of the clique w.r.t. $\{I, H\}^n$. By lemma 4.7, this number is 2^{n-t-1} . Now, we can pivot on each edge of the complete bipartite graph, but note that now the pivoting changes the graph, so a new pivot may not be possible (depending on

 $h(x_0, \ldots, x_{t-1}))$. Avoiding repetitions, that makes one pivot for every vertex on the first t variables, plus the identity transform. In total, then, we get the lower bound $(t+1)2^{n-t-1}$.

Let $f \in \mathcal{F}^{n,t}$ such that its degree is t. Take $h(x_0, x_1, \ldots, x_{t-1}) = x_0 x_1 \cdots x_{t-1}$. Then, it's easy to see that after doing pivot on any edge mentioned above, the resultant function does not fulfil the condition of definition 7.2.

Page 112, proof of theorem 7.8: Proof: Let f ∈ F^{n,t}. By theorem 7.7, its number of flat spectra w.r.t. {I, H}ⁿ is at least (t + 1)2^{n-t-1}; furthermore, we can see that all the flat spectra correspond to graph operations, so the resulting state is associated to a graph. It can be proven (see [74]) that the graph operation Local Complementation at the vertex j is realised by the application of N_j to the bipolar vector of the function, followed by a diagonal transform, and that implies that the result of applying N_j to the bipolar vector of a function associated to a graph is always flat. On the other hand, the result of applying the identity transform to the bipolar vector of a function associated to a graph is always flat. Therefore, the number of flat spectra of f w.r.t. {I, H, N}ⁿ is at least n + 1 times its number of flat spectra w.r.t. {I, H, N}ⁿ; i.e. (n + 1)(t + 1)2^{n-t-1}.