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Complementary Sequence Pairs of Types II and III∗

Chunlei LI†a), , Nian LI††b), , and Matthew G. PARKER†c),

SUMMARY Bipolar complementary sequence pairs of Types
II and III are defined, enumerated for n ≤ 28, and classified.
Type-II pairs are shown to exist only at lengths 2m, and necessary
conditions for Type-III pairs lead to a non-existence conjecture
regarding their length.
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1. Introduction

A length n sequence of complex numbers, A :=
(a0, a1, . . . , an−1) ∈ Cn, can be written as a univari-
ate polynomial, A(z) := a0 +a1z+ . . .+an−1z

n−1, and
the aperiodic autocorrelation of A comprises the coef-
ficients of A(z)A(z−1), where A(z−1) means conjugate
the coefficients of A(z−1). Then (A,B) are a Golay
complementary pair of sequences [7], [8] iff

λAB(z) := A(z)A(z−1) +B(z)B(z−1) = c ∈ R.

We refer to this conventional type of complementary
pair as a Type-I pair and, in this paper, investigate
two variants of the complementary pair, namely Type-
II and Type-III complementary pairs. Type-I comple-
mentary pairs are attractive because the sum of their
aperiodic autocorrelations, λAB , has zero sidelobes, i.e.
λAB(z) has no dependence on z. This means that
the Fourier transform of λAB is completely flat, as
λAB(e) = c, a non-negative real constant, for e ∈ C,
|e| = 1. In this paper, we only consider sequences A and
B with elements from the alphabet {1,−1}, i.e. bipo-
lar sequences. Bipolar complementary sequence pairs
of Type-I are only known to exist at lengths 2a10b26c,
for any non-negative integers a, b, c, although it is not
yet known what happens above length 99 [1]. More-
over Type-I pairs must be of even length [8] and have
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no prime factor congruent to 3 modulo 4 [4], [5].
Example 1: (Type-I pair)
Let A = (1, 1, 1,−1) and B = (1, 1,−1, 1). Then
A(z) = 1+z+z2−z3 and B(z) = 1+z−z2 +z3. Then

λAB = A(z)A(z−1) +B(z)B(z−1)
= (−z−3 + z−1 + 4 + z − z3)

+(z−3 − z−1 + 4− z + z3) = 8.

A fundamental recursive construction for Type-
I sequence pairs, referred to here as Construction
G (see (3)), is to construct a pair of n′′ = n′n-
element arrays, being the coefficients of a pair of
multivariate polynomials (Fj(zj), Gj(zj)), where zj =
(zj , zj−1, . . . , z0), from a length n′ Type-I sequence
pair, (Cj(zj), Dj(zj)), and a pair of n-element arrays,
(Fj−1(zj−1), Gj−1(zj−1)). One then projects the con-
structed array pair, (Fj(zj), Gj(zj)), down to a Type-I
sequence pair, (F (z0), G(z0)), of length n′′ = n′n by
equating variables, where zk = z

dk−1

k−1 , 0 < k ≤ j [1]–[3],
[6], [8], [12]–[14], [20]–[22]. We call a Type-I sequence
pair, (A,B), over the alphabet {1,−1}, a {1,−1}-
primitive pair if it cannot be constructed from smaller-
length Type-I sequence pairs over the alphabet {1,−1}
using Construction G. {1,−1}-primitive Type-I se-
quence pairs are known to exist at length 2, 10, 20, and
26 [8]–[10], from which all known non-{1,−1}-primitive
Type-I bipolar sequence pairs of lengths 2a10b26c can
be obtained by repeated application of Construction G.

1.1 Two new questions

Define the Type-II aperiodic autocorrelation of A(z) by
A(z)A(z) (actually a form of autoconvolution) [15],
[16], [18]. Then, for A and B of length n, (A,B) are
a Type-II complementary pair iff

λII,AB :=
A(z)A(z) +B(z)B(z)

1 + z2 + z4 + . . .+ z2n−2
= c ∈ R. (1)

Question 1: Find bipolar Type-II complementary
pairs, (A,B).

Examples are known only at power-of-two lengths.
We prove that these are the only possible lengths.
Example 2: (Type-II pair)
Let A = (1, 1, 1,−1) and B = (1,−1,−1,−1). Then
A(z) = 1+z+z2−z3 and B(z) = 1−z−z2−z3. From
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(1),

λII,AB = (1+2z+3z2−z4−2z5+z6)+(1−2z−z2+3z4+2z5+z6)
1+z2+z4+z6

= 2.

Define the Type-III aperiodic autocorrelation of
A(z) by A(z)A(−z) (actually a form of twisted-
autoconvolution) [15], [16], [18]. Then, for A and B of
length n, (A,B) are a Type-III complementary pair iff

λIII,AB :=
A(z)A(−z) +B(z)B(−z)

1− z2 + z4 − . . .+ (−1)n−1z2n−2
= c ∈ R.

(2)

Question 2: Find bipolar Type-III complementary
pairs, (A,B).

Examples can be found at power-of-two lengths,
but also exist at other lengths.
Example 3: (Type-III pair)
Let A = (1, 1, 1,−1) and B = (1, 1,−1, 1). Then
A(z) = 1+z+z2−z3 and B(z) = 1+z−z2 +z3. From
(2),

λIII,AB = (1+z2+3z4−z6)+(1−3z2−z4−z6)
1−z2+z4−z6 = 2.

1.2 Motivation for Type-II and Type-III

Just as each Type-I complementary polynomial is nat-
urally evaluated on the unit circle to yield its Fourier
spectrum, so we show that it is natural to evaluate
Type-II and Type-III complementary polynomials on
the real axis and imaginary axis, respectively. The rea-
son this is natural is that the respective evaluations
preserve the commutativity of conjugation, as now ex-
plained.

Consider a univariate polynomial, A(z). Denote
A∗(z) as a conjugate of A(z), where this conjugate
evaluates to A(z−1), A(z), or A(−z), for Types I, II,
and III, respectively. The Fourier spectrum of A is ob-
tained by evaluating A(z) at points z = e ∈ C, where
|e| = 1. One restricts to the unit circle because Type-
I conjugation and evaluation only commute for eval-
uation on the unit circle, i.e. A∗(z)z=e = (A(e))∗,
for |e| = 1, e.g. let A(z) = 1 + z + z2. Then
A∗(z) = 1 + z−1 + z−2, and A∗(z)z=i = −i = (A(i))∗,
as |i| = 1. But A∗(z)z=3 = 13

9 6= (A(3))∗ = 13, as
|3| 6= 1. Similarly, for Type-II one restricts to eval-
uation on the real axis as, for A∗(z) = A(z), then
A∗(z)z=e = (A(e))∗, for e ∈ R, e.g. let A(z) = 1+z+z2.
Then A∗(z) = 1 + z+ z2, A∗(z)z=i = i 6= (A(i))∗ = −i,
and A∗(z)z=3 = 13 = (A(3))∗. Similarly, for Type-III
one restricts to evaluation on the imaginary axis.

We include polynomial denominators in (1) and
(2) so as to normalise evaluations. Evaluating A(z) at
e is equivalent to taking the inner-product of A with
b = (1, e, e2, . . . , en−1), i.e. A(e) = Ab†, so b should

be normalised. For Type-I, e is on the unit circle, so
bb† = n and normalisation is by a constant. For Type-
II, e is on the real axis, so bb† = 1+e2+e4+. . .+e2n−2 =
(1 + z2 + z4 + . . .+ z2n−2)z=e, hence the denominator
for Type-II. Similarly, for Type-III, bb† = (1−z2 +z4−
. . .+ (−1)n−1z2n−2)z=e, e ∈ I.

For further motivation and context see [15]–[18],
[20].

2. Construction, primitivity, and symmetry

2.1 Construction

Our focus in this paper is on complementary pairs
of univariate polynomials, A(z) and B(z) but, as ex-
plained below, such pairs that are non-primitive are
constructed from projections of complementary pairs of
multivariate (m-variate) polynomials, A(z) and B(z),
where z := (z0, z1, . . . , zm−1), i.e. from array pairs.
Moreover the fundamental construction for complemen-
tary pairs is inherently multivariate. Given a comple-
mentary sequence pair, (Cj , Dj), and a complementary
array pair, (Fj−1, Gj−1), one can always construct a
larger complementary array pair, (Fj , Gj). This con-
struction is valid for Type-I, Type-II, and Type-III, or
any mixture thereof, and is conveniently summarised,
recursively:
Construction G [20]:
(

Fj(zj)
Gj(zj)

)
=(

Uj(zj)

(
Cj(zj) D∗j (zj)
Dj(zj) −C∗j (zj)

)
Vj(zj)

)(†) (
Fj−1(zj−1)
Gj−1(zj−1)

)
,

(3)

where the Uj and Vj are any 2 × 2 complex unitaries
in zj , zj = zj |zj−1, z0 = (z0), and ‘(†)’ means optional
transpose-conjugate. The meaning of conjugacy at step
j depends on whether the jth step is Type-I, Type-
II, or Type-III. Observe that (3) restricts (Cj , Dj) to
be a complementary sequence pair. More generally we
might want to include the possibility of (Cj , Dj) being
a complementary array pair, (Cj(zj), Dj(zj)), (with as-
sociated multivariate matrices, Uj(zj) and Vj(zj)). But
we conjecture, (see conjecture 2 in section 5) that all
complementary array pairs can be obtained by recur-
sively applying (3), where the (Cj , Dj) are all restricted
(wlog) to univariate pairs (Cj(zj), Dj(zj)).

Given any pair of arrays of equal dimensions,
(Fj , Gj), then this pair is called a Type-II (resp. Type-
III) complementary array pair if it satisfies (4) (resp.
(5)) below:

λII,FG :=
Fj(zj)Fj(zj) +Gj(zj)Gj(zj)∏j
k=0(1 + z2k + z4k + . . .+ z

2(dk−1)
k )

= c ∈ R. (4)

λIII,FG :=
Fj(zj)Fj(−zj) +Gj(zj)Gj(−zj)∏j

k=0(1− z
2
k + z4k − . . .+ (−1)dk−1z

2(dk−1)
k )

= c ∈ R,

(5)

where Fj and Gj are of degree dk − 1 in zk.
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The (Fj , Gj) constructed using (3), where the
(Cj , Dj) are Type-II (resp. Type-III) complementary
sequence pairs, are Type-II (resp. Type-III) comple-
mentary array pairs [20].

We are only considering a bipolar alphabet, so pro-
pose specializations of (3) which ensure that, if (Cj , Dj)
and (Fj−1, Gj−1) are bipolar sequence and array pairs,
then (Fj , Gj) is also a bipolar pair:
Construction G - bipolar, Type-II [20]

(
Fj(zj)
Gj(zj)

)
=

±1
2

(
1 0
0 ±1

)(
Cj(zj) D∗j (zj)
Dj(zj) −C∗j (zj)

)(†)

×
(

1 1
±1 ∓1

)(
Fj−1(zj−1)
Gj−1(zj−1)

)
.

(6)

Construction G - bipolar, Type-III [20]

(
Fj(zj)
Gj(zj)

)
=

1
2

(
Cj(zj) D∗j (zj)
Dj(zj) −C∗j (zj)

)(†) ( ±1 1
∓1 1

)(
Fj−1(zj−1)
Gj−1(zj−1)

)
.

(7)

Example 4: (Type-II construction)
Let (F0 = 1 + z0, G0 = 1− z0), and (C1 = 1 + z1, D1 =
1−z1) be Type-II sequence pairs. Applying an instance
of (6) we obtain the Type-II array pair, (F1 = 1 + z0 +
z1 − z0z1, G1 = 1 − z0 − z1 − z0z1), i.e. F1(z)F1(z) +
G1(z)G1(z) = 2(1 + z2

0)(1 + z2
1).

Example 5: (Type-III construction)
Let (F0 = 1 + z0, G0 = 1 + z0), and (C1 = 1 + z1 +
z2
1 , D1 = −1 + z1 + z2

1) be Type-III sequence pairs. Ap-
plying an instance of (7) we obtain the Type-III array
pair, (F1 = 1+z0 +z1 +z0z1 +z2

1 +z0z2
1 , G1 = −1−z0 +

z1+z0z1+z2
1+z0z2

1), i.e. F1(z)F1(−z)+G1(z)G1(−z) =
2(1− z2

0)(1− z2
1 + z4

1).
Complementary arrays can always be projected

down to complementary sequences by equating vari-
ables in (4) and (5). Specifically, if Fm−1(z) =
Fm−1(z0, z1, . . . , zm−1) and Gm−1(z) are an m-variable
array pair of an appropriate, possibly mixed, type, and
have degree dk− 1 in variable zk, then (F ,G) are a cer-
tain type of length-n sequence pair, where zk = z

dk−1

k−1 ,
0 < k < m, and

F(z) = F(z0) = Fm−1(z0, zδ10 , z
δ2
0 . . . , z

δm−1
0 ),

and similarly for G(z),
(8)

where δi =
∏i−1
k=0 dk, and n = δm. The assign-

ments zk = z
rk−1
k−1 work for any set of rk−1, but

zk = z
dk−1

k−1 ensures the resulting sequence pair is over
the same alphabet as the original array pair - this is
because such an assignment never leads to the addi-
tion of two or more of the original coefficients. We

write F(z) := Fm−1(z↓) to indicate projection of (8)
from Fm−1(z) down to F(z), by means of nested as-
signments zk = z

dk−1

k−1 , 1 ≤ k < m. All projec-
tions are covered by allowing all possible re-labelings
of the m variables of Fm−1(z) prior to projection,
i.e. Fm−1,θ(z) = Fm−1(zθ0(0), zθ1(1), . . . , zθm−1(m−1)),
where θ = (θ0, θ1, . . . , θm−1) : Zmm → Zmm is one of m!
permutations, but, wlog, we set θ to the identity.

Lemma 1. Let (Fm−1(zm−1), Gm−1(zm−1)) be
an m-variable Type-II array pair, of degree dk − 1
in zk, i.e. that satisfies (4) for j = m − 1. Then
(F(z),G(z)) = (Fm−1(z↓), Gm−1(z↓)) is a Type-II se-
quence pair of length n =

∏m−1
k=0 dk.

Proof. Observe that F(z)F(z) = Fm−1(z↓)Fm−1(z↓),
and similarly for G(z).

Example 6: (projection to a Type-II sequence)
For the array pair of Example 4, (F1 = 1 + z0 + z1 −
z0z1, G1 = 1 − z0 − z1 − z0z1), assign z1 = z2

0 to ob-
tain the Type-II sequence pair (F1(z↓) = 1 + z0 + z2

0 −
z3
0 , G1(z↓) = 1− z0 − z2

0 − z3
0).

Let 1 ≤ r ≤ m be chosen so that δr is even and
δr−1 is odd or, if all dk are odd, then r = m. Let
F̃ (z) = Fm−1(z0, . . . , zm−1)Fm−1(−z0, . . . ,−zr−1, zr, . . . , zm−1),

and similarly for G̃. Let PII(z) =
∏m−1
k=r (1 + z2

k +
. . .+ z

2(dk−1)
k ), and PIII(z) =

∏r−1
k=0(1− z2

k + z4
k − . . .+

(−1)dk−1z
2(dk−1)
k ).

Lemma 2. Let (Fm−1(zm−1), Gm−1(zm−1)) be
an m-variable mixed Type-II/Type-III complementary
array pair, of degree dk − 1 in zk, that satisfies,

F̃ (z) + G̃(z)
PII(z)PIII(z)

= c ∈ R.

Then (F(z),G(z)) = (Fm−1(z↓), Gm−1(z↓)) is a Type-
III sequence pair of length n =

∏m−1
k=0 dk.

Proof. Observe that

(−z0,−z1, . . . ,−zr−1, zr, . . . , zm−1)
zk=z

dk−1
k−1

= (−z0, (−z0)δ1 , . . . , (−z0)δr−1 , (−z0)δr , . . . , (−z0)δm−1 ).

Example 7: (projection to a Type-III sequence)
The array pair of Example 5, (F1 = 1+z0 +z1 +z0z1 +
z2
1 + z0z

2
1 , G1 = −1 − z0 + z1 + z0z1 + z2

1 + z0z
2
1) does

not project down to a Type-III sequence pair by the
substitution z1 = z2

0 because d0 = 2 and d1 = 3, so
r = 1, and therefore (C1, D1) should be Type-II, not
Type-III. And, from section 3, we find that length-3
Type-II bipolar pairs do not exist. But, by swapping
input pairs to make d0 = 3 and d1 = 2 so that r = 2 we
now require both pairs to be Type-III. So we construct
a Type-III array pair by invoking an instance of (7)
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with (F0 = 1 + z0 + z2
0 , G0 = −1 + z0 + z2

0) and (C1 =
1 + z1, D1 = 1 + z1), to obtain (F1 = 1 + z0 + z2

0 +
z1 + z0z1 + z2

0z1, G1 = −1 + z0 + z2
0 − z1 + z0z1 + z2

0z1).
Now assign z1 = z3

0 to obtain Type-III sequence pair
(F1(z↓) = 1 + z0 + z2

0 + z3
0 + z4

0 + z5
0 , G1(z↓) = −1 +

z0 + z2
0 +−z3

0 + z4
0 + z5

0). The two (F1, G1) array pairs
in this example are identical, and one could obtain the
same Type-III sequence pair by assigning z0 = z3

1 for
the first pair.

2.2 Primitivity

We call (Fj , Gj) a primitive complementary array pair
if it cannot be constructed from a non-trivial sequence
pair, (Cj , Dj), combined with a smaller, non-trivial,
array pair (Fj−1, Gj−1) via Construction G, nor is it
the partial projection of a complementary array pair,
(F ′, G′), of higher dimension (a partial projection oc-
curs when zk = z

dk−1

k−1 for s < k < m, for some s
strictly greater than zero). In particular, the sequence
pair, (F ,G), is then primitive if it is not the projec-
tion of a complementary array pair, (Fj , Gj), of higher
dimension. Primitivity is independent of the alpha-
bets of (F ,G), (Fj , Gj), (Cj , Dj), and (Fj−1, Gj−1) and
is, consequently, difficult to ascertain in general. So
we call (Fj , Gj) a {1,−1}-primitive array pair if it is
bipolar and cannot be constructed from (Cj , Dj) and
(Fj−1, Gj−1) via Construction G, nor via a partial pro-
jection of some (F ′, G′), where (Cj , Dj), (Fj−1, Gj−1),
and (F ′, G′), must also be bipolar.

For example the length-3 Type-III sequence pair of
Example 7 is {1,−1}-primitive but the length-6 Type-
III sequence pair of Example 7 is not {1,−1}-primitive
as it arises as a projection of a 2×3 Type-III array pair
which, in turn, is recursively constructed, using con-
struction G, from length-2 and length-3 bipolar Type-
III sequence pairs.

2.3 Symmetry

Let (A,B) be a complementary sequence pair. Then we
can generate equivalent complementary sequence pairs
from (A,B) by applying symmetry operations.

Given the Type-II pair, (A(z), B(z)), of length n,
then the following are equivalent Type-II pairs:

• ±(A(z), B(z)),
• ±(A(z),−B(z)),
• (B(z), A(z)),
• (zn−1A(z−1), zn−1B(z−1)),

or any sequential combination of the above operations.
Note that zn−1A(z−1) is the ‘reversal’ of A(z), and

zn−1A(z−1)zn−1A(−z−1) + zn−1B(z−1)zn−1B(−z−1)
= 2z2(n−1)(1 + z−2 + z−4 + . . .+ z−2(n−1)),

explains this symmetry.

Given the Type-III pair, (A(z), B(z)), of length n,
then the following are equivalent Type-III pairs:

• ±(A(z), B(z)),
• ±(A(z),−B(z)),
• (B(z), A(z)),
• (zn−1A(z−1), zn−1B(z−1)),
• (A(±z), B(±z)),
• (A(±z), B(∓z)),

or any sequential combination of the above operations.

So each Type-II pair is a representative for a class
of t pairs, where t|16. Likewise, each Type-III pair is a
representative for a class of t pairs, where t|64.

There are further symmetries between non-
{1,−1}-primitive sequence pairs, and would lead to a
reduction in the count for M in Table 1. For exam-
ple, (000100011100000, 100000000000100) is the binary
form for a length-15 bipolar Type-III sequence pair, and
also the projection of a 5×3 Type-III array pair. Taking
a 3-decimation of this pair we obtain the Type-III se-
quence pair, (010100010000100, 100010000000000), be-
ing the projection of a 3 × 5 Type-III array pair. In
this sense the two sequence pairs are equivalent, but
we count them separately for Table 1. The 5 × 3 and
3 × 5 array pairs mentioned above are identical up to
re-labeling.

3. Type-II complementary sequence pairs

We now prove that bipolar Type-II complementary se-
quence pairs must be of length n = 2m, m a non-
negative integer (Theorem 1).

A complementary sequence pair of Type-II satisfies
(1). In particular, when the entries of A and B are
restricted to ±1, and when z is to be evaluated on the
real axis,

A2(z) +B2(z) = 2(1 + z2 + · · ·+ z2(n−1)). (9)

Equation (9) yields a list of quadratic equations. For
1 ≤ k ≤ n− 1,

k∑
i=0

(aiak−i + bibk−i) = 0, if k is odd,

k∑
i=0

(aiak−i + bibk−i) = 2, if k is even,

and

k∑
i=0

(an−1−ian−1−(k−i) + bn−1−ibn−1−(k−i)) = 0,

if k is odd,
k∑
i=0

(an−1−ian−1−(k−i) + bn−1−ibn−1−(k−i)) = 2,

if k is even.

Simplifying the first of the quadratic equations above,
we obtain
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b k2 c∑
i=0

(aiak−i + bibk−i) = 0, if k is odd,

and we obtain similar expressions for the other three
quadratic equations. Now, by observing that, for a and
b restricted to ±1

ab ≡ a+ b− 1 (mod 4), (10)

we obtain the following linear congruences from the cor-
responding quadratic equations. For k = 1, 2, · · · , n−1,

k∑
i=0

(ai + bi) ≡ k + 1, (mod 4), if k is odd,

k/2−1∑
i=0

(ai + bi) +
k∑

i=k/2+1

(ai + bi) ≡ k, if k is even,

(mod 4),
(11)

and
k∑
i=0

(an−1−i + bn−1−i) ≡ k + 1, (mod 4), if k is odd,

k/2−1∑
i=0

(an−1−i + bn−1−i)

+
k∑

i=k/2+1

(an−1−i + bn−1−i) ≡ k, if k is even.

(mod 4).
(12)

The following lemmas follow from equations (9),
(11) and (12).

Lemma 3. For a bipolar complementary sequence
pair, (A,B), of Type-II with length n:

(i) n must be expressible as a sum of two squares.
(ii) n is even.

Proof. Equation (9) yields A(1)2 + B(1)2 = 2n, which
implies n can be expressed as:

n = (A(1)+B(1)
2 )2 + (A(1)−B(1)

2 )2.

Suppose n is odd, say n = 2m+ 1. From (11), for
k = 2m− 3 and k = 2m− 1 we derive

2m−3∑
i=0

(ai + bi) ≡ 2m− 2 (mod 4),

2m−1∑
i=0

(ai + bi) ≡ 2m (mod 4).

This implies

a2m−2 + b2m−2 + a2m−1 + b2m−1 ≡ 2(mod 4).

On the other hand, for k = 1, 2, we derive, from (12),
that

a2m + a2m−1 + b2m + b2m−1 ≡ 2 (mod 4)
a2m + a2m−2 + b2m + b2m−2 ≡ 2 (mod 4),

which yields

a2m−1 + b2m−1 + a2m−2 + b2m−2 ≡ 0 (mod 4).

This leads to a contradiction. So n cannot be odd.

In what follows, the length of a bipolar comple-
mentary sequence pair, (A,B), of Type-II is assumed
to be n = 2m.

Lemma 4. Let A = (a0, a1, · · · , a2m−1) and
B = (b0, b1, · · · , b2m−1) be a bipolar complementary
sequence pair of Type-II. Then

(i) ai + a2i + bi + b2i ≡ 0 (mod 4) and ai + a2i+1 +
bi + b2i+1 ≡ 2 (mod 4) for 0 ≤ i ≤ m− 1;

(ii) a2m−1−i + a2m−1−2i + b2m−1−i + b2m−1−2i ≡
0 (mod 4) and a2m−1−i+a2m−1−(2i+1)+b2m−1−i+
b2m−1−(2i+1) ≡ 2 (mod 4) for 0 ≤ i ≤ m− 1;

Proof. We only prove (i), as (ii) is similar.
We have a0 + a0 + b0 + b0 ≡ 0 (mod 4) and a0 +

a1 + b0 + b1 ≡ 2 (mod 4). From (11), we obtain 2m− 1
equations

a0 + a1 + b0 + b1 ≡ 2 (mod 4)
a0 + a2 + b0 + b2 ≡ 2 (mod 4)

...
2m−3∑
j=0

(aj + bj) ≡ 2m− 2 (mod 4)

m−2∑
j=0

(aj + bj) +
2m−2∑
j=m

(aj + bj) ≡ 2m− 2 (mod 4)

2m−1∑
j=0

(aj + bj) ≡ 2m (mod 4)

For 1 ≤ i ≤ m − 1, adding the (2i − 1)-th and 2i-th
equations gives

ai + a2i + bi + b2i ≡ 0 (mod 4),

and adding the 2i-th and (2i+ 1)-th equations gives

ai + a2i+1 + bi + b2i+1 ≡ 2 (mod 4).

Theorem 1. The length of a bipolar complemen-
tary sequence pair, (A,B), of Type-II is a power of 2.

Proof. The length of (A,B) is n = 2m. De-
fine sequences c = (c0, c1, · · · , c2m−1) and d =
(d0, d1, · · · , d2m−1) for 0 ≤ k ≤ 2m− 1:

ck ≡ a0 + ak + b0 + bk (mod 4),
dk ≡ a2m−1 + a2m−1−k + b2m−1 + b2m−1−k (mod 4).

(13)
From Lemma 4, for 1 ≤ i ≤ m− 1,

c0 ≡ 0, c2i ≡ ci, c2i+1 ≡ ci + 2 (mod 4).
d0 ≡ 0, d2i ≡ di, d2i+1 ≡ di + 2 (mod 4).

So sequences c = (c0, c1, · · · , c2m−1) and d =
(d0, d1, · · · , d2m−1) are identical. Furthermore, when
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c2m−1 ≡ a0 + b0 + a2m−1 + b2m−1 ≡ 0 (mod 4), for any
0 ≤ k ≤ 2m− 1,

ck + c2m−1−k = dk + c2m−1−k
≡ (a2m−1 + a2m−1−k + b2m−1 + b2m−1−k)

+(a0 + a2m−1−k + b2m−1 + b2m−1−k)
≡ 0 (mod 4).

Similarly, when c2m−1 ≡ a0 + b0 + a2m−1 + b2m−1 ≡
2 (mod 4),

ck + c2m−1−k = dk + c2m−1−k
≡ (a2m−1 + a2m−1−k + b0 + b2m−1−k)

+(a0 + a2m−1−k + b0 + b2m−1−k)
≡ 2 (mod 4)

for any 0 ≤ k ≤ 2m− 1. The two cases imply

c0 + c2m−1 ≡ c1 + c2m−2 ≡ · · · ≡ cm−1 + cm (mod 4).
(14)

From equations

c0 ≡ 0 , c2i ≡ ci , c2i+1 ≡ ci+2 (mod 4) for 0 ≤ i ≤ m−1,

we derive for i1 > i2 > · · · > ir,

c2i1+2i2+···+2ir ≡ c2i1−ir+2i2−ir+···+2ir−1−ir+1

≡ c2i1−ir+2i2−ir+···+2ir−1−ir + 2
≡ c2j1+2j2+···+2jr−1 + 2.

Iterating the above,

c2i1+2i2+···+2ir ≡ c2j1+2j2+···+2jr−1 + 2
≡ c2k1+2k2+···+2kr−2 + 2 + 2

...
≡ c0 + 2r
≡ 2r(mod 4).

In particular, c2r−1 ≡ 2r (mod 4). Similarly,

c2i1+2i2+···+2ir−1 ≡ c2j1+2j2+···+2jr−1 + 2ir
≡ 2(r − 1) + 2ir
≡ 2(r − 1 + 2ir) (mod 4).

Suppose n = 2m = 2i1 + 2i2 + · · ·+ 2it with i1 > i2 >
· · · > it and t ≥ 2. Then, from (14),

c0 + c(2i1+2i2+···+2it )−1 ≡ c2it + c(2i1+···+2it−1 )−1

(mod 4).

So 2(0+t−1+it) ≡ 2(1+t−2+it−1) (mod 4), and it and
it−1 have the same parity. Similarly, i1, i2, · · · , it have
the same parity. Furthermore, (14) and the inequality
it−1 ≥ it + 2 yields

c0 + c(2i1+2i2 )−1 ≡ c2i1−1 + c(2i1−1+2i2 )−1

(mod 4) if t = 2,
c0 + c(2i1+···+2it )−1 ≡ c2it−1−1 + c(2i1+···+2it−1−1+2it )−1

(mod 4), if t ≥ 3,

leading to a contradiction 2(t− 1 + it) ≡ 2(1 + t− 1 +

it)(mod 4).

A search for bipolar Type-II complementary se-
quence pairs, (A,B), of length n = 2m, n = 2, 4, 8, 16,
reveals that they are all of the following form:

A = A[x] = (−1)K(x)+l(x)+c, (15)

where K(x0, x1, . . . , xm−1) =
∑

0≤j<k<m xjxk,
l(x0, x1, . . . , xm−1) =

∑
0≤j<m cjxj , cj , c ∈ F2, and

ai = A[x = i2], where i2 is a radix-2 decomposition
of i over m bits. (e.g. for i = 3 and m = 4, i2 = 0011,
and x = i2 assigns x0 = x1 = 1 and x2 = x3 = 0).
Moreover

B = B[x] = A[x](−1)
∑

0≤j<m xj+c
′
, (16)

and c′ ∈ F2.
The total number of Type-II pairs of the form de-

scribed by (15) and (16) is N = 2m+2, and the number
of pairs, inequivalent up to symmetry, is M = 2m−1.
All these Type-II (A,B) pairs are projections of m-
variable (2 × 2 × . . . × 2) bipolar Type-II array pairs.
So the only known {1,−1}-primitive Type-II sequence
pair is, to within symmetries, the length-2 pair (A =
(1, 1), B = (1,−1)).

Open Problem: Prove that all bipolar Type-II se-
quence pairs are constructed from primitive pair (A =
(1, 1), B = (1,−1)) by an m-fold application of Con-
struction G, then a projection of the resulting m-variate
Type-II array pair back to a sequence pair.

4. Type-III complementary sequence pairs

Unlike Type-II, there exist bipolar complementary se-
quence pairs of Type-III for lengths n other than 2m.
The general length formula eludes us, but our argu-
ments eliminate many possible lengths, allowing us to
propose a conjecture as to lengths for which bipolar
Type-III sequence pairs cannot exist, and to conduct an
optimised search for small length pairs, as summarised
in Table 1.

A complementary sequence pair (A,B) of Type-III
satisfies (2). In particular, when the entries of A and B
are ±1, and when z is to be evaluated on the imaginary
axis,

A(z)A(−z) +B(z)B(−z)
1− z2 + z4 − · · ·+ (−1)n−1z2(n−1)

= 2, (17)

and (A,B) satisfies

(ak + bk) +
2k∑
i=0

(ai + bi) ≡ 2k (mod 4)

(an−1−k + bn−1−k) +
2k∑
i=0

(an−1−i + bn−1−i) ≡ 2k

(mod 4).
(18)
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for k = 0, 1, · · · , dn/2e − 1.
(18) yields a system of linear congruence equations:

M · (a0 + b0, · · · , an−1 + bn−1)T ≡ C (mod 4), (19)

where C = (c0, · · · , cn−1)T and ck = cn−1−k ≡
k(mod 4) for k = 0, 1, · · · , dn/2e − 1.

The existence of a solution of this system is a nec-
essary condition for the existence of bipolar Type-III
complementary sequence pairs. By comparing ranks of
matrices M and M ||C with size 2 ≤ n ≤ 1000, one
finds that there do not exist bipolar complementary se-
quence pairs of Type-III with length n ≤ 1000 being a
multiple of the following primes:

7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199
223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439,
463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743,
751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991.

Proof. (of (18)). Denote C(z) = A(z)A(−z) =
2(n−1)∑
i=0

ciz
i and D(z) = B(z)B(−z) =

2(n−1)∑
i=0

diz
i. Let

a′i = (−1)iai and b′i = (−1)ibi. Then ci = di = 0 if i
is odd, and for k = 0, 1, · · · , dn/2e − 1,

c2k =
2k∑
i=0

aia
′
2k−i =

k−1∑
i=0

(aia′2k−i + a2k−ia
′
i) + (−1)ka2

k.

d2k =
2k∑
i=0

bib
′
2k−i =

k−1∑
i=0

(bib′2k−i + b2k−ib
′
i) + (−1)kb2k.

By (2), one has c2k + d2k = 2(−1)k. Thus,

k−1∑
i=0

[(aia′2k−i + a2k−ia
′
i) + (bib′2k−i + b2k−ib

′
i)]

= 2
k−1∑
i=0

(−1)i(aia2k−i + bib2k−i)

= 0.

This yields

0 =
k−1∑
i=0

(−1)i(aia2k−i + bib2k−i)

=
k−1∑
i=0

(aia2k−i + bib2k−i)− 2
k−1∑

i is odd

(aia2k−i + bib2k−i)

≡
k−1∑
i=0

(aia2k−i + bib2k−i)

≡ (ak + bk) +
2k∑
i=0

(ai + bi)− 2k(mod 4).

(20)
This proves the first equation in (18), and the second
is similarly proven.

The sequence of non-existing lengths, resulting
from the rank check, was fed into the The On-Line
Encyclopedia of Integer Sequences [11], and suggests
strongly the sequence A014663:

Conjecture 1. Bipolar Type-III complementary
sequence pairs do not exist at lengths n = kp, p a prime,
if the order of 2 mod p is odd, where k is any non-
negative integer.

Table 1 lists the total number, N†, of bipolar
complementary sequence pairs (A,B) of Type-III with
length 2 ≤ n ≤ 28, the number, M , of Type-III pairs,
inequivalent to within symmetries, and the number, P ,
of Type-III pairs that are not also bipolar array pairs
(i.e. {1,−1}-primitive sequence pairs).

Table 1 Enumeration of Bipolar Type-III Sequence Pairs

n 2 3 4 5 6 7 8

N 16 32 64 64 256 0 256

M 1 1 2 2 4 0 6

P 1 1 0 2 0 0 0

n 9 10 11 12 13 14 15

N 512 512 256 1536 128 0 2560

M 8 14 4 24 4 0 40

P 0 0 4 0 4 0 8

n 16 17 18 19 20 21 22

N 1024 384 6144 0 3072 0 2048

M 20 12 96 0 64 0 32

P 0 12 0 0 0 0 0

n 23 24 25 26 27 28

N 0 9216 2048 1024 12416 0

M 0 144 44 28 ? 0

P 0 0 0 0 ? 0

Table 2 lists {1,−1}-primitive complementary se-
quence pairs of Type-III and length ≤ 26. For exam-
ple, the length-15 pair (081d, 155e) represents the pair
(A = 1, 1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1,−1, 1,−1, B =
1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1,−1,−1,−1, 1).

Table 2 {1,−1}-primitive Type-III Sequence Pairs

n {1,−1}-primitive Type-III sequence pairs (hex)

2 (0,0).

3 (0,1).

5 (00,04), (03,07).

11 (012,1fb), (037,1de), (042,1ab), (067,18e).

13 (01f0,06ac), (01f9,06a5), (03f1,04ad), (03f8,04a4).

15 (0012,1d51), (001f,1d5c), (00de,10b7), (00f6,109f),
(0408,1aab), (0618,1849), (081d,155e), (0c18,1c71).

17 (01930,0638c), (03118,07ffc), (0337c,07d98),
(03398,04924), (033d6,07d32), (0363c,078d8),
(03696,07872), (03976,07792), (039dc,07738),
(03bb8,0755c), (03c36,072d2), (03c9c,07278).

The search reveals that, for length n = 2m, and
n = 2, 4, 8, 16, all bipolar Type-III complementary se-
quence pairs, (A,B), are of the following form.

†(A, B) and (B, A) are distinguished in enumeration.
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A = A[x] = (−1)K
′(x′)+E(x)+l(x)+c, (21)

where K ′(x1, . . . , xm−1) =
∑

1≤j<k<m xjxk,
E(x0, . . . , xm−1) = x0

∑
1≤j<m ejxj ,

and l(x0, x1, . . . , xm−1) =
∑

0≤j<m cjxj , ej , cj , c ∈ F2.
Moreover

B = B[x] = A[x](−1)
∑

1≤j<m xj+cx0+c
′
, (22)

and c, c′ ∈ F2.
All these Type-III sequence pairs of length 2m

are projections of m-variable (2 × 2 × . . . × 2) bipo-
lar array pairs, being of Type-III for the first variable,
and Type-II for the other m − 1 variables. So the
only known {1,−1}-primitive Type-III sequence pair
of length 2m is, to within symmetries, the length-2 pair
(A = (1, 1), B = (1, 1)).

Open Problem: Prove that all bipolar Type-III
sequence pairs of length 2m can be constructed from
primitive pair (A = (1, 1), B = (1, 1)) by an m-fold ap-
plication of Construction G, then a projection of the
resulting m-variate Type III/II array pair back to a
sequence pair.

A listing of all Type-III sequence pairs for 2 ≤ n ≤
26, inequivalent up to symmetries, can be found at [19].

5. Discussion

The initial spur for investigating Type-II and Type-
III complementary sequences was the length-2 case, for
which evaluations of A(z) = a0+a1z can be partitioned
as the following orthogonal transforms,

Type-I:(
A(e)
A(−e)

)
= 1√

2

(
1 e
1 −e

)(
a0
a1

)
, |e| = 1.

Type-II:

1√
1+e2

(
A(e)

eA(−e−1)

)
= 1√

1+e2

(
1 e
e −1

)(
a0
a1

)
, e ∈ R.

Type-III:

1√
1−e2

(
A(e)

−ieA(e−1)

)
= 1√

1−e2

(
1 e

−ie −i

)(
a0
a1

)
, e ∈ I.

Parseval’s theorem follows from the orthogonality
and confers a strong meaning to the complementary
pair property in these cases (e.g. spread-spectrum and
low power peak). Previous work focusses on 2×2 . . .×2
complementary arrays as their evaluations can then also
by partitioned into orthogonal transforms, and such
structures have relevance, in particular, to Boolean
functions, quantum qubit systems, and graph theory.
But, for lengths n > 2, evaluations can only be parti-
tioned into orthogonal transforms for Type-I (Fourier
transforms). Such partitioning is no longer possible for
Types II and III, and these are the cases we consider
in this paper. So an open problem is to further mo-
tivate sequence complementarity of Types II and III,
being that it exists in a non-orthogonal (non-Parseval)

context. For example, one could recover orthogonality
by embedding Type-II in an integer modulus and par-
titioning evaluations into number-theoretic transforms,
and similar for Type-III.

Conjecture 2. Let (A(z), B(z)) be a multivari-
ate complementary array pair of Type I, II, or III, i.e.
where z = (z0, . . . , zm−1), m > 1. Then such an array
is never primitive.

Conjecture 2 is somewhat tenuous, being based on
us not yet finding such a pair (see [12] for Type-I), but
may turn out to be easy to prove. If, however, such a
pair does exist then one should modify the definition of
primitivity and {1,−1}-primitivity so as to cover the
possibility that the (Cj , Dj) pair of Construction G (3)
is, irreducibly, an array (multivariate) pair.
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