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The Non-Alignment Properties of BPSK Sequences with Good

Peak Factor

Abstract

A technique is presented to identify maximal sets of BPSK sequences which have a continuous

(DFT) spectral power profile with low worst-case peak. These maximal sets are identified by

avoiding all sequences with very low or high weight. The technique is significantly refined by

considering generalised ’weightings’ using other bins of the 2N -point DFT. Although the paper

does not give a coding strategy it succeeds in identifying spectrally flat sequences with the set of

sequences which have maximum distance from identifiable clusters of ’bad’ sequences.

1 Introduction

This paper will show how the BPSK Peak Factor (PF) problem can be approximately recast

as a problem of finding those binary codewords which are at least a prescribed set of distances

away from a set of known binary vectors [3, 1, 2, 4, 5, 6]. By changing this set of prescribed

distances we can roughly control the worst case Peak Factor possible. It would appear that the

technique can find a large proportion of the binary sequences with PF ≤ a specified value, up to

large blocklengths. In other words, there is only a small rate loss as the blocklength increases.

We stress that, at the moment, we cannot propose a code construction that achieves these

peak factor reductions. Instead we merely point out that a large subset of the binary sequences

of a given blocklength with PF ≤ a prescribed value will have known minimum distances from

a known set of binary vectors. The idea is based on a generalisation of ’constant-weight’

sequences. Previous analysis has allowed us to generate the following tables, Tables 1 and 2,

which demonstrate the continuous PF properties of constant-weight sequences:

1.1 Peak Factor Distribution of Constant Weight BPSK Codes

In the following, BPSK messages are grouped according to their (unipolar) weight. For each

weight, the continuous PFs (i.e. using an infintely zero-padded DFT) of the messages with that

weight are computed. The lowest and highest PF for each weight are then tabulated, as shown

below. The rational nature of some (but not all) of these peak factors is indicated. Only half
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the weights are shown as the other half have a symmetrical distribution. It is important to

notice that messages with the lowest and highest weights are always bad messages, i.e. they

have a high PF. For instance, by eliminating 17 carrier BPSK messages with weight ≤ 4 and

≥ 13, we are guaranteed to eliminate only messages with PF ≥ 4.765. This is a very powerful

’first strike’ for any PF limiting coding scheme. However, not all bad messages are eliminated in

this way. Note that [3] used hamming weight as part of a metric to eliminate high PF messages.
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For each blocklength, N, and each weight, d, the upper and lower PFs are tabulated. Table Key: N: Number of carriers, d: weight

N/d 0 1 2 3 4 5 6 7 8

4 4.000000 1.769800 4.000000

4.000000 1.769800 2.370370

5 5.000000 2.112500 5.000000

5.000000 1.800000 2.101328

6 6.000000 2.692787 3.317760 6.000000

6.000000 2.666667 2.053109 2.053109

7 7.000000 3.571429 3.571429 7.000000

7.000000 3.571429 1.865810 1.375876

8 8.000000 4.500000 3.420689 4.500000 8.000000

8.000000 4.500000 2.000000 1.660782 2.000000

9 9.000000 5.444444 3.687000 5.444444 9.000000

9.000000 5.444444 2.777778 1.883913 2.026097

10 10.000000 6.400000 4.118906 4.460938 6.400000 10.000000

10.000000 6.400000 3.600000 1.921601 1.921601 1.991558

11 11.000000 7.363636 4.669122 4.769188 7.363636 11.000000

11.000000 7.363636 4.454545 2.272727 1.829646 1.314321

12 12.000000 8.333333 5.366190 4.978308 5.730347 8.333333 12.000000

12.000000 8.333333 5.333333 3.000000 1.640376 1.740571 1.912673

13 13.000000 9.307692 6.230769 5.310735 6.230769 9.307692 13.000000

13.000000 9.307692 6.230769 3.769231 1.923077 1.622804 1.824325

14 14.000000 10.285714 7.142857 5.700241 6.130279 7.142857 10.285714 14.000000

14.000000 10.285714 7.142857 4.571429 2.571429 1.659606 1.659606 2.090919

15 15.000000 11.266667 8.066667 6.156690 6.321273 8.066667 11.266667 15.000000

15.000000 11.266667 8.066667 5.400000 3.266667 1.666667 1.666667 1.851567

16 16.000000 12.250000 9.000000 6.690924 6.615930 7.197406 9.000000 12.250000 16.000000

16.000000 12.250000 9.000000 6.250000 4.000000 2.250000 1.712303 1.771833 1.855578

17 17.000000 13.235294 9.941176 7.315393 6.945385 7.497003 9.941176 13.235294 17.000000

17.000000 13.235294 9.941176 7.117647 4.764706 2.882353 1.759558 1.771598 1.799987

Table 1: PF Properties of Constant Weight BPSK Codes
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N/d 0 1 2 3 4 5 6 7 8

4 4 9+4
√

3

9
4

4 9+4
√

3

9
( 4
3
)3

5 5 132/80 5

5 32/5 2.101328∗

6 6 2.692787 2734

55
6

6 42/6 2.053109∗ 2.053109∗

7 7 52/7 52/7 7

7 52/7 1.865810 1.375876

8 8 62/8 3.420689 62/8 8

8 62/8 42/8 1.660782 42/8

9 9 72/9 3.687000 72/9 9

9 72/9 52/9 1.883913 2.026097

10 10 82/10 4.118906 4.460938 82/10 10

10 82/10 62/10 1.921601 1.921601 1.991558

11 11 92/11 4.669122 4.769188 92/11 11

11 92/11 72/11 52/11 1.829646 1.314321

12 12 102/12 5.366190 4.978308 5.730347 102/12 12

12 102/12 82/12 62/12 1.640376 1.740571 1.912673

13 13 112/13 92/13 5.310735 92/13 112/13 13

13 112/13 92/13 72/13 52/13 1.622804 1.824325

14 14 122/14 102/14 5.700241 6.130279 102/14 122/14 14

14 122/14 102/14 82/14 62/14 1.659606 1.659606 2.090919

15 15 132/15 112/15 6.156690 6.321273 112/15 132/15 15

15 132/15 112/15 92/15 72/15 52/15 52/15 1.851567

16 16 142/16 122/16 6.690924 6.615930 7.197406 122/16 142/16 16

16 142/16 122/16 102/16 82/16 62/16 1.712303 1.771833 1.855578

17 17 152/17 132/17 7.315393 6.945385 7.497003 132/17 152/17 17

17 152/17 132/17 112/17 92/17 72/17 1.759558 1.771598 1.799987

Table 2: PF Properties of Constant Weight BPSK Codes (with exact values)

∗: The value approximated by 2.101328 can be represented exactly as,

26325α4 + 2533α3 + 243.31α2 + 22325α + 53

25325α2

where α = ( 32+j
√

3.223
2532 ).

∗: The value approximated by 2.053109 can be represented exactly as,

243.349 + 2423
√

2.23

553

It is of interest to note that the tabulated collision points for N = 6 to 10 are always best-

case PFs for a low or high weight codeword [1]. This is because such points refer to cases where

the individual ’weight surplus’ rotated carriers act in complete opposition to each other.
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Note that for very low or high weights, the PF can be wholly defined:

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d 0 0 0 1 1 1 1 1 1 2 2 2 2 2

Table 3: Threshold for Predictable Maximum Peak at Bin Zero

Note, also, the maximum weight where the maximum peak can possibly occur on bin zero:

N 4 5 6 7 8 9 10 11 12 13 14 15 16 17

d 0 1 1 1 2 2 2 3 3 4 4 5 5 5

Table 4: Threshold for Possible Maximum Peak at Bin Zero

1.2 Extending the Constant Weight Idea to Other Bins Using the Concept

of ’Alignment’

The above observations for constant weight sequences can be interpreted thus: The weight 0

binary sequence has a maximum DFT bin on bin zero, being the sum of unity vectors. This

sum is a maximum because the vectors are wholly aligned. Sequences which are distance 1

from this weight 0 sequence (i.e. of weight 1) have a bin zero which is computed from the sum

of unity vectors which are all aligned apart from one vector. These binary vectors exhibit

a high vector alignment on bin 0 and will therefore have high PF and can consequently be

eliminated. As sequence blocklength, N , increases, the same argument can be used for weight

2,3,..etc sequences. The generalisation of this idea to bins other than 0 is the topic of this paper,

and for the purpose of clarity the PF will be evaluated only over a 2N -point DFT in this paper

(i.e. we are approximately investigating the Merit Factor). The extension of the idea to the PF

over larger blocklength DFTs is then straightforward.

Consider, say, bin 3 of a 2N-point DFT of a length N BPSK sequence: This is the sum of

N unity vectors, where the first vector is the first vector element of the sequence rotated by 0

radians, the second vector is the second vector element of the sequence rotated by 3
2N

2π radians,

the third vector is the third vector element of the sequence rotated by 6
2N

2π radians,...and so

on. It is apparent that bin 3 of the 2N -point DFT of the bipolar form of the binary sequence
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(b 0
N
c, b 3

N
c, b 6

N
c, . . . , b (N−1)3

N
c) mod 2 will be the sum of N unity vectors which are all in the

upper half of the complex plane, i.e. no vector points ’downwards’. In other words, bin 3 of

the 2N -point DFT of such a sequence will be the sum of N ’loosely-aligned’ unity vectors.

Consequently it’s PF will be quite high, especially for large N . Moreover, all binary sequences

which are negacyclic shifts of the original sequence will only cause a phase rotation at bin 3 in

the DFT domain and therefore leave the bin magnitude unaffected (if we had instead chosen to

look at an even bin number then, instead of negacyclic shifts we would perform all combinations

of negation and cyclic shifts of the sequence). We can identify these loosely-aligned vectors and

their negacyclic or cyclic+negation family for each of the 2N bins of the 2N -point DFT and

associate with each bin family a worst-case PF and best-case PF (taken over a 2N -point DFT in

this paper, unlike the continuous PF for the results of the previous subsection). The bin family

for bin 0 is simply 000 . . . 00 and 111 . . . 11, and for bin N of the 2N -point DFT is 010101 . . .

and 101010 . . .. For other bins the bin family is bigger. As with bin 0 we can, for each bin,

investigate all those sequences which are exactly weight 1 away from one or more sequences

in the bin family, and a higher weight away from the rest of the sequences in the bin family.

The DFT of these ’weight 1’ sequences in these bin families will all be loosely-aligned on their

respective bins apart from one vector, and will therefore also have pretty high PF, especially

as N becomes large. We can further investigate the PF properties of all those sequences which

are exactly weight 2 away from one or more sequences in the bin family, and a higher weight

away from the rest of the sequences in the bin family.... and so on for weight 3...etc.

Thus we can examine the PF range for each bin family, and for binary sequences of a known

distance from this bin family. Therefore, using a table of these PF ranges, sequences with good

PF (and Merit Factor) can be identified which will be at least a known set of distances from

each of the bin sequence families. Those with lower PF will have larger distance from each of

these bin families.

The next section will present the above ideas in a more formal way.

2 The Peak Factor Problem Approximates to a Binary Distance

Problem

We begin by presenting a few definitions followed by the main conjecture.

Definition 1 Let WNPF be the Peak Factor of a length N sequence, taken over a W -blocklength

Discrete Fourier Transform (DFT).
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Consequently the NPF metric informs us of the periodic properties of the sequence, the odd

bins of the 2NPF metric will tell us about the negaperiodic properties of the sequence, and the

2NPF metric will tell us about the aperiodic (and, approximately, the Merit Factor) properties

of the sequence. The 4NPF metric will tell us to a good accuracy about the continuous PF

properties of the sequence, and the ∞PF metric will tell us exactly about the continuous PF

properties of the sequence. In this paper, for simplicity of exposition, we will concentrate on

the 2NPF metric. Extending the idea to the 4NPF, 8NPF metric,...etc, will then be relatively

straightforward.

Definition 2 Let uk be the length N binary sequence,

uk = (b 0

N
c, b k

N
c, b2k

N
c, . . . , b (N − 1)k

N
c) mod 2

For instance, if N = 6, then u4 = 001001, and u5 = 001010.

Definition 3 Let Uk be the set of length N binary sequences constructed as follows:

If k is even,

Uk = {cyclic shifts(uk)
⋃

negations(cyclic shifts(uk))}

If k is odd,

Uk = {negacyclic shifts(uk)}

For instance, if N = 6, then U4 = {001001, 010010, 100100, 110110, 101101, 011011}, and

U5 = {001010, 010101, 101011, 010110, 101101, 011010, 110101, 101010, 010100, 101001, 010010, 100101}

Definition 4 Let Bd be the set of length N , weight d binary sequences. Then Dk,d is the set

of length N binary sequences constructed as follows:

Dk,d =
⋃

v∈Bd

Uk ⊕ v
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For instance, if N = 6, then

D4,1 =

{000001, 000010, 000100, 001000, 001011, 001101, 010000, 010011, 010110, 011001, 011010, 011111,

100000, 100101, 100110, 101001, 101100, 101111, 110010, 110100, 110111, 111011, 111101, 111110}

Note that, as evident in this example, a sequence may be constructed more than once using

Definition 4, but it is only represented once in Dk,d.

Definition 5

Ek,d =
d⋃

e=0

Dk,d

Note that a sequence may be included more than once using Definition 5, but it is only

represented once in Ek,d.

Definition 6

Fk,d = Ek,d −Ek,d−1

Definition 7 A length N binary sequence, s, is said to have a ’distance’ d from Uk if it is not

nearer than distance d to any sequence in Uk, but is a distance d from one or more members

of Uk. Consequently s ∈ Fk,d.

The set Fk,d is the set of all binary sequences which are a distance d away from the bin

family Uk.

For small values of d the lowest 2NPF of Fk,d becomes larger as d falls.

We can therefore state the following lemma:

Lemma 1 There exists a value dk such that all members of Ek,dk
have high 2NPF.

Definition 8

G =
N−1⋃

k=0

Ek,dk

G is the set of binary sequences which are distance dk or less away from the bin family Uk, for

all k, 0 ≤ k < 2N . G is defined for N distance values, dk.

Note that G need only be defined for N values of k, not 2N values of k, due to symmetry

between the first and second halves of the spectrum.
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Definition 9 Define the vector R = (d0, d1, d2, . . . , dN−1) to be the vector of N distance values

over which G is defined.

Lemma 2 There exists a vector R such that all members of G have high 2NPF.

Conversely, if A is the set of all 2N binary vectors, then,

Definition 10

H = A−G

Lemma 3 There exists a vector R such that all members of H have low or quite low 2NPF.

R is the ’distance profile’ of H.

Lemma 3 is still a bit vague, but it seems that by using all 2N bins (or a well chosen subset)

to constrain the distance of desirable codewords we can home in on a large number of sequences

with good 2NPF. In other words, if one can find a code construction satisfying the distance

profile R, then one has found a very good 2NPF code. This paper merely shows that such a

code will be good. We do not currently have such a code construction.

The next section presents an example for length 16 binary sequences.

3 Example: Length 16 Binary Sequences

Here is the computed table of worst-case and best-case 2NPFs for each set Fk,d for 0 ≤ k < 2N

and small values of d for the case N = 16.
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The figure in square brackets is the number of sequences in Fk,d for the specified values of k and d. The figures below this in each box

are the 2NPF range from lowest 2NPF - highest 2NPF. The ’∗’ indicates the smallest value of d for a given k such that Fk,d ⊂ Dk,d, i.e.

where some sequences in Dk,d are also in D
k,d′ , d′ < d. The results for different bins, k, are grouped according to identical results. For

instance, the results for bins 1, 15, 17, 31 are grouped together.

k \ d 0 1 2 3 4 5 6 7 8

{0, 16} [2] [32] [240] [1120] [3640] [8736] [16016] [22880] [12870]

16.0 12.25 9.00 6.25 − 6.51 4.0 − 6.51 2.25 − 6.51 1.71 − 9.00 1.60 − 12.25 1.74 − 16.0

{1, 15, 17, 31} [32] [416]∗ [2432] [8320] [17920] [23296] [12608] [512] −

6.51 − 16.0 4.22 − 12.25 2.54 − 9.00 1.71 − 6.57 1.60 − 6.83 1.60 − 9.00 1.71 − 12.25 2.33 − 16.00 −

{2, 14, 18, 30} [16] [224] [1424]∗ [5376] [13120] [20608] [17952] [6560] [256]

6.57 4.30 − 6.51 2.78 − 6.51 1.75 − 6.51 1.71 − 6.57 1.60 − 6.51 1.71 − 9.00 2.25 − 12.25 3.0− 16.0

{3, 13, 19, 29} [32] [416]∗ [2432] [8320] [17920] [23296] [12608] [512] −

6.51 4.22 − 6.32 2.54 − 6.83 1.71 − 9.00 1.60 − 12.25 1.71 − 16.0 1.74 − 16.0 2.33 − 9.00 −

{5, 11, 21, 27} [32] [416]∗ [2432] [8320] [17920] [23296] [12608] [512] −

6.51 4.22 − 6.32 2.54 − 6.83 1.71 − 9.00 1.60 − 12.25 1.60 − 16.0 1.81 − 16.0 2.33 − 12.25 −

{4, 12, 20, 28} [8] [128] [912] [3840]∗ [10472] [18816] [20080] [9984] [1296]

6.83 4.66 − 6.08 2.85 − 6.51 2.25 − 6.51 1.71 − 6.83 1.60 − 6.51 1.71 − 9.00 1.75 − 12.25 2.21 − 16.0

{6, 10, 22, 26} [16] [224] [1424]∗ [5376] [13120] [20608] [17952] [6560] [256]

6.57 4.30 − 6.32 2.78 − 6.51 1.75 − 6.51 1.71 − 6.57 1.60 − 6.51 1.71 − 9.00 2.25 − 12.25 3.00 − 16.00

{7, 9, 23, 25} [32] [416]∗ [2432] [8320] [17920] [23296] [12608] [512] −

6.51 4.22 − 6.02 2.54 − 6.32 1.81 − 8.00 1.60 − 9.00 1.71 − 12.25 1.60 − 16.0 2.33 − 6.51 −

{8, 24} [4] [64] [480] [2240] [7000] [14784]∗ [20384] [15680] [4900]

8.00 6.25 4.5 − 6.02 3.25 − 6.51 2.00 − 6.51 1.60 − 6.51 1.71 − 9.00 1.75 − 12.25 2.00 − 16.00

Table 5: 2NPF Properties of Fk,d Sets for N = 16

We can use this table to define a codeset with specified distances from the bin families, Uk,

such that the codeset comprises sequences with low 2NPF. Table 6 shows the 2NPF results for

sequence sets H for various distance profiles, out of a total message space of 216 = 65536.
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The distance profile, R, is abbreviated in this table to the sequence a, b, c, d, e, f, g, h, i where d0, d16 = a, d1, d15, d17, d31 = b,

d2, d14, d18, d30 = c, d3, d13, d19, d29 = d, d4, d12, d20, d28 = e, d5, d11, d21, d27, = f , d6, d10, d22, d26 = g, d7, d9, d23, d25 = h, d8, d24 =

i. The tail distance profile is similarly abbreviate for the same di subsets on the line underneath for each example. The last example in the

table represents d0 − d16 directly. The notation |H(x)| means ’the number of sequences in H which have a 2NPF ≤ x’. |A(x)| is similarly

defined.

Distance Profile 2NPF Range of H |H(x)| |A(x)|

3, 0, 0, 0, 0, 0, 0, 0, 1 1.60 − 6.32 |H| = 62376 |A(6.32)| = 64672

−,−,−,−,−,−,−,−,−

5, 2, 2, 2, 2, 2, 2, 2, 4 1.60 − 4.54 |H| = 16012 |A(4.54)| = 57896

−,−,−,−,−,−,−,−,− |H(2.85)| = 9072 |A(2.85)| = 19688

|H(1.99)| = 1072 |A(1.99)| = 1072

5, 2, 2, 2, 3, 2, 2, 2, 4 1.60 − 4.54 |H| = 13700 |A(4.54)| = 57896

−,−,−,−,−,−,−,−,− |H(2.77)| = 7612 |A(2.77)| = 17556

|H(1.99)| = 1072 |A(1.99)| = 1072

5, 2, 2, 2, 3, 2, 2, 2, 4 1.60 − 3.89 |H| = 10944 |A(3.89)| = 42788

−, 7, 7, 7, 8, 7, 7, 7, 8 |H(2.77)| = 6284 |A(2.77)| = 17556

|H(1.99)| = 1072 |A(1.99)| = 1072

5, 2, 3, 2, 3, 2, 2, 2, 4 1.60 − 3.92 |H| = 8228 |A(3.92)| = 44108

−,−,−,−,−,−,−,−,− |H(2.53)| = 3240 |A(2.53)| = 11580

|H(1.99)| = 840 |A(1.99)| = 1072

5, 2, 3, 2, 3, 2, 2, 2, 4 1.60 − 3.89 |H| = 7888 |A(3.92)| = 44108

−, 7, 7, 7, 8, 7, 7, 7, 8 |H(2.53)| = 2912 |A(2.53)| = 11580

|H(1.99)| = 896 |A(1.99)| = 1072

6, 3, 3, 3, 4, 3, 3, 3, 4 1.60 − 2.24 |H| = 16 |A(2.24)| = 2248

−,−,−,−,−,−,−,−,− |H(1.60)| = 8 |A(1.60)| = 8

6, 3, 3, 3, 4, 3, 3, 3, 4 1.60 |H| = 8 |A(1.60)| = 8

8, 6, 6, 5, 6, 6, 6, 7, 6 |H(1.60)| = 8 |A(1.60)| = 8

Bins 0 - 16: 1.60 |H| = 8 |A(1.60)| = 8

6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5 |H(1.60)| = 8 |A(1.60)| = 8

8,−,−,−,−,−,−,−,−,−,−,−,−,−,−,−,−

Table 6: 2NPF Properties of G Sets for N = 16

Table 6 indicates how the distance profile can control the 2NPF range of H. In the case of

3, 0, 0, 0, 0, 0, 0, 1 in the table, the distance criteria successfully eliminates most messages with

2NPF > 6.32. In the case of 5, 2, 2, 2, 3, 2, 2, 4 in the table, although there a number of sequences

with moderately high 2NPF, all messages with 2NPF ≤ 1.99 are included. Also, the case of

6, 3, 3, 3, 4, 3, 3, 4 captures 16 messages, 8 of which have the best possible 2NPF (and very good

Merit Factor) of 1.60. The other 8 have a 2NPF of 2.24. By adding additional ’tail’ constraints

on each bin we can further improve results. In particular, for 6, 3, 3, 3, 4, 3, 3, 4 with the tail

constraints 8, 6, 6, 5, 6, 6, 6, 7, 6, we eliminate all but the set of 8 messages with optimal 2NPF.

The final entry in the table shows that these constraints can be limited to the first 16 bins, and

eased somewhat, and yet we are still able to capture only the 8 optimum 2NPF messages.

The above results suggest that the distance profile constraints are quite successful in limiting
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2NPF. They also suggest that the bin families, Uk, could perhaps be augmented in some way

so as to eliminate further unwanted messages.

For comparison purposes we should note that the Golay-Davis-Jedwab (GDJ) ’complemen-

tary sequence’ approach will yield 384 length 16 binary sequences with ∞PF ≤ 2.0. It is hoped

that the method outlined in this paper (or a slight improvement of it) will yield much higher

rates, particularly as N increases. However, unlike the GDJ approach, we do not yet have a

code construction. This paper has only succeeded in proposing binary code constraints.

We can gain further insight by looking at the PF taken only over each bin in question (7),

as opposed the 2NPF taken over all 2N bins for each bin in question (5). We thus see that

messages which are a large distance away from the bin families (i.e. around 7 or 8) will have

very low PF value at bin k. This in turn forces a moderate rise in the best case 2NPF at these

distances, as was previously shown in Table 5.

The figure in square brackets is the number of sequences in Fk,d for the specified values of k and d. The figures below this in each box

is the PF range fromlowest PF - highest PF at bin k only. The results for different bins, k, are grouped according to identical results. For

instance, the results for bins 2, 6, 10, 14, 18, 22, 26, 30 are grouped together.

k \ d 0 1 2 3 4 5 6 7 8

{0, 16} [2] [32] [240] [1120] [3640] [8736] [16016] [22880] [12870]

16.0 12.25 9.00 6.25 4.0 2.25 1.00 0.25 0

{1, 3, 5, 7, [32] [416]∗ [2432] [8320] [17920] [23296] [12608] [512] −

9, 11, 13, 15, 6.51 4.22 − 6.02 2.42 − 5.11 1.18 − 3.92 0.36 − 2.64 0.05 − 1.46 0.0008 − 0.55 0.0004 − 0.06 −

17, 19, 21, 23,

25, 27, 29, 31}

{2, 6, 10, 14, [16] [224] [1424]∗ [5376] [13120] [20608] [17952] [6560] [256]

18, 22, 26, 30} 6.57 4.30 − 6.32 2.50 − 5.61 1.20 − 4.54 0.36 − 3.28 0.08 − 2.03 0.002 − 0.96 0.002 − 0.25 0

{4, 12, 20, 28} [8] [128] [912] [3840]∗ [10472] [18816] [20080] [9984] [1296]

6.83 4.66 − 6.08 2.85 − 5.83 1.54 − 4.37 0.59 − 3.41 0.13 − 1.96 0.03 − 1.0 0.04 − 0.25 0

{8, 24} [4] [64] [480] [2240] [7000] [14784]∗ [20384] [15680] [4900]

8.00 6.25 4.5 − 5.0 3.25 − 4.25 2.00 − 4.00 1.25 − 2.25 0.5 − 1.0 0.25 0

Table 7: Bin k PF Properties of Fk,d Sets for N = 16

4 Example: Length 17 Binary Sequences

A brief ’spot’ check (guess) of the length 17 case came up with the following result:

This profile obtains the lowest possible 2NPF class of 1.57.

12



Distance Profile 2NPF Range of H |H(x)| |A(x)|

R = (5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1.57 − 2.87 |H| = 4052 |A(2.87)| = 30128

5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

Table 8: 2NPF Properties of G Sets for N = 17

5 Computing the 2NPF Using the L-point DFT

One can also, more generally, include the bin families for the L bins of the L-point DFT and

constrain the required sequences for the 2NPF accordingly. These may include the cyclic and

negacyclic bin families discussed so far, (if 2N |L), plus further bin families. However, whereas

the bin families for the cyclic and negacyclic cases are obviously generated, the situation is a

bit more complicated for the new bin families. For example, consider bin 3 of a 32-point DFT

for a length 8 sequence. Then the sequence,

u3 = (d 0

16
e, d 3

16
e, d 6

16
e, d 9

16
e, d12

16
e, d15

16
e, d18

16
e, d21

16
e) mod 2

will have all vectors in the top half of the complex plane (i.e. loosely aligned) at bin 3. More

generally, all vectors of the form,

u3,s = (d0 + s

16
e, d3 + s

16
e, d6 + s

16
e, d9 + s

16
e, d12 + s

16
e, d15 + s

16
e, d18 + s

16
e, d21 + s

16
e) mod 2

will be loosely aligned, with all vectors at bin 3 in some half of the complex plane. This will

give the following set of sequences:

00000011, 10000011, 10000001, 11000001, 11000000, 11100000, 11110000, 11111000,

11111100, 01111100, 01111110, 00111110, 00111111, 00011111, 00001111, 00000111

Note that this family is neither cyclic nor negacyclic shift.

In this way, we arrive at the following definitions, (which are completely general and can be

used to construct the cyclic, negacyclic, and all bin cases).

Definition 11 Let uk,s be the length N binary sequence,

uk,s = (b2(0 + s)

L
c, b2(k + s)

L
c, b2(2k + s)

L
c, . . . , b2((N − 1)k + s)

L
c) mod 2

Definition 12 Let Uk be the set of length N binary sequences constructed as follows:

Uk =
L−1⋃

s=0

uk,s

13



The distance definitions defined in previous sections hold in exactly the same way, however

we have now generalised the problem to identify further bin families from which flat sequences

should be distant. We therefore have a more detailed distance profile. A desirable aim will

be to identify a smallest set of distance families from which optimal sequences should have a

known distance.

6 Distance Profiles for Optimal Sequence Sets

The first table is for 2NPF properties, the second table is for NPF properties.

N DFT size, w Distance Profile 2NPF Range of H |H(x)| |A(x)| comments

6 12 1001001 2.0 4 12 ideal ∞PF class

6 12 1000001 2.0 12 12 ideal 2NPF class

7 14 20000002 1.14 4 4 ideal 2NPF and ∞PF class

8 32 2.00000.2.00000.2 1.65 16 16 ideal 2NPF class

Tail .2...1.....1...2.

8 32 2.00000.2.00000.2 1.65 8 16 ideal ∞PF class

Tail .2....2...2....2.

9 18 2001001002 1.72 24 24 ideal 2NPF class

Tail 4..4..4..4

10 40 ...1..11.111.11..1... 1.85 8 72 ideal ∞PF class

Tail ..3.4...4...4...4.3..

11 22 3.11111111.4 1.09 4 4 ideal 2NPF and ∞PF class

Tail .3333333333.

Table 9: 2NPF Properties of G Sets for Various N

N DFT size, w Distance Profile NPF Range of H |H(x)| |A(x)| comments

6 6 1001 2.0(PACF = 2.00) 24 24 ideal NPF class

7 7 2000 1.14(PACF = 1.00) 28 28 ideal NPF class

8 8 20202 1.5(PACF = 4.00) 32 32 ideal NPF class

Tail .3.3.

9 9 200100 1.72(PACF = 3.00) 108 108 ideal NPF class

Tail 4..4..

10 10 211112 1.85(PACF = 2.00) 320 320 ideal NPF class

Tail .4444.

11 11 ...... 1.09(PACF = 1.00) 44 44 ideal NPF class

Tail .3.433

Table 10: NPF Properties of G Sets for Various N
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7 Conclusion and Further Work

This paper has identified the problem of finding sequences which are spectrally flat with a

discrete distance problem, where all acceptable sequences have sufficient distance from a set of

clusters of high spectral peak sequences. Further work should consider the following:

• Recast the periodic autocorrelation problem using only the Uk families when k is even.

This is a subproblem of the problem under discussion in this paper.

• Recast the negaperiodic autocorrelation problem using only the Uk families when k is

odd. This is a subproblem of the problem under discussion in this paper.

• Derive equations for the offline computation of tables like Table 5, at least for small

distances, d. I think this is quite easy to do.

• Use the Merit Factor metric instead of the 2NPF metric. The ranges will be slightly

different.

• Augment the bin families Uk somehow, or introduce extra bin families, so as to eradicate

the remaining sequences with moderately high 2NPF.

• Develop code constructions to generate codesets H which satisfy the distance profile.

• Develop code constructions to generate codesets H which satisfy the distance profile and

such that the minimum distance of H is high, (i.e. H possesses intrinsic error correction

properties).

• Extend the ideas to WNPF where W = 4, 8,...etc.
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