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On the PMEPR of binary Golay sequences of
length 2n
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Abstract—In this paper, some questions on the distribution
of the PMEPR of standard binary Golay sequences are solved.
For n odd, we prove that the PMEPR of each standard binary
Golay sequence of length 2n is exactly 2, and determine the
location(s) where peaks occur for each sequence. For n even,
we prove that the envelope power of such sequences can never
reach 2n+1 at time points t ∈ { v

2u
|0 6 v 6 2u, v, u ∈ N}. We

further identify 8 sequences of length 24 and 8 sequences of
length 26 that have PMEPR exactly 2, and raise the question
whether, asymptotically, it is possible for standard binary Golay
sequences to have PMEPR less than 2− ε where ε > 0.

Index Terms—Aperiodic autocorrelation, Boolean function,
Golay sequences, Littlewood polynomials, peak-to-mean envelope
power ratio (PMEPR), Rudin-Shapiro polynomials.

I. INTRODUCTION

MULTICARRIER communications has recently attracted
much attention in wireless applications. Orthogonal

frequency division multiplexing (OFDM) has been employed
in several wireless communication standards. Its popularity is
mainly due to its robustness to multipath fading channels and
the efficient hardware implementation employing fast Fourier
transform (FFT) techniques. However, multicarrier communi-
cations have a major drawback of high peak-to-average power
ratio (PAPR) of transmitted signals. Please refer to Litsyn’s
book [10] for a general source on PAPR control.

A coding approach for PAPR control in multicarrier com-
munications is to use Golay complementary sequences [7]
for subcarriers, as these sequences provide low peak-to-mean
envelope power ratio (PMEPR) of at most 2 for transmitted
signals, where the PAPR of the signals is bounded by the
PMEPR. Following on from Budišin’s recursive construction
[4] for Golay sequences of length 2n, Davis and Jedwab
showed that these sequences fill up specific second-order
cosets of the generalized first-order Reed-Muller codes [6].
We shall, hereafter, refer to this class of sequences as standard
Golay sequences. The construction for Golay sequences was
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further generalized to larger alphabets and code rate was
increased by considering near-complementary sequences in
[15], [17] [21].

Several lower bounds on the maximum PMEPR, taken over
all codewords in a coset of first-order Reed-Muller codes,
have been studied in [13], [17], [18], [21], [23], where the
approaches were initially proposed by Cammarano and Walker
as a result of their summer project [5] in 1999 under the
supervision of Davis. In particular, based on the examination
of the OFDM signal at time point t = 0, it was proved
in [5] that the PMEPR of at least one sequence in each
standard binary Golay coset of length 2n for n odd and at
least one sequence in each standard quaternary Golay coset
of length 2n for n even is exactly 2. Also, based on the
numerical results on the values of OFDM signals at time points
t ∈ { v2u |0 6 v 6 2u, v, u ∈ N}, several questions on the
PMEPR of each standard binary Golay sequence of length 2n

were implicitly raised in Sections 5 and 6 in [5]. Here are
three of them, which have remained open until now.

(a) For n odd, the numerical results suggest that the PMEPR
might be 2 for every standard binary Golay sequence,
but this was only proved for a subset of these sequences
by examining the OFDM signal at time t = 0. Can ad-
ditional rules be found to characterize the peak behavior
for n odd?

(b) For n even, is the PMEPR of every standard binary
Golay sequence always less than 2?

(c) Do the peak positions of the OFDM signal only occur
at times t ∈ { v2u |0 6 v < 2u, v, u ∈ N}?

In this paper, we develop a method to determine whether the
envelope power value of the OFDM signal employing standard
binary Golay sequences of length 2n reaches 2n+1 at one or
more time points within t ∈ { v2u |0 6 v < 2u, v, u ∈ N}. For n
odd, we prove that the PMEPR of every standard binary Golay
sequence of length 2n is exactly 2, and that the peak positions
occur at times t ∈ { v2u |0 6 v < 2u, v, u ∈ N}. Thus we give
a positive answer to question (a). For n even, we prove that
the envelope power of such sequences can never reach 2n+1

at time points t ∈ { v2u |0 6 v < 2u, v, u ∈ N}. However,
we show that, for both lengths 24 and 26, the PMEPR of 8
standard binary Golay sequences is exactly 2. Thus we give a
negative answer to questions (b) and (c).

The rest of the paper is organized as follows. In Section
2, we introduce some basic definitions and results on peak
power control and Golay sequences. In Section 3, we provide
two lemmas which play a fundamental role for the proof of
the main results. In Section 4, we prove that the PMEPR of
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every standard binary Golay sequence of length 2n for n odd
is exactly 2. In Section 5, we first prove that the envelope
power of standard binary Golay sequences of length 2n, n
even, can never reach 2n+1 at time points t ∈ { v2u |0 6
v < 2u, v, u ∈ N}. Then we give a sufficient condition for
a self-reciprocal polynomial to have at least one unimodular
root. Finally we prove, for both lengths 24 and 26, that the
PMEPR of 8 standard binary Golay sequences is exactly
2. In Section 6, we discuss Rudin-Shapiro polynomials and
Littlewood Polynomials, and conclude the paper.

II. PRELIMINARIES

In this section, we introduce some basic concepts and results
on peak power control and binary Golay sequences.

A. Peak Power Control in OFDM

Let a = (a0, a1, · · · , aN−1) be a binary sequence of length
N where ai ∈ {0, 1} for 0 6 i < N .

In an OFDM system with N subcarriers, the transmitted
signal by employing sequence a can be modeled as the real
part of

sa(t) =

N−1∑
i=0

(−1)aie2π
√
−1(f0+i4f)t, t ∈ [0,

1

4f
),

where 4f is the frequency separation between adjacent sub-
carrier pairs and f0 is the base frequency.

The sequence a can be associated with the polynomial

A(z) =

N−1∑
i=0

(−1)aizi

in indeterminate z. The relationship between the transmitted
signal sa(t) and the polynomial A(z) can be obtained by
restricting z to lie on the unit circle in the complex plane,
i.e.,

sa(t) = e2π
√
−1f0tA(e2π

√
−14ft).

Then
|sa(t)| = |A(e2π

√
−14ft)|.

Instead of sa(t), we usually study polynomial A(z) by set-
ting |z| = 1, i.e., z = e2πt

√
−1 for time points t ∈ [0, 1). Then

the instantaneous envelope power of the transmitted signal is
determined by |A(z)|2, and the peak-to-mean envelope power
ratio (PMEPR) is determined by

PMEPR(a) =
1

N
sup
|z|=1

|A(z)|2. (1)

For polynomial A(z), straightforward manipulation shows
that

A(z)A(z−1) = N +

N−1∑
τ=1

Ca(τ)(zτ + z−τ ) (2)

where the aperiodic autocorrelation Ca(τ) of sequence a is
defined by

Ca(τ) =

N−1−τ∑
i=0

(−1)ai−ai+τ , 0 6 τ < N. (3)

A pair of sequences (a,b) of length N is called a Golay
complementary pair if

Ca(τ) + Cb(τ) = 0, 0 < τ < N.

Each sequence of such a complementary pair is called a
Golay complementary sequence, or Golay sequence in honor
of Golay who first introduced this condition in 1951 [7]. For
a brief overview to Golay sequences, see [16].

An upper bound on the PMEPR of signals employing Golay
sequences was obtained by Popović [19]. If (a,b) form a
Golay complementary pair of length N , then their associated
polynomials (A(z), B(z)) satisfy

A(z)A(z−1) +B(z)B(z−1) = 2N.

By restricting z to lie on the unit circle, we obtain |A(z)|2 =
A(z)A(z−1) and

|A(z)|2 + |B(z)|2 = 2N, |z| = 1. (4)

According to (1) and (4), the PMEPR of every Golay sequence
is upper bounded by 2.

The basic idea of this paper is derived from an observation
on equation (4). If the equation B(z) = 0 has at least one uni-
modular root, then the maximum of |A(z)|2 for |z| = 1 equals
2N and we have PMEPR(a) = 2. Otherwise PMEPR(a) is
strictly less than 2. Therefore, this paper is concerned with
the unimodular roots of the polynomials associated with Golay
sequences.

B. Standard Golay Sequences

Sequence
f = (f0, f1, · · · , f2n−1)

of length 2n can be described by a Boolean function
f(x1, x2, · · · , xn) with an algebraic normal form in n vari-
ables where

fi = f(i1, i2, · · · , in), i =

n∑
k=1

ik2k−1.

Thus the i-th term of the sequence f is obtained by evaluating
the Boolean function f(x1, x2, · · · , xn) at the 2-adic decom-
position of i. The r-th order binary Reed-Muller code of length
2n is the set of all sequences f , where f(x1, x2, · · · , xn) is a
Boolean function of degree at most r.

Golay first gave a direct construction for Golay complemen-
tary pairs of length N = 2n [8]. In 1999, Davis and Jedwab
identified a large set of Golay sequences occurring as a subset
of the 2nd order binary Reed-Muller code.

Theorem 1: ([6]) For n > 2, let a(x1, x2, · · · , xn) and
b(x1, x2, · · · , xn) be Boolean functions defined by

a(x1, x2, · · · , xn) =

n−1∑
i=1

xπ(i)xπ(i+1) +

n∑
i=1

cixi + c0, (5)

b(x1, x2, · · · , xn) = a(x1, x2, · · · , xn) + xπ(n), (6)

where π is a permutation of symbols {1, 2, · · · , n} and
ci ∈ {0, 1}, 0 6 i 6 n. Then the sequences described
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by a(x1, x2, · · · , xn) and b(x1, x2, · · · , xn) form a Golay
complementary pair.

The above construction gives a set of n!2n distinct Golay
sequences of length 2n. We call Golay sequences of the form
in (5) standard. To the best of our knowledge, these are the
only known binary Golay sequences of length 2n.

Note that references [6] and [17] provide more details on
the generalized Boolean functions from Zn2 to ZH and the
constructions of H-ary Golay sequences for H even. However,
we are only concerned with binary Golay sequences in this
paper.

III. RESULTS ON BOOLEAN FUNCTIONS AND
POLYNOMIALS

In this section, we find some relationships between the
Boolean functions and the polynomials associated with
sequences, which play an important role in the proof of the
main results.

The first lemma is a well-known result on the balancedness
of Boolean functions.

Lemma 1: (pp.372 in [12]) Let f ′(x1, x2, · · · , xn−1) be an
arbitrary Boolean function of n − 1 variables. Then Boolean
function f(x1, x2, · · · , xn) = f ′(x1, x2, · · · , xn−1) + xn is
balanced. Alternatively, polynomial F (z) associated with se-
quence f described by f(x1, x2, · · · , xn) has a root at 1, or
(z − 1)|F (z).
Corollary 1 below follows from Lemma 1 by observing that
an invertible linear transformation of the input variables of a
Boolean function preserves balancedness.

Corollary 1: Let hi(x1, x2, · · · , xn)(1 6 i 6 n) be linear
functions of variables x1, x2, · · · , xn where h1, h2, · · · , hn are
linearly independent, and f ′(x1, x2, · · · , xn−1) an arbitrary
Boolean function of n− 1 variables. Then Boolean function

f(x1, · · · , xn) =f ′(h1(x1, · · · , xn), · · · , hn−1(x1, · · · , xn))

+ hn(x1, · · · , xn)

is balanced. Alternatively, polynomial F (z) associated with
sequence f has a root at 1, or (z − 1)|F (z).

By using Lemma 1 and Corollary 1, we can determine
the instantaneous envelope power of the signals employing
some Golay sequences at the point z = 1, which yields the
main results for binary Golay sequences in [5]. To study
the polynomial F (z) at the points z = e2πt

√
−1 where

t ∈ { v2u |0 6 v < 2u, v, u ∈ N}, we need the following
lemma.

Lemma 2: Let f(x1, x2, · · · , xn) and g(x1, x2, · · · , xn) be
two Boolean functions satisfying

g(x1, x2, · · · , xn) = f(x1, x2, · · · , xn) + xk,

for fixed k (1 6 k 6 n), and let polynomials F (z) and G(z)
be associated with sequences f and g, respectively. Then we
have

(z2
k−1

− 1)|F (z)⇐⇒ (z2
k−1

+ 1)|G(z).

Proof: We set the sequences described by Boolean functions
f(x1, x2, · · · , xn) and g(x1, x2, · · · , xn) as

f = (a0, a1, · · · a2n−1),

g = (b0, b1, · · · b2n−1).

Then the polynomials associated with Boolean functions
f(x1, x2, · · · , xn) and g(x1, x2, · · · , xn) are given by

F (z) =

2n−1∑
i=0

(−1)aizi

and

G(z) =

2n−1∑
i=0

(−1)bizi,

respectively.
If k = 1, we have

(z − 1)|F (z)⇐⇒
2n−1∑
i=0

(−1)ai = 0

and

(z + 1)|G(z)⇐⇒
2n−1∑
i=0

(−1)bi(−1)i = 0.

Since g(x1, x2, · · · , xn) = f(x1, x2, · · · , xn) + x1, we have
bi = ai for i even, and bi = ai + 1 for i odd, i.e.,

(−1)ai = (−1)bi(−1)i.

Then it is clear that

(z − 1)|F (z)⇐⇒ (z + 1)|G(z).

For general k, the sequence described by Boolean function
xk is

(0, · · · , 0︸ ︷︷ ︸
2k−1 0s

, 1, · · · , 1︸ ︷︷ ︸
2k−1 1s

, 0, · · · , 0︸ ︷︷ ︸
2k−1 0s

, · · · , 1, · · · , 1︸ ︷︷ ︸
2k−1 1s

).

Then we have bi = ai for b i
2k−1 c even, and bi = ai + 1 for

b i
2k−1 c odd.
Let φ1 be the natural homomorphism from polynomial ring

C[z] to quotient ring C[z]/ < z2
k−1 − 1 >. Then we have

(z2
k−1

− 1)|F (z)⇐⇒ φ1(F (z)) = 0,

where

φ1(F (z)) = φ1

(
2n−1∑
i=0

(−1)aizi

)

=

2n−1∑
i=0

(−1)aiφ1(zi)

=

2n−k+1−1∑
t=0

2k−1−1∑
s=0

(−1)a2k−1×t+sφ1(z2
k−1×t+s)

=

2k−1−1∑
s=0

φ1(zs)

2n−k+1−1∑
t=0

(−1)a2k−1×t+s .

Note that {φ1(1), φ1(z), φ1(z2), · · · , φ1(z2
k−1−1)} is a basis

for C[z]/ < z2
k−1−1 > over complex field C. We obtain that

the condition (z2
k−1 − 1)|F (z) is equivalent to

2n−k+1−1∑
t=0

(−1)a2k−1×t+s = 0, for 0 6 s 6 2k−1 − 1. (7)
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Similarly, let φ2 be the natural homomorphism from C[z]

to quotient ring C[z]/ < z2
k−1

+ 1 >. Then we have

(z2
k−1

+ 1)|G(z)⇐⇒ φ2(G(z)) = 0,

where

φ2(G(z)) = φ2

(
2n−1∑
i=0

(−1)bizi

)

=

2n−k+1−1∑
t=0

2k−1−1∑
s=0

(−1)b2k−1×t+sφ2(z2
k−1×t+s)

=

2k−1−1∑
s=0

φ2(zs)

2n−k+1−1∑
t=0

(−1)b2k−1×t+s(−1)t.

Note that {φ2(1), φ2(z), φ2(z2), · · · , φ2(z2
k−1−1)} is a basis

for C[z]/ < z2
k−1

+ 1 > over C. We obtain that the condition
(z2

k−1

+ 1)|G(z) is equivalent to

2n−k+1−1∑
t=0

(−1)b2k−1×t+s(−1)t = 0, for 0 6 s 6 2k−1 − 1.

(8)
Recall that a2k−1×t+s = b2k−1×t+s for t even, and

a2k−1×t+s = b2k−1×t+s + 1 for t odd, i.e.,

(−1)a2k−1×t+s = (−1)b2k−1×t+s(−1)t,

which makes the conditions in (7) and (8) equivalent. There-
fore, (z2

k−1 − 1)|F (z)⇐⇒ (z2
k−1

+ 1)|G(z). �

IV. PMEPR OF STANDARD BINARY GOLAY SEQUENCES
OF LENGTH 22m−1

In this section, we set n = 2m − 1, and prove that the
PMEPR of all standard binary Golay sequences of length
22m−1 equals 2. The Boolean functions with the form in (5),
describing all the standard binary Golay sequences of length
22m−1, can be re-expressed as

f(x1, x2, · · · , x2m−1)

=

m−1∑
i=1

xπ(2i)(xπ(2i−1) + xπ(2i+1)) +

2m−1∑
i=1

cixi + c0,
(9)

where π is a permutation of symbols {1, 2, · · · , 2m− 1}, and
ci ∈ {0, 1} for 0 6 i 6 2m− 1.

Definition 1: For a given permutation π of symbols
{1, 2, · · · , 2m− 1}, define λ = λ(π) as the smallest positive
integer which is not in the set {π(2i)|1 6 i 6 m − 1}, and
define the linear transformation

h2i(x1, x2, · · · , x2m−1) =xπ(2i),

h2i−1(x1, x2, · · · , x2m−1) =xπ(2i−1) + xπ(2i+1),

h2m−1(x1, x2, · · · , x2m−1) =xλ,

(10)

where 1 6 i 6 m− 1.
Remark 1: From the above definition, we have hπ−1(k) =

xk for 1 6 k 6 λ− 1.
It is not hard to check that the transformation in

(10) is an invertible linear transformation of variables

x1, x2, · · · , x2m−1. So h1, h2, · · · , h2m−1 are linearly inde-
pendent. Then the Boolean function in (9) can be written in
the form

f(x1, x2, · · · , x2m−1)

=

(
m−1∑
i=1

h2ih2i−1 +

2m−2∑
i=1

dihi

)
+ d2m−1h2m−1 + d0,

(11)

where di ∈ {0, 1} for 0 6 i 6 2m− 1. Let

f ′ =

m−1∑
i=1

h2ih2i−1 +

2m−2∑
i=1

dihi.

Then f ′ is a bent function [20] of 2m − 2 variables
h1, h2, · · · , h2m−2, and f = f ′ + d2m−1h2m−1 + d0. Since a
bent function is known to be unbalanced, the Boolean function
f in (11) must be unbalanced if the coefficient d2m−1 = 0. If
d2m−1 = 1, then f is balanced according to Corollary 1.

Lemma 3: Let f(x1, x2, · · · , x2m−1) be a Boolean function
of the form in (11). Then f is balanced if and only if d2m−1 =
1.

For each polynomial associated with a standard binary
Golay sequence of length 22m−1, we show that there exists at
least one unimodular root by the following theorem.

Theorem 2: Let π be a permutation of (1, 2, · · · , 2m− 1),
λ = λ(π) given in Definition 1, f(x1, · · · , x2m−1) a Boolean
function of the form in (5), and F (z) the polynomial asso-
ciated with sequence f . Then F (z) = 0 has one unimodular
root θ satisfying θ2

λ

= 1. Moreover,
(1) If f is a balanced function, we have (z2

λ−1 − 1)|F (z).
(2) If f is an unbalanced function, we have (z2

λ−1

+ 1)|F (z).
Proof: Write the Boolean function f(x1, · · · , x2m−1) in the

form in (11). We have h2m−1 = xλ and hπ−1(k) = xk for
1 6 k 6 λ− 1 by Definition 1 and Remark 1. Note that f is
balanced if and only if d2m−1 = 1 by Lemma 3.

If f is balanced, we prove that the statement (z2
k−1 −

1)|F (z) holds by mathematical induction for 1 6 k 6 λ.
For the base case k = 1, since f is a balanced function, we
have (z− 1)|F (z). For all balanced Boolean functions f with
the form in (11) and specified value λ, suppose the statement
(z2

k−1 − 1)|F (z) holds for some value of k (1 6 k 6 λ− 1).
Consider a pair of Boolean functions and their associated
polynomials {

f,

fk = f + xk,
and

{
F (z),

Fk(z).

Since f is balanced and xk = hπ−1(k), fk is also balanced by
Lemma 3. Then (z2

k−1 − 1) divides both F (z) and Fk(z) by
inductive assumption. According to Lemma 2, we have that
(z2

k−1

+ 1) divides both F (z) and Fk(z). Since gcd(z2
k−1 −

1, z2
k−1

+1) = 1 where the abbreviation gcd stands for greatest
common divisor, we obtain

(z2
k

− 1)|F (z).

By mathematical induction, (z2
λ−1 − 1)|F (z) follows.
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TABLE I
UNIMODULAR ROOTS OF POLYNOMIALS ASSOCIATED WITH BINARY GOLAY SEQUENCES OF LENGTH 8

Boolean Function h1, h2, h3 λ Sequence Balance Unimodular roots
x1x2 + x2x3 x1 + x3, x2, x1 1 00010010 N −1
x1x2 + x2x3 + x2 x1 + x3, x2, x1 1 00100001 N −1
x1x2 + x2x3 + x3 x1 + x3, x2, x1 1 00011101 Y 1
x1x2 + x2x3 + x2 + x3 x1 + x3, x2, x1 1 00101110 Y 1

x2x1 + x1x3 x2 + x3, x1, x2 2 00010100 N ±
√
−1

x2x1 + x1x3 + x2 x2 + x3, x1, x2 2 00100111 Y ±1
x2x1 + x1x3 + x3 x2 + x3, x1, x2 2 00011011 Y ±1

x2x1 + x1x3 + x2 + x3 x2 + x3, x1, x2 2 00101000 N ±
√
−1

x1x3 + x3x2 x1 + x2, x3, x1 1 00000110 N −1
x1x3 + x3x2 + x2 x1 + x2, x3, x1 1 00110101 Y 1
x1x3 + x3x2 + x3 x1 + x2, x3, x1 1 00001001 N −1
x1x3 + x3x2 + x2 + x3 x1 + x2, x3, x1 1 00111010 Y 1

If f is unbalanced, consider a pair of Boolean functions and
their associated polynomials{

f,

fλ = f + xλ,
and

{
F (z),

Fλ(z).

Since xλ = h2m−1, fλ is balanced by Lemma 3. We have
(z2

λ−1 − 1)|Fλ(z) from the discussions above on balanced
functions. (z2

λ−1

+ 1)|F (z) then follows from Lemma 2. �
Now we can prove one of the main results.
Theorem 3: The PMEPR of every standard binary Golay

sequence of length 22m−1 is exactly 2.
Proof: Let a(x1, · · · , x2m−1) be a Boolean function

with the form in (5), and define b(x1, · · · , x2m−1) =
a(x1, · · · , x2m−1) + xπ(2m−1). Then the sequences (a,b)
described by these Boolean functions form a Golay com-
plementary pair, and their associated polynomials satisfy
A(z)A(z−1) + B(z)B(z−1) = 2N where N = 22m−1.
According to Theorem 2, there exists θ on the unit circle such
that B(θ) = 0, which yields

|A(θ)|2 = 2N.

Then the assertion follows immediately. �
Remark 2: If f is balanced, the unimodular roots of F (z),

as determined in Theorem 2, are located at z = e2πt
√
−1

where t ∈ { v
2λ−1 |0 6 v < 2λ−1, v ∈ N}. If f is unbalanced,

the unimodular roots of F (z), as determined in Theorem 2,
are located at z = e2πt

√
−1 where t ∈ { v

2λ
|0 6 v < 2λ, v ∈

N, v odd}. Moreover, for a root of the unity ω, F (ω) = 0 if
and only if ω satisfies the condition in Theorem 2, which will
be shown in a separate paper, since it is outside the scope of
this paper.

Example 1: An example of Theorem 2 for m = 2, 22m−1 =
8, is given in Table 1. We do not consider the term +x1,
because this term only changes the signs of the roots.

V. PMEPR OF STANDARD BINARY GOLAY SEQUENCES OF
LENGTH 22m

In this section, we set n = 2m, and discuss the PMEPR
of standard binary Golay sequences of length 22m. Boolean
functions with the form in (5) describing all standard binary

Golay sequences of length 22m can be re-expressed as

f(x1, x2, · · · , x2m) =

m−1∑
i=1

xπ(2i+1)(xπ(2i) + xπ(2i+2))

+ xπ(1)xπ(2) +

2m∑
i=1

cixi + c0,

(12)

where π is a permutation of symbols {1, 2, · · · , 2m}, and ci ∈
{0, 1} for 0 6 i 6 2m.
f(x1, · · · , x2m) is a bent function, so is unbalanced, and

1 can not be a root of the polynomial F (z) associated with
sequence f . Furthermore, we have the following results.

Theorem 4: Let f(x1, x2 · · · , x2m) be a Boolean function
of the form in (5), and F (z) the polynomial associated with
sequence f . Then F (z) 6= 0 for all z = e2πt

√
−1 where t ∈

{ v2u |0 6 v < 2u, v, u ∈ N}.
Proof: Note that the polynomial z2

k−1

+ 1 is the 2kth
cyclotomic polynomial, so it is irreducible over the ratio-
nal field for every positive integer k. Then the condition
(z2

k−1

+ 1) - F (z) is equivalent to gcd(z2
k−1

+ 1, F (z)) = 1,
where gcd(G(z), F (z)) denotes the greatest common divisor
of polynomials G(z) and F (z).

First, since f(x1, x2, · · · , x2m) is a bent function, we have
gcd(z − 1, F (z)) = 1.

Then we show that gcd(z2
k−1

+ 1, F (z)) = 1 for 1 6 k 6
2m. Consider a pair of Boolean functions and their associated
polynomials {

f,

fk = f + xk,
and

{
F (z),

Fk(z).

For 1 6 k 6 2m, since gcd(z − 1, Fk(z)) = 1, we have
(z2

k−1 − 1) - Fk(z). According to Lemma 2, we obtain
gcd(z2

k−1

+ 1, F (z)) = 1 immediately.
Finally, for k > 2m, gcd((z2

k

+1), F (z)) = 1 follows from
deg(z2

k

+ 1) > deg(F (z)).
For t = v

2u , v odd, e2πt
√
−1 is a root of the irreducible

polynomial z2
u−1

+ 1 = 0. Therefore, F (z) 6= 0 for z =
e2πt

√
−1 where t ∈ { v2u |0 6 v < 2u, v, u ∈ N}. �

If one estimates, numerically, the PMEPR of sequences,
which is a continuous problem, then the method of oversam-
pling by fast Fourier transform (FFT) is usually employed.
For the standard binary Golay sequences of length 22m, if we
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estimate the exact PMEPR by FFT (2u oversampling) on the
point z = e2πt

√
−1 where t ∈ { v2u |0 6 v < 2u, v ∈ N}, the

numerical results will always show the PMEPR to be less than
2 according to Theorem 4.

Is the PMEPR of every standard binary Golay sequence
of length 22m strictly less then 2? Based on the following
theorem, we can prove, for m = 2, 3, that there are some
polynomials associated with standard binary Golay sequences
of length 22m that have unimodular roots.

We call a polynomial F (z) of degree d self-reciprocal if
F (z) = zdF (1/z). If d is odd then, obviously, −1 is a root
of self-reciprocal polynomial F (z). For d even, Konvalina and
Matache [9] obtained a sufficient condition for a self-reciprocal
polynomial to have at least one unimodular root.

Theorem 5: ([9]) Let F (z) = adz
d + ad−1z

d−1 + · · · +
a1z + a0 ∈ R[z] be a self-reciprocal polynomial of degree d
even. If there exists k ∈ {0, 1, 2, · · · , d/2− 1} such that

|ak| > |ad/2| cos

 π

[ n/2
n/2−k ] + 2

 ,

then F (z) has at least one unimodular root.
Corollary 2: With the notations of Theorem 5, if 2|a0| >

|ad/2|, then F (z) has at least one unimodular root.
Now we look at the case n = 4. We find that the polynomial

associated with the Golay sequence described by the Boolean
function x1x4 + x4x2 + x2x3 + x2 + x4 is −(z5 − z4 − z −
1)(z10 − z8 + 2z5 − z2 + 1), and the polynomial associated
with the Golay sequence described by the Boolean function
x1x4 +x4x2 +x2x3 +x2 +x3 +x4 is (z5−z4 +z+1)(z10−
z8 − 2z5 − z2 + 1). Note that both z10 − z8 + 2z5 − z2 + 1
and z10 − z8 − 2z5 − z2 + 1 are self-reciprocal polynomials
and satisfy the condition in Corollary 2, so there are eight
polynomials associated with Boolean functions x1x4+x4x2+
x2x3 + x2 + x4 + {0, x1, x3, x1 + x3}, and their negations
(adding ‘+1’), that have unimodular roots, and therefore have
PMEPR= 2.

For the case n = 6, we find that the polynomials associated
with the Golay sequences described by the Boolean functions
x1x5 + x5x3 + x3x6 + x6x2 + x2x4 + x2 + x3 + x5 + x6 and
x1x5 + x5x3 + x3x6 + x6x2 + x2x4 + x2 + x3 + x4 + x5 +
x6 have factors z18 − z16 + 2z9 − z2 + 1 and z18 − z16 −
2z9 − z2 + 1, respectively, and thereby satisfy the condition
in Corollary 2, so there are eight polynomials associated with
Boolean functions x1x5 +x5x3 +x3x6 +x6x2 +x2x4 +x2 +
x3 + x5 + x6 + {0, x1, x4, x1 + x4}, and their negations, that
have unimodular roots, and therefore have PMEPR= 2.

Our computer search did not find any other standard Golay
sequences of length 16 and 64 whose associated polynomials
had one or more factors satisfying Corollary 2. Moreover our
computer search results suggest strongly that the roots of the
other standard binary Golay sequences of length 16 and 64
are not unimodular.

For the case n = 8, our computer search results did
not find a standard binary Golay sequence whose associated
polynomial has a factor satisfying the condition in Corollary
2. However, to within the precision of our computations, we

could not be certain that all polynomials associated with stan-
dard binary Golay sequences of length 28 have no unimodular
root. For example, we could not determine whether or not the
polynomial associated with x7x3 + x3x2 + x2x1 + x1x5 +
x5x6 + x6x4 + x4x8 + x2 + x6 has a unimodular root.

VI. DISCUSSIONS AND CONCLUSIONS

A. Rudin-Shapiro Polynomials

In the construction of Theorem 1, set π to be the identity
permutation, and ci = 0 for 0 6 i 6 n. Then we obtain
Boolean functions

p(x1, · · · , xn) =

n−1∑
i=1

xixi+1,

q(x1, · · · , xn) =

n−1∑
i=1

xixi+1 + xn.

The Golay sequences described by these Boolean functions
are called Rudin-Shapiro sequences which were introduced by
Shapiro [22] and Rudin [14] independently in their study of
the magnitude of certain trigonometric sums. The polynomials
corresponding to Rudin-Shapiro sequences are called Rudin-
Shapiro polynomials which can be obtained recursively by the
formulas

Pn+1(z) = Pn(z) + z2
n

Qn(z),

Qn+1(z) = Pn(z)− z2
n

Qn(z),

where n > 0 and P0(z) = Q0(z) = 1.
For n = 2m− 1, p is an unbalanced Boolean function and

q is a balanced Boolean function according to Lemma 3. Thus
we have

(z + 1)|P2m−1(z) and (z − 1)|Q2m−1(z),

which imply

P2m−1(1) = 2m and P2m−1(−1) = 0.

The above discussions on the points z = ±1 of Rudin-Shapiro
polynomials provide an alternative proof of Theorem 5 in [1]
for n = 2m− 1.

Moreover, the roots and cyclotomic properties of the Rudin-
Shapiro polynomials were studied in [2] and [3]. In particular,
Theorem 4.2 in [3] showed that no root of unity except ±1
can ever be the root of a Rudin-Shapiro polynomial.

B. Littlewood Polynomials

Polynomial f(z) =
∑N−1
i=0 aiz

i is called a Littlewood
polynomial if all the coefficients ai ∈ {1,−1}. Littlewood
conjectured in [11] that there are infinitely many Littlewood
polynomials fN (z), of increasing degree N − 1, satisfying

C1

√
N 6 |fN (z)| 6 C2

√
N,

where positive constants C1 and C2 are independent of N and
|z| = 1. The polynomials associated with Golay sequences
(including Rudin-Shapiro polynomials) provide a large set of
Littlewood polynomials satisfying the upper bound with C2 =
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√
2. However, there are no known Littlewood polynomials that

satisfy the lower bound.
We have been motivated to study the unimodular roots of

polynomials, not only for PMEPR control, but also because
of Littlewood’s conjecture. We are interested in whether the
polynomials f2n(z) associated with Golay sequences satisfy

lim
n→∞

min
|z|=1

|f2n(z)|
2n

= 0.

Otherwise, there exist infinitely many Golay sequences such
that their associated polynomials f2n′ (z) satisfy

lim
n′→∞

min
|z|=1

|f2n′ (z)|
2n′

= ε > 0,

which would confirm Littlewood’s conjecture. From the dis-
cussions above, we are particularly interested in the polynomi-
als associated with Golay sequences without unimodular roots,
or alternatively, Golay sequences of length 22m with PMEPR
strictly less than 2.

C. Concluding Remarks

This paper has answered three open questions proposed
in [5] on the PMEPR of standard binary Golay sequences
of length 2n. It has shown that all such sequences have
PMEPR exactly 2 when n is odd, where there always exist
peak positions at time(s) t ∈ { v2u |0 6 v < 2u, v, u ∈ N}.
Conversely, for n even, we have shown that the envelope
power of standard binary Golay sequences can never reach
2n+1 at such time points.

However, we also show that 8 standard binary Golay
sequences of length 24 and of length 26 have PMEPR exactly
2. We made use here of some previous results in [9] on
sufficient conditions for self-reciprocal polynomials to have
unimodular roots. Such polynomials occur as factors of the
polynomials associated with the above 8 sequences of length
24 and of length 26. Our computer search results suggest
strongly that all other binary Golay sequences of lengths 24

and 26 have PMEPR strictly less than 2. No self-reciprocal
factors were found for any of the polynomials associated with
the standard binary Golay sequences of length 28, and it is
unclear to us whether any of these sequences has PMEPR
exactly 2.

Thus the major open problem is to ascertain whether, for n
even, n > 8, ε > 0, there exist infinitely many standard binary
Golay sequences having PMEPR strictly less than 2− ε.
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[4] S. Z. Budišin, “New complementary pairs of sequences, ”Electron. Lett.,
vol. 26, pp. 881–883, 1990.

[5] M. W. Cammarano and M. L. Walker, “Integer Maxima in Power
Envelopes of Golay Codewords,”1999 [Online]. Available: http://www.
mathcs.richmond.edu/∼jad/summerwork/final.pdf.

[6] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay
complementary sequences, and Reed-Muller codes, ”IEEE Trans. Inf.
Theory, vol. 45, no. 7, pp. 2397–2417, 1999.

[7] M. J. E. Golay, “Static multislit spectrometry and its application to the
panoramic display of infrared spectra,”J. Optical Soc. America, vol. 41,
pp. 468–472, 1951.

[8] M. J. E. Golay, “Complementary series, ”IRE Trans. Inf. Theory, vol. 7,
no. 2, pp. 82–87, 1961.

[9] J. Konvalina and V. Matache, “Palindrome-polynomials with roots on the
unit circle,”C. R. Math. Acad. Sci. Soc. R. Can. vol. 26, no. 2, pp. 39–44,
2004.

[10] S. Litsyn, Peak Power Control in Multi-carrier Communications, Cam-
bridge University Press, 2007.

[11] J. E. Littlewood, On polynomials
∑
±Zm,

∑
exp(am)zm, z = eθ ,

London Math. Soc., vol. 41, pp. 367-376, 1966.
[12] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes, Amsterdam, The Netherlands: North Holland Mathematical Li-
brary, 1977.

[13] K. Manji and B. S. Rajan, “On the PAPR of binary Reed-Muller OFDM
codes,”in Proc. IEEE ISIT, Chicago, IL, Jun./Jul., pp. 423, 2004.

[14] W. Rudin, “Some theorems on Fourier coefficients,”Proc. Amer. Math.
Soc. vol. 10, pp. 855–859, 1959.

[15] M. G. Parker, C. Tellambura, “Generalised Rudin-Shapiro Constructions,
”in WCC 2001, Workshop on Coding and Cryptography, Paris, France,
Jan., published in Electronic Notes in Discrete Mathematics, vol. 6, pp.
364–374, 2001.

[16] M. G. Parker, K. G. Paterson and C. Tellambura, Golay Complementary
Sequences, Wiley Encyclopedia of Telecommunications, Editor: J. G.
Proakis, Wiley Interscience, 2002.

[17] K. G. Paterson, “Generalized Reed-Muller codes and power control in
OFDM modulation,”IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 104–120,
2000.

[18] K. G. Paterson, “Sequences for OFDM and multi-code CDMA: Two
problems in algebraic coding theory,”in Proc. SETA 2001, ser. Dis-
crete Mathematics and Theoretical Computer Science, Berlin, Germany:
Springer-Verlag, pp. 46–71, 2002.
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