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Abstract— A new metric, the multivariate merit factor(MMF)  functions obtained from a functigi(x) by fixing zero or more
of a Boolean function, is presented, and various infinite recursive of the Boolean variables, € x, then if these autocorrelation
quadratic sequence constructions are given for which both uni- coefficients are small in magnitude, the associated quantum

variate and multivariate merit factors can be computed exactly. t is highlventanaled 2] fo ed on the so-called
In some cases these constructions lead to merit factors with SYSt€M IS Nighly g [2] focuss S0~

non-vanishing asymptotes. A formula for the average value of aperiodic propagation criteriaof p(x), thereby establishing
o= is derived and a characterisation of theMMF in terms  a link with quantum codes [4], [6]. It is also clear that high

of cryptographic differentials is discussed. entanglement is indicated by a small sum-of-squares over the
joint autocorrelation coefficients, and this can be characterised
by the averagem computed over all subspaces pfx)

We introduce the multivariate aperiodic merit factor obtained by fixing. Finally, although constructions fBplay
(MMUF) metric of a Boolean function and provide infinitecomplementary sequensets [7] are usually constrained by
constructions for which theMIMJF can be computed ex- their univariate aperiodic autocorrelation, they are more nat-
actly (Table II). Unlike MMF, the univariate merit factor urally constrained by their multivariate aperiodic autocorrela-
(MF) has a long history [8], as sequences with higtF tion [20]. For lengthV = 2", Golay-Rudin-Shapiro sequences
have applications in telecommunications, information theor§GRS) [23], [22] are the only known examples of Golay
and physics. However they are difficult to find and/or coreomplementary pairs [7], and their interpretation as certain
struct for long sequence Iength% evaluates the squared-Reed-Mulley RM(1,m), cosets within RM2, m) has recently
difference between theontinuous Fourier power spectrumbeen exploited in [5]. This was generalised in [20], which
of the sequence and the normalised flat power spectrudemonstrated the fundamentally multivariate nature of the
Similarly, M}Vlf evaluates the squared-difference betweaomplementary construction. [11] showed that théF of
the continuous multivariate Fourier power spectruof a the canonical GRS sequence can be computed exactly for
Boolean function and the normalised flat multivariate Fouriamy lengthN = 2™ via the recursiony, = 2vy,_1 + 8v,_2,
power spectrum. The goal is to construct Boolean functiomghere,, is the sum-of-squares for a sequence of leritjith
which maximise MMJF. The MMF is a generalisation leading to an asymptotid1F of 3 for large n. This recur-
of a metric proposed in [14] and is computed via the susion suggests that other sequence constructions obey similar
of squares,o, of the multivariate aperiodic autocorrelatiorrecursive formulas, both for their univariate and multivariate
coefficients of the Boolean function, s(im-of-squarésby sum-of-squares, and here we identify many such constructions
convention), wheres is small if the coefficients are small.(see Tables Ill and V). Another implicit aim of this work is
In the context of cryptography this autocorrelation relates to exploit the link between quadratic Boolean functions and
generalised Boolean differentials which are maximised if thendirected graphs, [19], by interpreting the asymptdtc\t F
autocorrelation coefficients are large [2], [21]; if thd M F  of a quadratic Boolean function as a large-scale property of a
of the Boolean functionp, is large then the average of thegraph. This has statistical meaning for both low-density parity
squares of the generalised differentialspois small and the check codes associated with the graph [12], [19] and for graph-
likelihood of success for a joint differential attack on théased quantum computers [18], [19], [6], [10]. For many of
cryptosystem is small. This metric generalises the periodite constructions proposed herein, &M F asymptotes are
sum-of-squares which is a known measure of cryptographionstants. The highest asymptatidF known is~ 6.34 [15],
strength for Boolean functions [24]. [1], but we have not yet found a Boolean construction with

MMUF also has meaning for quantum systems. Certaasymptotic M MF greater thars.0.
pure multipartite quantum systenman be represented by In Section Il we characterise thetF and MM F. Section
Boolean functions [19], and in [2] it was argued that, if ondl considers theM MUF in light of the results obtained, and
computes aperiodic autocorrelations of all subspace Boolghe asymptoticM MF of a typical Boolean function. Section

I. INTRODUCTION




IV summarises our constructions. C. The multivariate case

The multivariate aperiodic autocorrelationf s € (C?)" is
[l. CHARACTERISATIONS FOR UNIVARIATE AND

MULTIVARIATE MERIT FACTORS we= Y sisiae ke {-1,0,1}" (7
jefo,1}n
A. The univariate case
wheres; € C, s; =0 for j & {0,1}".
The univariate aperiodic autocorrelationf s € CV is The multivariate sum-of-squares, of s, is defined by
N-1 20 = Z |uk|2~ 8)
U = Z sjs;Jrkv — N <k<N, 1) ke{—1,0,1},k#0
=0
! The multivariate merit factoris
wheres; € C, s; = 0 for j < 0 andj > N, and* means 4n
complex conjugate. MMEF = %" 9)
. . g
The sum-of-squaresy, of s, is defined by o o .
The multivariate aperiodic autocorrelation of= s(z) =
N-1 ) Zje{oyl}n sjzd can be computed as a polynomial multiplica-
2= Y |wmf (2) tion
k=1—N,k£0 . L .
o _ _ w(20, 215« oy Zn—1) = (20, 21, - -+, 2n—1)8(2y 321 ey Zp1)"-
The univariate merit factoris (10)
) Finding the M M F is equivalent to finding the multivariate
MEF = ]QL 3) L, o-norm, ||s||n,q, at o = 4, where
v
. ||5||n,a = Y
The aperiodic autocorrelation af= s(z) = >_.s;27 can be 27 27 ; ; @
P . f=s(z) =3.;s (ﬁ 2T L2 |s(eifo, . ein-r)|@dfy . ..dé)n_l) :
computed as a polynomial multiplication (11)
- —1yx so that
R @ L sl = lslids
=—" - 12)
_ , I ; (
whereu(z) = Z;.V:ll_N ujzt. MMF (s) [Isl7,2

Finding the MF is equivalent to finding thelL,-norm, Where||s||jﬁ’2 —yn

[slla: ata = 4 [16], where Lets4 € (C?)" be generated by some arbitrary construction
1/a A. Define theasymptotic multivariate merit factasf s 4 by,

1 27 )
Isla = <2ﬂ/0 Is(e“")ladﬁ) : ®) FM(s54) = iMoo MMF (s 4).

andi2 = —1. Thus D. Multivariate representation using Boolean functions

We defines asbipolarif s; € {1, —1}, in which case we can

1 _ Isllz — HSH? (6) describes by the Boolean functionp(x) : 7' — F,, where
MF(s) [E[E; s = s(x) = (—=1)P™), so thats; = (—1)?>=)). When we
4 ) refer to theM M F or sum-of-squares of the Boolean function,
where||s|[; = N*. p(x), we meanMMUF(s) or o(s), respectively.
Let s4 € CV be generated by some arbitrary Construction
A. Define theasymptotic merit factoof s 4 by E. Multivariate symmetries
. Lemma 1:Let s = (—1)?™®) ands’ = (—1)'®), for p,p’ :
B. Univariate representation using Boolean functions n_l

/ ~ ~ ~
p(x):p(xﬂ'Oaxﬂl7"';3:7rn71)+( Cixi)+d7
We defines asbipolar if s; € {1, -1}, in which case, if (@) = ;

the length ofs is V = 2™, we can describe by the Boolean
function, p(x) : Fy — Fa, wheres = s(x) = (—1)?™®), so

thats; = (—1)P(#i=i) wherej = Y7 72, j; € {0,1}, i.e.

we order the truth table qf lexicographically. When we refer MMF(s') = MMF(s).
to the MF or sum-of-squares of the Boolean functigiix),

we meanMF(s) or v(s), respectively.

wherez € {z,x + 1}, 7 : Z, — Z, permutes the integers,
modn, andc¢;,d € Z,. Then



F. Tensor product of sequence (function) whereH = —= ( . ) We can evaluate the power spectra
For so € CNo, sy € CN (or 59 € (C2)™, 51 € (C2)™), of the WH ofp by exploiting the polynomial notation of

with sum-of-squares values,,~; resp. (orao,o; resp.), let (10). Thus, by the Wiener-Kinchine theorem

s = sp ® s1, where ®’ means tensor product. Therefosec P(r)? = 2- _1)0 (—1)™ 1)t 18

CNONI (or se (CQ)noer)' and | (I‘)‘ u(( ) a( ) a---a( ) )7 ( )

which shows that, for the WHT, we embedmod [[;(z; —

1)(zj+1) = Hj(zf. —1), and then evaluate at the residue$

. _ and—1 over every variablez;. This is a periodic embedding.

In this paper we focus on sequences and functions whiglyuation (10) can further be embedded in a modulus large

cannot be written either fully or partially as tensor productsenough so that the modulus has no effect on the result - an

G. Relationship between the multivariate aperiodic autoco?periOdiC embedding. Specifically

v(s8) = 2vom1 + Név1 + Nivo, (13)
(or o(s) = 20907 + 2200y + 2211 4y).

relation and Boolean differentials (an Z) (20 Zn1)
i=0 ~J sy An—
Define theaperiodic Boolean differentiahs follows ! n—1 _1 PN
= (szo zj) $(205 -y 2n—1)8(20 "5y 20 1) )
v(x,a,b) = [p(x) + p(x + a)]lxj:bj,vﬂajd ] (14) mod H7 0 (z —1).
o . n-Wi(a) n (19)
wherep : 73— Fy, v 2 Fy T2 xab € B ysing the fact thatz? — 1) = (2 — 1) (2 + 1) (2 — i) (2 +1),
where | z; = b;,Vjla; = 1" means thatz; is fixed to b, wherei2 = —1, we can then definé such that

whenevera; = 1. It follows that we need only considér
such thatb < a, where b < a’ means thab; < a;,V;. wt(a) Q(r) =2 2s(i"™,i™, ... ") (20)
means thédamming weighof a. The aperiodic autocorrelation
coefficients ofs = (—1)?*) can then be written as

Uk = Uab = gn—Wi(a) _ 2wt(v(x, a, b)). (15) Z Q)" = 272" Z |u(i", "™ P (21)

wherer € Z7. It follows that

7.6271/ 76271/
wherek; = a;(—1)%, Vj. Equation (15) demonstrates that
Boolean differentials of the form (14) are summarised byherei® = —1 and, from (19) and (21)
multivariate apgnodlc autogorrelanon coejf1|C|ents A fu_nct|0n 9% — Z 1Q(r)[* — 4m (22)
g : Fy — JF» is balancedif wt(g) = 2"~ *. The function o=t
4

p(x) can be considered cryptographically weakv{f, a, b)
is strongly unbalanced for any choice afandb [2], [21]. Equation (22) is just a re-statement of the multivariate,-
One can envisage attack scenarios which exploit all possil#rm, as specified by (9) and (12). Specifically,
differentials of the form (14), in which case a suitable crypto- _ Z 1Q(r)* 23)
graphic measure is th&1MF, this being the inverse of the et
sum-of-squares of the set of differential imbalances. In this 4
paper, we focus primarily op(x) of algebraic degree< 2 As stated above, the evaluatiomoét the residues; = £1,
(quadratics). For such(x), one can simplify the computationVj, can be implemented using the WHT. Similarly, evaluation
of o, specifically of u at the residues; = =+, Vj, can be implemented by using
the Negahadamard TransforfNHT) and is an embedding
deg(p(x)) <2 = deg(”(f(’a’ b)) <1 mod 22 + 1, Vj - a negaperiodic embeddlng The NHT uses
= |tap| = |uap],7b, b < a tensor products of the transform kerdél= L (1 _: ). To
= fuk| = |un], 2 .
computel) one must evaluate at the residues; {il, +i},
whereh; = |k;|, Vj. Therefore we need only evaluatg for v; and, in matrix terms, this translates to evaluating spectra
k € {0,1}" as opposed t&k < {-1,0,1}", in order to over the set oR2" transforms formed by all possible-fold

computes, a saving ofO(2"/3"). tensor products off and N. We denote this transform set by
There are other ways to compute Let P be theWalsh- {f N}”.
Hadamard Transforn{WHT) of p. Then A further way of computingo is as follows. Define the
Plr) = 9% Z (_1)p(x)+r,x7 (16) fixed-negaperiodic differentiadf P as
x€FY W(r,a,b,c) = [P(r) x P(r+a) x (_l)a.rhrjzb>,Vj\cJ:0’
wherer - x = >, r;z;, andr € F3'. Another way of writing Wi(c) )
(16) is by using polynomial notation, such that whereP : 73 — C, W : F, —C,r,a,b,cc 73, a=c,

. . i . andb < ¢, where € means¢; = ¢; + 1 mod 2, Vj.
P(r)=27=2s((=1)", (=)™, ..., (=1)™") (I7)  Theorem 1:

Yet another way of writing (16) is by using matrix notation o(s) = ( Z Z Z| Z W(r,a,b,c)2 — 47)/2.
P=H®H®...Q H)(-1)?, cEFy b<ca<c reFy



. n | # inequiv. functions| # equiv. classes / list M MFs
Proof: Note that 515 5 Classes
B 4.000,0.8
{H’ N} - D{I’ N}H’ (29) 35 3 classes
(1 o0 : - ; . 2.667,1.143,0.421
where = ('0 ") and D is an arbitrary diagonal or anti- |5 T
diagonal unitary2 x 2 matrix (we will not care which). To 3.200, 1.778,1.600, 1.455, 1.333, 1.231,
compute@ we compute the set ™ x 2™ spectral values 1-14371-06771-000,0-941,0-242,0-8207
0.727,0.696, 0.640, 0.552, 0.400, 0.246
o ni_1\p ) ) ) ) )
Q = {H, N}"(—1)P. However, from (25), 511 20 classes
Q= {D}n{.[, N}n{H}n(_l)p _ {D}n{f, N}nP. 2.909 — 0.152
To computes we are only interested inQ|*, so we can TABLE |

ignore D as it is a diagonal or anti-diagonal unitary matrix. COMPLETE SET OF MULTIVARIATE MERIT FACTORS FORY = 2TOn =5
We are therefore interested in computigy = {I, N}"P,
where|Q|* = |Q’|*. Viewing N as an evaluation of(r) at

r; = +i, Vj, and I as a fixing ofr; at 0 or 1, for a fixed

c € F3, and by an application of a generalised form of thg
Wiener-Kinchine theorem, we obtain

Definition 2: Let S be an arbitrary subset of-variable
oolean functions. Defin€g = {u+q | Vue S,q € 9Q}.

Qu*=>">"1> W(r,ab,c)>—2")/2, Theorem 2:The average value ofyrir with respect to
b<ca<c recFy any setSg is
where Wie)- 1 averages ( 1 ) 2" —1
Jem(Tle) =t SolpMMF! T T am
Q.= II NP
(0)

Proof: (summary) The argument is an extension of that
7 is a permutation of,,, ¢; = 1iff j € {n(0),...,7(Wt(c)— used in [17] for the univariate case. [ |
1)}, and|Q'|* = Zceﬂl |Q.|*. The notation}V;, is shorthand Theorem 2 implies that it is pointless to look for preferred
for/®...I® N®I...®I, meaning that th& x 2 unitary cosets of RM¢, n), ¢t > 2, with respect to the\ M F, as they
matrix N is applied to tensor positioi only. Therefore the will all have the same average value % and therefore
notation [[. V; means a matrix product of such elementdie relatively indistinguishable with respect to thé M F.
matrices. The theorem follows. ] Corollary 1: The set ofn-variable Boolean functions of
It follows that a low MM F (s) also indicates a weakness withdegreed or less satisfies average =) = 22;1 for any
respect to the set of fixed-negaperiodic differentials across #e2 < d < n, and, consequently, averagm) — 1.0 as
Walsh-Hadamard transform of n — 0o.

Remark: Theorem 2 is similar to a theorem in [17]
which states that, for a random bipolar sequence of length

N, average(+i7) = Y .

. MMF - EXTREMES, CLASSIFICATION AND
EXPECTATIONS

A. Smallest and largest

The smallestM M F(s) occurs wherp(x) is a constant or a
linear function, in which case,, = 60,,_; +22"72 = %, For both multivariate and univariate scenarios, we present
MMF = ?’n% and FM = 0. Two open problems are recursive quadratic constructions, determining sum-of-squares
to determine the largest possible values\dfMF and 7M. recursions and merit factor asymptotes - see Table Il for
The largestM M F(s) found thus far is for the trivial function graphical nomenclature, Table Il for proved{ M7 results,
p(x) = xox1, for which MMF = 4.0. The largestFM (s) and Table IV for MF results (conjectured apart from [11]).
found thus far is for thdine function(path graph (see Tables Proofs and initial conditions on are omitted for brevity.

II'and Ill), for which F = 3.0. The path graph is equivalent

to the canonical GRS sequence [5], [20] under lexicographical o ) o )
ordering of the truth table. The univariate merit factor and multivariate merit factor

(MMF) have been characterised. The relevance\oM F
as a metric that quantifies resistance of a Boolean function
Table | shows allMMF equivalence classes for Boolearto generalised forms of differential attack has been outlined.
functions of2 to 5 variables, with inequivalent representative&xpected values for the asymptotiet M F have been con-
obtained from [3]. Experiments suggest that, for randojactured and expected values for asympt% have been
Boolean functions and for random quadratic Boolean functiopsoven. Recursions have been identified for both multivariate
of n variables, 7" = 1.0. and univariate merit factors of some binary quadratic con-
Definition 1: Define Q to be the complete set of homogestructions, allowing evaluation of asymptotic multivariate and
neous quadratic Boolean functions ovevariables, i.eq € Q univariate merit factors, respectively. Two interesting open
iff ¢ =2, 1 cikxjTr, cjx € Fa. problems have been highlighted, namely to determine the

IV. CONSTRUCTIONS

V. CONCLUSIONS

B. Classification and expectation



[ Graph [ p(x) | Graph | o, [ F
Path Z?:_OQ Tttt oy, Closed-Form
Circle Tp—121 + Z?;OQ TiTiyq Patﬂll] i?;n—l(j;?gn—Z [ 3
Clique [ ¥i=p71, wizy ' o _=2
Star z0 2@71 z Circle 4opn—1+ 120,92 — 640p_3 + 2560, —5 [1
Triangles flznf‘g’ iTigo + Tiy1Ti 204ty (o At
[¢] ToT1 il:g,ﬁlxl+2 Li41T542 - 2 2 r (192r2—32r—4)r )
Squares | moz1 + 3,5y (T2i42®2i43 + Do T2i+5 T2i+2+5) r € roots 0f322°% — 822 — 2z +1
Wheel (zo Z?;ll Z;) + Tp—171 + Z?;OQ TiTit1 Clique 100,,_1 — 360y, _2 + 880,,_3 — 960, _4 0
—5120,,—5 + 10240, 6
on 4n (=)™ —(1416r%)(2)™
TABLE I i e e (Zr (76812 —128r+24)r |’
GRAPH NAMES FOR VARIOUS QUADRATIC CONSTRUCTIONS 7 € roots of64z% — 1622 + 6z — 1
Star 160,—1 — 680p—2 — 480, —3 + 7680, 4 — 102404, 5 [ 0
5 O O )0 VI
+His - 340 - viD"
Graph on [ FM 16—272
oy Closed-Form
Path 20m—1 + 8on—2 [ 3 TABLE IV
% — % COMPUTATIONAL RESULTS FOR ASYMPTOTIC MERIT FACTOR FOR
Circle Q(Ug)jl + fgnﬂ [1 VARIOUS QUADRATIC CONSTRUCTIONS
2 2
Clique 100,,—1 — 200, _2 — 400,,_3 + 960, _4 [0
A U )
St 12 442 +448 0
ar _1 — _ _ . . .
ZHU:‘ =2 In—3 [ [8] M.J.E. Golay, “Sieves for low autocorrelation binary sequend&EE
_ 2 6 - Trans. Inform. Theoryvol. 23, no. 1, pp 43-51, Jan. 1977.
Triangles | 20,1 + 1603 + 2560, -5 [ 3 [9] M. Grassl, A. Klappenecker and M. Rotteler, “Graphs, quadratic forms,
(FV7T— 1)+ V7)™ — (VT + 13) (1 = V7)™ and quantum codes,” Proc. IEEE Int. Symp. Inform. Theory, pp. 45,
—(E + Z)(—2+2)" — (& — 2i)(-2-2)" + 34" June, 2002.
Squares | 120p—2 + 320,—4 + 10240, ¢ — 8192013 [ g [10] M. Hein, J. Eisert and H.J. Briegel, “Multi-party entanglement in graph
16™ (38472 —40r—3)(L)™ states,”Phys. Rev. Avol. 69, 2004.
neven | 335 + (ZT m) ) [11] T. Hgholdt, H.E. Jensen and J. Justesen, “Aperiodic correlations and
r € roots 0f51223 — 3222 — 4z — 1 the merit factor of a class of binary sequencdEEE Trans. Inform.
Theory vol. 31, no. 4, pp 549-552, July 1985.
Wheel dop— 20— dop— 1
42" 2(2‘?”0" ?i + 61 ?" 4 — [ [12] Special Issue on Codes on Graphs and Iterative AlgorithBtsE Trans.
2T e (3 + Zlﬁ)(_l +V/7i) Inform. Theory vol. 47, no. 2, Feb. 2001.
(=3 + 3V (=1 = VT)" [13] T. Hgholdt, “The merit factor of binary sequences,’Difference Sets,
Sequences and their Correlation Propertiés Pott et al. (Eds.), Series
C: Math. and Physical Sciences, Kluwer, vol. 542, pp 227-237, 1999.
TABLE Il [14] R.A. KristiansenOn the Aperiodic Autocorrelation of Binary Sequences
ASYMPTOTIC MULTIVARIATE MERIT FACTOR FOR VARIOUS QUADRATIC Master's thesis, Selmer Centre, Inst. for Informatics, University of
Bergen, Norway, http://www.ii.uib.no/ matthew/Masters/notes.ps, 2003.
CONSTRUCTIONS [15] R.A. Kristiansen and M.G. Parker, “Binary sequences with merit factor
> 6.3, |IEEE Trans. Inform. Theorwol. 50, pp. 3385-3389, 2004.
[16] J.E. Littlewood,Some Problems in Real and Complex Analysisath
Math. Monographs, Lexington, MA, 1968.
[17] D.J. Newman, and J.S. Byrnes, “Tli& norm of a polynomial with

maximum achievableM MF and the maximum achievable
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