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Abstract— A new metric, the multivariate merit factor(MMF )
of a Boolean function, is presented, and various infinite recursive
quadratic sequence constructions are given for which both uni-
variate and multivariate merit factors can be computed exactly.
In some cases these constructions lead to merit factors with
non-vanishing asymptotes. A formula for the average value of

1
MMF is derived and a characterisation of theMMF in terms
of cryptographic differentials is discussed.

I. I NTRODUCTION

We introduce the multivariate aperiodic merit factor
(MMF) metric of a Boolean function and provide infinite
constructions for which theMMF can be computed ex-
actly (Table II). UnlikeMMF , the univariate merit factor
(MF) has a long history [8], as sequences with highMF
have applications in telecommunications, information theory,
and physics. However they are difficult to find and/or con-
struct for long sequence lengths.1MF evaluates the squared-
difference between thecontinuous Fourier power spectrum
of the sequence and the normalised flat power spectrum.
Similarly, 1

MMF evaluates the squared-difference between
the continuous multivariate Fourier power spectrumof a
Boolean function and the normalised flat multivariate Fourier
power spectrum. The goal is to construct Boolean functions
which maximiseMMF . The MMF is a generalisation
of a metric proposed in [14] and is computed via the sum
of squares,σ, of the multivariate aperiodic autocorrelation
coefficients of the Boolean function, (’sum-of-squares’ by
convention), whereσ is small if the coefficients are small.
In the context of cryptography this autocorrelation relates to
generalised Boolean differentials which are maximised if the
autocorrelation coefficients are large [2], [21]; if theMMF
of the Boolean function,p, is large then the average of the
squares of the generalised differentials ofp is small and the
likelihood of success for a joint differential attack on the
cryptosystem is small. This metric generalises the periodic
sum-of-squares which is a known measure of cryptographic
strength for Boolean functions [24].
MMF also has meaning for quantum systems. Certain

pure multipartite quantum systemscan be represented by
Boolean functions [19], and in [2] it was argued that, if one
computes aperiodic autocorrelations of all subspace Boolean

functions obtained from a functionp(x) by fixing zero or more
of the Boolean variablesxi ∈ x, then if these autocorrelation
coefficients are small in magnitude, the associated quantum
system is highlyentangled. [2] focussed on the so-called
aperiodic propagation criteriaof p(x), thereby establishing
a link with quantum codes [4], [6]. It is also clear that high
entanglement is indicated by a small sum-of-squares over the
joint autocorrelation coefficients, and this can be characterised
by the average 1

MMF computed over all subspaces ofp(x)
obtained by fixing. Finally, although constructions forGolay
complementary sequencesets [7] are usually constrained by
their univariate aperiodic autocorrelation, they are more nat-
urally constrained by their multivariate aperiodic autocorrela-
tion [20]. For lengthN = 2n, Golay-Rudin-Shapiro sequences
(GRS) [23], [22] are the only known examples of Golay
complementary pairs [7], and their interpretation as certain
Reed-Muller, RM(1,m), cosets within RM(2,m) has recently
been exploited in [5]. This was generalised in [20], which
demonstrated the fundamentally multivariate nature of the
complementary construction. [11] showed that theMF of
the canonical GRS sequence can be computed exactly for
any lengthN = 2n via the recursionγn = 2γn−1 + 8γn−2,
whereγn is the sum-of-squares for a sequence of length2n,
leading to an asymptoticMF of 3 for large n. This recur-
sion suggests that other sequence constructions obey similar
recursive formulas, both for their univariate and multivariate
sum-of-squares, and here we identify many such constructions
(see Tables III and IV). Another implicit aim of this work is
to exploit the link between quadratic Boolean functions and
undirected graphs, [19], by interpreting the asymptoticMMF
of a quadratic Boolean function as a large-scale property of a
graph. This has statistical meaning for both low-density parity
check codes associated with the graph [12], [19] and for graph-
based quantum computers [18], [19], [6], [10]. For many of
the constructions proposed herein, theMMF asymptotes are
constants. The highest asymptoticMF known is' 6.34 [15],
[1], but we have not yet found a Boolean construction with
asymptoticMMF greater than3.0.

In Section II we characterise theMF andMMF . Section
III considers theMMF in light of the results obtained, and
the asymptoticMMF of a typical Boolean function. Section



IV summarises our constructions.

II. CHARACTERISATIONS FOR UNIVARIATE AND

MULTIVARIATE MERIT FACTORS

A. The univariate case

The univariate aperiodic autocorrelationof s ∈ CN is

uk =
N−1∑
j=0

sjs
∗
j+k, −N < k < N, (1)

wheresj ∈ C, sj = 0 for j < 0 and j ≥ N , and ∗ means
complex conjugate.

The sum-of-squares, γ, of s, is defined by

2γ =
N−1∑

k=1−N,k 6=0

|uk|2. (2)

The univariate merit factoris

MF =
N2

2γ
. (3)

The aperiodic autocorrelation ofs = s(z) =
∑

j sjz
j can be

computed as a polynomial multiplication

u(z) = s(z)s(z−1)∗, (4)

whereu(z) =
∑N−1

j=1−N ujz
j .

Finding theMF is equivalent to finding theLα-norm,
‖s‖α, at α = 4 [16], where

‖s‖α =
(

1
2π

∫ 2π

0

|s(eiθ)|αdθ

)1/α

, (5)

and i2 = −1. Thus

1
MF(s)

=
‖s‖44 − ‖s‖42

‖s‖42
, (6)

where‖s‖42 = N2.
Let sA ∈ CN be generated by some arbitrary Construction

A. Define theasymptotic merit factorof sA by

F(sA) = limN→∞MF(sA).

B. Univariate representation using Boolean functions

We defines as bipolar if sj ∈ {1,−1}, in which case, if
the length ofs is N = 2n, we can describes by the Boolean
function, p(x) : Fn

2 → F2, wheres = s(x) = (−1)p(x), so
that sj = (−1)p(xi=ji),wherej =

∑n−1
i=0 ji2i, ji ∈ {0, 1}, i.e.

we order the truth table ofp lexicographically. When we refer
to theMF or sum-of-squares of the Boolean function,p(x),
we meanMF(s) or γ(s), respectively.

C. The multivariate case

The multivariate aperiodic autocorrelationof s ∈ (C2)n is

uk =
∑

j∈{0,1}n

sjs
∗
j+k, k ∈ {−1, 0, 1}n, (7)

wheresj ∈ C, sj = 0 for j 6∈ {0, 1}n.
The multivariate sum-of-squares, σ, of s, is defined by

2σ =
∑

k∈{−1,0,1},k6=0

|uk|2. (8)

The multivariate merit factoris

MMF =
4n

2σ
. (9)

The multivariate aperiodic autocorrelation ofs = s(z) =∑
j∈{0,1}n sjzj can be computed as a polynomial multiplica-

tion

u(z0, z1, . . . , zn−1) = s(z0, z1, . . . , zn−1)s(z−1
0 , z−1

1 , . . . , z−1
n−1)

∗.
(10)

Finding theMMF is equivalent to finding the multivariate
Ln,α-norm, ‖s‖n,α, at α = 4, where

‖s‖n,α =(
1

(2π)n

∫ 2π

0
. . .

∫ 2π

0
|s(eiθ0 , . . . , eiθn−1)|αdθ0 . . . dθn−1

)1/α

,

(11)
so that

1
MMF(s)

=
‖s‖4n,4 − ‖s‖4n,2

‖s‖4n,2

, (12)

where‖s‖4n,2 = 4n.
Let sA ∈ (C2)n be generated by some arbitrary construction

A. Define theasymptotic multivariate merit factorof sA by,

FM(sA) = limn→∞MMF(sA).

D. Multivariate representation using Boolean functions

We defines asbipolar if sj ∈ {1,−1}, in which case we can
describes by the Boolean function,p(x) : Fn

2 → F2, where
s = s(x) = (−1)p(x), so thatsj = (−1)p(x=j). When we
refer to theMMF or sum-of-squares of the Boolean function,
p(x), we meanMMF(s) or σ(s), respectively.

E. Multivariate symmetries

Lemma 1:Let s = (−1)p(x) ands′ = (−1)p′(x), for p, p′ :
Fn

2 → F2, with

p′(x) = p(x̃π(0), x̃π(1), . . . , x̃π(n−1)) + (
n−1∑
i=0

cixi) + d,

where x̃ ∈ {x, x + 1}, π : Zn → Zn permutes the integers,
mod n, andci, d ∈ Z2. Then

MMF(s′) = MMF(s).



F. Tensor product of sequence (function)

For s0 ∈ CN0 , s1 ∈ CN1 (or s0 ∈ (C2)n0 , s1 ∈ (C2)n1),
with sum-of-squares valuesγ0, γ1 resp. (orσ0, σ1 resp.), let
s = s0 ⊗ s1, where ‘⊗’ means tensor product. Therefores ∈
CN0N1 (or s ∈ (C2)n0+n1), and

γ(s) = 2γ0γ1 + N2
0 γ1 + N2

1 γ0,
(or σ(s) = 2σ0σ1 + 22n0σ1 + 22n1σ0).

(13)

In this paper we focus on sequences and functions which
cannot be written either fully or partially as tensor products.

G. Relationship between the multivariate aperiodic autocor-
relation and Boolean differentials

Define theaperiodic Boolean differentialas follows

v(x,a,b) = [p(x) + p(x + a)]↓xj=bj ,∀j|aj=1 , (14)

where p : Fn
2 → F2, v : Fn−wt(a)

2 → F2, x,a,b ∈ Fn
2 ,

where ‘↓ xj = bj ,∀j|aj = 1’ means thatxj is fixed to bj

wheneveraj = 1. It follows that we need only considerb
such thatb � a, where ‘b � a’ means thatbj ≤ aj ,∀j. wt(a)
means theHamming weightof a. The aperiodic autocorrelation
coefficients ofs = (−1)p(x) can then be written as

uk = ua,b = 2n−wt(a) − 2wt(v(x,a,b)). (15)

where kj = aj(−1)bj , ∀j. Equation (15) demonstrates that
Boolean differentials of the form (14) are summarised by
multivariate aperiodic autocorrelation coefficients. A function
g : Fn

2 → F2 is balancedif wt(g) = 2n−1. The function
p(x) can be considered cryptographically weak ifv(x,a,b)
is strongly unbalanced for any choice ofa and b [2], [21].
One can envisage attack scenarios which exploit all possible
differentials of the form (14), in which case a suitable crypto-
graphic measure is theMMF , this being the inverse of the
sum-of-squares of the set of differential imbalances. In this
paper, we focus primarily onp(x) of algebraic degree≤ 2
(quadratics). For suchp(x), one can simplify the computation
of σ, specifically

deg(p(x)) ≤ 2 ⇒ deg(v(x,a,b)) ≤ 1
⇒ |ua,b| = |ua,b′ |,∀b,b′ � a
⇒ |uk| = |uh|,

wherehj = |kj |, ∀j. Therefore we need only evaluateuk for
k ∈ {0, 1}n as opposed tok ∈ {−1, 0, 1}n, in order to
computeσ, a saving ofO(2n/3n).

There are other ways to computeσ. Let P be theWalsh-
Hadamard Transform(WHT) of p. Then

P (r) = 2−
n
2

∑
x∈Fn

2

(−1)p(x)+r·x, (16)

wherer · x =
∑

j rjxj , andr ∈ Fn
2 . Another way of writing

(16) is by using polynomial notation, such that

P (r) = 2−
n
2 s((−1)r0 , (−1)r1 , . . . , (−1)rn−1) (17)

Yet another way of writing (16) is by using matrix notation

P = (H ⊗H ⊗ . . .⊗H)(−1)p,

whereH = 1√
2

(
1 1
1 −1

)
. We can evaluate the power spectra

of the WHT of p by exploiting the polynomial notation of
(10). Thus, by the Wiener-Kinchine theorem

|P (r)|2 = 2−nu((−1)r0 , (−1)r1 , . . . , (−1)rn−1), (18)

which shows that, for the WHT, we embedu mod
∏

j(zj −
1)(zj +1) =

∏
j(z

2
j −1), and then evaluateu at the residues1

and−1 over every variable,zj . This is a periodic embedding.
Equation (10) can further be embedded in a modulus large
enough so that the modulus has no effect on the result - an
aperiodic embedding. Specifically(∏n−1

j=0 zj

)
u(z0, . . . , zn−1)

=
(∏n−1

j=0 zj

)
s(z0, . . . , zn−1)s(z−1

0 , . . . , z−1
n−1)

∗,

mod
∏n−1

j=0 (z4
j − 1).

(19)
Using the fact that(z4

j −1) = (zj−1)(zj +1)(zj− i)(zj + i),
wherei2 = −1, we can then defineQ such that

Q(r) = 2−
n
2 s(ir0 , ir1 , . . . , irn−1) (20)

wherer ∈ Zn
4 . It follows that∑

r∈Zn
4

|Q(r)|4 = 2−2n
∑

r∈Zn
4

|u(ir0 , ir1 , . . . , irn−1)|2 (21)

wherei2 = −1 and, from (19) and (21),

2σ =
∑

r∈Zn
4

|Q(r)|4 − 4n (22)

Equation (22) is just a re-statement of the multivariateLn,4-
norm, as specified by (9) and (12). Specifically,

‖s‖4n,4 =
∑

r∈Zn
4

|Q(r)|4 (23)

As stated above, the evaluation ofu at the residueszj = ±1,
∀j, can be implemented using the WHT. Similarly, evaluation
of u at the residueszj = ±i, ∀j, can be implemented by using
the Negahadamard Transform(NHT) and is an embedding
mod z2

j + 1, ∀j - a negaperiodic embedding. The NHT uses
tensor products of the transform kernelN = 1√

2

(
1 i
1 −i

)
. To

computeQ one must evaluateu at the residueszj ∈ {±1,±i},
∀j and, in matrix terms, this translates to evaluating spectra
over the set of2n transforms formed by all possiblen-fold
tensor products ofH andN . We denote this transform set by
{H,N}n.

A further way of computingσ is as follows. Define the
fixed-negaperiodic differentialof P as

W (r,a,b, c) = [P (r)× P (r + a)× (−1)a·r]↓rj=bj ,∀j|cj=0 ,
(24)

whereP : Fn
2 → C, W : Fwt(c)

2 → C, r,a,b, c ∈ Fn
2 , a � c,

andb � c̄, where ‘̄c’ meansc̄j = cj + 1 mod 2, ∀j.
Theorem 1:

σ(s) = (
∑

c∈Fn
2

∑
b�c̄

∑
a�c

|
∑
r∈Fn

2

W (r,a,b, c)|2 − 4n)/2.



Proof: Note that

{H,N} = D{I,N}H, (25)

whereI =
(

1 0
0 1

)
, andD is an arbitrary diagonal or anti-

diagonal unitary2 × 2 matrix (we will not care which). To
computeQ we compute the set of2n × 2n spectral values
Q = {H,N}n(−1)p. However, from (25),

Q = {D}n{I,N}n{H}n(−1)p = {D}n{I,N}nP.

To computeσ we are only interested in|Q|4, so we can
ignore D as it is a diagonal or anti-diagonal unitary matrix.
We are therefore interested in computingQ′ = {I,N}nP ,
where |Q|4 = |Q′|4. Viewing N as an evaluation ofP (r) at
rj = ±i, ∀j, and I as a fixing ofrj at 0 or 1, for a fixed
c ∈ Fn

2 , and by an application of a generalised form of the
Wiener-Kinchine theorem, we obtain

|Q′
c|4 =

∑
b�c̄

∑
a�c

|
∑
r∈Fn

2

W (r,a,b, c)|2 − 2n)/2,

where

Q′
c =

j=π(wt(c)−1)∏
π(0)

Nj

 P,

π is a permutation ofZn, cj = 1 iff j ∈ {π(0), . . . , π(wt(c)−
1)}, and|Q′|4 =

∑
c∈Fn

2
|Q′

c|4. The notation,Nj , is shorthand
for I ⊗ . . . I ⊗N ⊗ I . . .⊗ I, meaning that the2× 2 unitary
matrix N is applied to tensor positionj only. Therefore the
notation

∏
j Nj means a matrix product of such elemental

matrices. The theorem follows.
It follows that a lowMMF(s) also indicates a weakness with
respect to the set of fixed-negaperiodic differentials across the
Walsh-Hadamard transform ofp.

III. MMF - EXTREMES, CLASSIFICATION AND

EXPECTATIONS

A. Smallest and largest

The smallestMMF(s) occurs whenp(x) is a constant or a
linear function, in which caseσn = 6σn−1 +22n−2 = 6n−4n

2 ,
MMF = 2n

3n−2n , and FM = 0. Two open problems are
to determine the largest possible values ofMMF andFM.
The largestMMF(s) found thus far is for the trivial function
p(x) = x0x1, for which MMF = 4.0. The largestFM(s)
found thus far is for theline function(path graph) (see Tables
II and III), for which F = 3.0. The path graph is equivalent
to the canonical GRS sequence [5], [20] under lexicographical
ordering of the truth table.

B. Classification and expectation

Table I shows allMMF equivalence classes for Boolean
functions of2 to 5 variables, with inequivalent representatives
obtained from [3]. Experiments suggest that, for random
Boolean functions and for random quadratic Boolean functions
of n variables,FM = 1.0.

Definition 1: DefineQ to be the complete set of homoge-
neous quadratic Boolean functions overn variables, i.e.q ∈ Q
iff q =

∑
j<k cjkxjxk, cjk ∈ F2.

n # inequiv. functions # equiv. classes / list ofMMFs
2 2 2 classes

4.000, 0.8
3 5 3 classes

2.667, 1.143, 0.421
4 39 18 classes

3.200, 1.778, 1.600, 1.455, 1.333, 1.231,
1.143, 1.067, 1.000, 0.941, 0.842, 0.800,
0.727, 0.696, 0.640, 0.552, 0.400, 0.246

5 22442 80 classes
2.909− 0.152

TABLE I

COMPLETE SET OF MULTIVARIATE MERIT FACTORS FORn = 2 TO n = 5

Definition 2: Let S be an arbitrary subset ofn-variable
Boolean functions. DefineSQ = {µ + q | ∀µ ∈ S, q ∈ Q}.

Theorem 2:The average value of 1
MMF with respect to

any setSQ is

averageSQ(
1

MMF
) =

2n − 1
2n

.

Proof: (summary) The argument is an extension of that
used in [17] for the univariate case.
Theorem 2 implies that it is pointless to look for preferred
cosets of RM(t, n), t ≥ 2, with respect to theMMF , as they
will all have the same average value of 1

MMF and therefore
be relatively indistinguishable with respect to theMMF .

Corollary 1: The set ofn-variable Boolean functions of
degreed or less satisfies average( 1

MMF ) = 2n−1
2n for any

d, 2 ≤ d ≤ n, and, consequently, average( 1
MMF ) → 1.0 as

n →∞.
Remark: Theorem 2 is similar to a theorem in [17]

which states that, for a random bipolar sequence of length
N , average( 1

MF ) = N−1
N

.

IV. CONSTRUCTIONS

For both multivariate and univariate scenarios, we present
recursive quadratic constructions, determining sum-of-squares
recursions and merit factor asymptotes - see Table II for
graphical nomenclature, Table III for provedMMF results,
and Table IV forMF results (conjectured apart from [11]).
Proofs and initial conditions onσ are omitted for brevity.

V. CONCLUSIONS

The univariate merit factor and multivariate merit factor
(MMF) have been characterised. The relevance ofMMF
as a metric that quantifies resistance of a Boolean function
to generalised forms of differential attack has been outlined.
Expected values for the asymptoticMMF have been con-
jectured and expected values for asymptotic1MMF have been
proven. Recursions have been identified for both multivariate
and univariate merit factors of some binary quadratic con-
structions, allowing evaluation of asymptotic multivariate and
univariate merit factors, respectively. Two interesting open
problems have been highlighted, namely to determine the



Graph p(x)

Path
Pn−2

i=0 xixi+1

Circle xn−1x1 +
Pn−2

i=0 xixi+1

Clique
Pi=n−1

i=0,j<i xixj

Star x0
Pn−1

i=1 xi

Triangles x0x1 +
Pn−3

i=0 xixi+2 + xi+1xi+2

Squares x0x1 +
Pn/2−1

i=0 (x2i+2x2i+3 +
P1

j=0 x2i+jx2i+2+j)

Wheel (x0
Pn−1

i=1 xi) + xn−1x1 +
Pn−2

i=0 xixi+1

TABLE II

GRAPH NAMES FOR VARIOUS QUADRATIC CONSTRUCTIONS

Graph σn FM
σn: Closed-Form

Path 2σn−1 + 8σn−2 3
4n

6
− (−2)n

6
Circle 2σn−1 + 8σn−2 1

(−2)n

2
+ 4n

2
Clique 10σn−1 − 20σn−2 − 40σn−3 + 96σn−4 0

2n

2
+ 6n

4
− 4n

2
− (−2)n

4
Star 12σn−1 − 44σn−2 + 48σn−3 0

2n − 4n

2
+ 6n

6

Triangles 2σn−1 + 16σn−3 + 256σn−5
5
3

( 5
84 i

√
7− 1

12 )(1 +
√

7i)n − ( 5
84 i

√
7 + 1

12 )(1−
√

7i)n

−( 1
15

+ 2
15

i)(−2 + 2i)n − ( 1
15
− 2

15
i)(−2− 2i)n + 3

10
4n

Squares 12σn−2 + 32σn−4 + 1024σn−6 − 8192σn−8
5
3

n even 3 16n

10
+

„P
r

(384r2−40r−3)( 1
r
)n

(15360r2−640r−40)r

«
,

r ∈ roots of512z3 − 32z2 − 4z − 1
Wheel 4σn−2 + 32σn−3 + 64σn−4 1

4n

2
− (−2)n

2
− ( 1

4
+ 1

4
i
√

7)(−1 +
√

7i)n

+(− 1
4

+ 1
4
i
√

7)(−1−
√

7i)n

TABLE III

ASYMPTOTIC MULTIVARIATE MERIT FACTOR FOR VARIOUS QUADRATIC

CONSTRUCTIONS

maximum achievableMMF and the maximum achievable
asymptoticMMF .
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