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Abstract: A novel decomposition of NTT block- 
lengths is proposed using repeated applications of 
Rader’s algorithm to reduce the problem to that 
of realising a single small-length NTT. An efficient 
implementation of this small-length NTT is 
achieved by an initial basis conversion of the data, 
so that the new basis corresponds to the kernel of 
the small-length NTT. Multiplication by powers 
of the kernel become rotations and all arithmetic 
is efficiently performed within the new basis. More 
generally, this extension of Rader’s algorithm is 
suitable for NTT or DFT applications where an 
efficient implementation of a particular small- 
length NTT/DFT module exists. 

heoretic transforms using 
tader’s algorithm 

1 Introduction 

The number-theoretic transform (NTT) has been sug- 
gested as an alternative to the DFT for computing cyclic 
convolution [l, 21 and is suitable for inclusion within 
signal processing, error-correction and residue number 
systems. Efficient architectures are possible for Fermat 
and Mersenne transforms [2-41, where multiplication 
within the transform is eliminated due to the correspon- 
dence of the NTT kernel to the basis of the data (i.e. the 
kernel is some simple power of 2 and the data are rep- 
resented using a binary basis). However, there are only a 
few blocklengths over which these NTTs are possible. 
Various well known blocklength decomposition schemes 
can be used to widen the choice of NTT blocklengths 
[5-91 and, in this paper, a novel decomposition is sug- 
gested, based on successive applications of Rader’s algo- 
rithm [ l o ] .  The technique is suitable for a wide range of 
prime and composite blocklengths and only requires 
repeated applications of a single, small-length NTT. It is, 
therefore, highly suitable for reduced hardware systems. 
Furthermore, by applying a preliminary basis conversion 
and matching the basis of the data to the kernel of the 
small-length NTT [ 1 1-13], all kernel multiplications can 
be eliminated, and the only multiplications are the fixed 
multiplications, inherent in the NTT-based cyclic convol- 
utions, which are required to realise Rader’s algorithm. 
Although this paper develops the theory in terms of the 
NTT, the extension of Rader’s algorithm is equally valid 
for DFTs, and may be combined with efficient Winograd 
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solutions for small-length DFTs [7] to construct 
unusual-length DFTs. 

2 Theory 

The N-point NTT is given by 
I N - 1  \ 

X[k] = (, c - x [ n ] a n k )  0 < k < N 
“ = O  M 

where a is an Nth root of 1, mod M and, for the purposes 
of this discussion, M is considered prime. 

Consider the case where 

N, = N + 1 N, prime (2) 
Then a one-dimensional “,-point NTT can always be 
defined, mod M ,  where 

M = rNN, + 1 (3) 

for r integer, positive, and M prime. This ”,-point 
NTT can be expressed as 

NNp- 1 

X [ k ]  = ( 1 x[n](ap-’)”’.> O < k < N N ,  (4) 

where a, fi and (ap- ’ )  are Nth, N,th and NN,th roots of 
1, mod M, respectively. 

As gcd (N, N,) = 1, eqn. 4 can be reformulated using 
the prime factor algorithm (PFA) [2] as a two- 
dimensional NTT, 

“=O M 

where 

with n = (Np(N;l)N, no + N(N-‘)NpnI)NN, and k = 
(N,ko + Nkl)”,. Eqns. 5 and 6 compnse ”,-point 
NTTs, mod M ,  and N, N-point NTTs, mod M ,  respec- 
tively. If an efficient architecture exists for the computa- 
tion of the N-point NTT, then the first dimension (eqn. 6) 
of the above 2D NTT is easily computed. In particular, 
the input data, x[n] ,  can, for a given n, be preconverted 
to an a-basis, such that 

1 1 - 1  \ 

x(n) = (:=: 1 x i a  i ) M  

for xi E {S} and CL an Nth root of 1, mod M (7) 
where S is a small set of integers (in the extreme, 
S = {0, 1)) and I is equal to or slightly less than some 
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multiple of N .  In such a case, the NTT of eqn. 6 can be 
computed without multiplication, the multiplications by 
powers of a being replaced with rotations of x[n] [ l l ,  
121. (These principles are simply generalisations of the 
ideas inherent within the implementations of Fermat or 
Mersenne number theoretic transforms [2-4, 141). To 
compute the N,-point NTTs, eqn. 5, multiplication by 
powers of the kernel, b, are required. These NTTs will 
not be simply realised in an a-basis as B cannot be a 
simple power of a. It is possible to convert the data from 
an a-basis to a /&basis after having performed the 
N-point NTTs and prior to performing the N,-point 
NTTs [13]. However, suitable basis converters may not 
always be feasible and, for word-parallel implementa- 
tions, a large number of basis converters will be required. 
An alternative solution, the subject of this paper is to 
utilise Rader's algorithm [IO] to compute the Np-point 
NTTs using N-point NTTs, mod M. 

Rader's algorithm states that a P-point DFT, where P 
is prime, can be computed using a P - 1-point complex 
cyclic convolution (CC). This P - 1-point CC can, in 
turn, be computed using any orthogonal transform (such 
as the NTT), possessing the 'cyclic convolution property'. 
Similarly, a P-point NTT, mod M, can be computed 
using a P - 1-point CC, mod M, which can, in turn, be 
computed using P - 1-point NTT/INTTs, mod M, pro- 
viding a P - 1-point NTT exists, mod M. From eqn. 3 it 
is clear that M supports N ,  and N-point NTTs. There- 
fore the Np-point NTT of eqn. 5 can be represented as 

Y[k] = "t1y[n]Fk 

and decomposed as follows 
Lo >U 

Y[k]=<Y'[q]+y[O]), 1 < k < N ,  
where : 

IN.-2 \ 

and g is an (N, - 1)th root of 1, mod N,. Thus, using 
N-point NTT/INTTs to compute the N = N, - 1-point 
CC of eqn. 10, 

where 

and 
, 

Eqn. 16 can be precomputed, and G(0) is always equal to 
- 1. Furthermore, one other value of G(k) will be a power 
of a. Therefore the CC of eqn. 10 can be computed in an 
a-basis using only N - 2 fixed (nontrivial) multiplica- 
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tions. This can be considered a great improvement on the 
direct a-basis implementation of an N,-point NTT, 
mod M, which requires approximately (N, - 1)' fixed 
multiplications. This PFA/Rader-based NN,-point NTT 
can be compared to a direct, undecomposed version and 
a PFA-based version, as follows. 

An undecomposed ",-point NTT, mod M, will 
require 

( N N ,  - 1)' fixed multiplications, 
mod M (ignoring additions). 

Using an N x N ,  PFA decomposition, the NN,-point 
NTT will require 

N,(N - 1)2 + N ( N ,  - 1)' fixed multiplications, 
mod M (ignoring additions) 

The PFA/Rader decomposition of the ",-point NTT, 
as described in this paper, will require 

fixed multiplications, mod M 
(N, + 2N) N-point NTTs and N(N - 2) 

Assuming that each N-point NTT is performed eficiently 
without multiplication in an a basis, then the complexity 
of each NTT can be approximately equated as 

1 N-point NTT, mod M N N2/rlog2(M)1 
fixed multiplications, mod M 

Therefore the PFA/Rader method requires approx- 
imately 

( N ,  + 2N)N2/l0g2(M) + N(N - 2) 
fixed multiplications, mod M 

As a further approximation, if one assumes N ,  Y N, the 
above estimates reduce to 

Undecomposed ",-point NTT, 
mod M Y N4 fixed multiplications, mod M 

PFA-based N N  -point NTT, 
mod M Y 2N'j fixed multiplications, mod M 

PFA/Rader-based ",,-point NTT, 
mod M Y 3 ~ ~ / r i o g ~ ( ~ ) 1  + N' 
fixed multiplications, mod M (17) 

The figure for the PFAjRader-based NTT compares 
favourably with the other methods. Furthermore, all 
additions and multiplications will be performed in an a- 
basis, and, as shown in [15], particularly efficient hp le -  
mentations of modular arithmetic operations are possible 
if the basis a satisfies eqn. 7 for a given modulus, M. 

As an example, let N = 16, N, = 17, M = 1361. Note 
that a = 63, where 63 has order 16, mod 1361. All inte- 
gers, mod 1361, can be represented using a 63-basis, as 
specified in eqn. 7, where I is a minimum of 16 and 
S =  {0, I}, i.e. all data, mod 1361, can be represented 
using 16-bit words, where each consecutive bit represents 
a consecutive power of 63. Furthermore all 16-point 
NTT kernel products, mod 1361, can be implemented as 
bit rotations. Therefore a 16 x 17 = 272-point NTT, 
mod 1361, can be implemented using 17 + 32 = 49 multi- 
plierless 16-point NTTs, mod 1361, and 16 x 14 = 224 
fixed multiplications for the 16-point CCs, with all arith- 
metic performed in a 63-basis. Using the estimates of eqn. 
17: 

Undecomposed 272-point NTT, 

PFA/Rader-based 272-point NTT, 

mod 1361 Y 65 536 fixed multiplications, mod 1361 

mod 1361 N 1374 fixed multiplications, mod 1361 
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PFAIRader-based 272-point NTT, 
mod 1361 L 1374 fixed multiplications, mod 1361 

3 Recursive extensions of Rader’s algorithm 

Further Rader-based, composite NTTs can be con- 
structed from the minimally composite NTTs of the pre- 
ceding Section using prime-factor techniques. Thus, if 

N,, = NN,, + 1 with N,,, N,, prime (18) 
then N,,-point NTTs can be computed, mod M ,  using 
“,,-point NTTs, as described in the preceding Section, 
where 

M = r(NNp,Np2) + 1 

for r integer, positive and M prime (19) 
As N,, is mutually prime to both N and N,,, any com- 
posite NTT, mod M, which comprises any or all of N ,  
N, ,  and N,,, can be computed using only N-point 
NTTs, mod M .  

For example, if N = 12, N,, = 13, then N,, = 157 and 
24492 (=12 x 13 x 157), 1884, (=12 x 157) and 2041 
(= 13 x 157)-point NTTs can all be defined, mod M 
( = r  x 24492 + I), using only 12-point NTT modules. 

These sequences of NPj can be iterated as long as all 
NPi are prime. Unfortunately few of these ‘Rader 
sequences’ continue for more than one or two times 
before reaching a nonprime. Table 1 shows some example 

Table 1 : Radar seauences for selected N 

N Rader seauence 

2 3, 7, 4 3  
4 5  
6 7 . 4 3  

1 0  11 
1 2  1 3 , 1 5 7  

66 67, 4423, . . . ,  etc. 

192 193, 37057, . . ., etc. 

456 457, 208393, ..., etc. 

. . .  . . .  

. . .  . . .  

. . .  . . .  

sequences for selected N .  Note that, as a special case, a 
2 x 3 x 7 x 43 = 1806-point NTT can be computed, 
mod M ,  where M = r x 1806 + 1, using only 2-point 
NTTs, mod M .  

For a given N, the sequence set can be extended to 
include any primes of the form P + 1, where P is gener- 
ated as a multiplicative product of any or all members of 
the set {N, 2, N,,, N,,, ...). (Note, that 2 is included as 
2-point NTTs are simply implemented and never require 
multiplication.) Table 2 shows a selection of extended 
Radar sequences. 

Although the sequences in Table 2 include a wide 
selection of primes, the most effective combinations will 
include as few 2-point and as many N-point NTTs as 
possible. A further broadening of the sequences (not 
shown in Table 2), is possible by also including all t, 
where t 1 N. This is justified because, if N-point NTTs are 
efficiently implemented, without multiplication, in an a- 
basis, then t-point NTTs will also be efficiently imple- 
mented without multiplication. 

As a final example, a 5 x 11 x 23 = 1265-point NTT, 
mod 245411, can be implemented using an a = 22-basis, 
where 22 has order 5,  mod 24541 1, I = 5 and S = (0, 1, 
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2, ..., 21). The 1265-point NTT uses only 5-point 
and 2-point NTTs, mod 24541 1, with all multiplications 
by powers of 22 implemented as rotations. Note, the 

Table 2: Extended radar sequences for selected N 

N Extended Rader sequence 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
66 

192 
456 

3.7.43 
2,7.43 
2.5.3. 11. 13. 7.61, 31. 23.67.661.331.53. 131,157.etc. 
2.3,11.7.31,23.67,331.71.43.211.463.2311,311.etc. 
2. 7. 3. 43. etc. 
2. 3. 43 
2. 3. 7. 43. 1033. 24793. 6199. etc 
2. 3. 19, 7. 127. 43. 2287. 14479, etc 
2. 11, 3, 23. 31, 7,331, 67,47. 2531, 691,139. 7591, 31 1. etc 
2. 3, 23, 7, 67. 47.139.43. 463, 967, 10627. 4423, 3083. etc 
2. 13. 3. 157. 7. 79. etc 
2. 67. 3, 4423,7. 26539,463.43. etc 
2, 193, 3, 37057,7.43, 57793. 348559. etc 
2. 457. 3, 208393. 7. 43, 19609, etc. 

blocklengths 11 and 23 are decomposed, using the 
PFA and Radar algorithms, as (5  x 2) + 1 and 
(((5 x 2) + 1)  x 2) + 1, respectively. 

The complete 1265-point NTT, mod 245411, requires 

1593 5-point NTTs 

4560 2-point NTTs 

3180 fixed multiplications 

and initial 2 to 22 basis conversions for all incoming 

Unlike the previous example, where a = 63 and S = {0, 
1) (requiring 1 bit), in this example the set S ‘spans’ the 
basis (and requires 5 bits). In other words, a representa- 
tion for all integers (0, 1, . . . , a - 1) is contained in S. In 
this example, {O, 1, . . . , 2) E S. This spanning guarantees 
a simple implementation for addition and, consequently, 
general multiplication, mod 24541 1, as additive carry 
propagation is localised [l5]. Moreover, S can be 
widened up to (0, 1, 2, ..., 31) (whilst still requiring 5 
bits), and all computations can now use redundant arith- 
metic structures [16] with reduced carry propagations 
and, consequently, increased speed. The greatest draw- 
back with this particular NTT example is the increased 
wordlength requirements, from rlog,(245411)1 = 18 bits, 
using a conventional binary representation, to 5 x 5 = 25 
bits using a 22-basis with S = {O, 1, 2, .. ., 31). It is hoped 
that more competitive Rader-based NTTs will become 
apparent over larger moduli. 

data 

4 Conclusion 

A repeated application of Rader’s algorithm has been 
proposed for the realisation of unusual-length NTTs. It 
allows the construction of relatively long-length NTTs 
using a single, small-length NTT. This small-length NTT 
can be efficiently implemented, without multiplication, by 
a preliminary basis conversion, so that the basis represen- 
tation of the data corresponds to the kernel of the small- 
length NTT [l5]. Thus the multiplication count of the 
complete NTT is reduced to the relatively small number 
of point-product multiplications, inherent within each 
application of Rader’s algorithm. The method has been 
developed in conjunction with a prime-factor decomposi- 
tion and, as the blocklengths comprise unusual primes, 
these NTTs are easily combined with more conventional 
NTTs (such as FNTs), using prime-factor techniques, to 
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contruct even larger NTTs. This recursive Rader algo- 
rithm is particularly suited to reduced-hardware solu- 
tions and is also applicable to any DFT for which an 
efficient small-length DFT module exists. 
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