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Abstract. Cyclotomic constructions are given for several infinite fami-
lies of even length binary sequences which have low negaperiodic autocor-
relation. It appears that two of the constructions have asymptotic Merit
Factor 6.0 which is very high. Mappings from periodic to negaperiodic
autocorrelation are also discussed.

1 Introduction

The Periodic Autocorrelation Function (PACF) of a length N binary sequence,
s(t), is,

Ps(ω) =

N−1
∑

t=0

(−1)s(t+ω)−s(t), 0 ≤ ω < N (1)

where sequence indices, t, are taken mod N . s(t) has optimal PACF when
|Ps(ω)| = 1 if N is odd. For N even, the PACF of s(t) = 0001 is 4, 0, 0, 0,
which is perfect as Ps(ω) = 0, ∀ω 6= 0. But, for N even, N > 4, it is con-
jectured (but not proven) that there is no binary s(t) with perfect PACF.
If this conjecture is true then, for N even, N > 4, binary s(t) such that
mins(t)(max1≤ω<N |Ps(ω)|) = 2 (4) has best possible PACF, for 4 6 |N (4|N),
respectively. However, when s(t) is balanced (an equal number of zeros and ones)
or almost-balanced (|#zeroes−#ones| = 1) proof of optimality is possible. A re-
cent paper [1] used cyclotomy to construct infinite 1 balanced (almost-balanced)
binary sequence families of length N = 2p, for certain p prime, with optimal
PACF. In this paper we consider the Negaperiodic Autocorrelation Function
(NACF) of s(t),

Qs(ω) =

N−1
∑

t=0

(−1)s(t+ω)−s(t)−b t+ω

N
c, 0 ≤ ω < N (2)

where sequence indices, t, are taken, mod N . For example, the NACF of s(t) =
110101 is Qs(ω) = 6,−4, 2, 0,−2, 4. Binary s(t) has optimal NACF when |Qs(ω)| =

1 ’infinite’ means there is no upper limit on N for which the construction is valid.



1, ∀ω 6= 0, if N is odd. For even N the NACF of s(t) = 01 is 2, 0 which is perfect
as Qs(ω) = 0, ∀ω 6= 0. But for N even, N > 2, we conjecture (but cannot prove)
that there is no binary s(t) with perfect NACF. If this conjecture is true then,
for N even, N > 2, binary s(t) such that mins(t)(max1≤ω<N |Qs(ω)|) = 2, has
best possible NACF. We provide constructions for such ’conjectured optimal’
sequences, s(t), in Theorems 1 and 2, where s(t) is not necessarily balanced or
almost-balanced. 2 We can always define an odd-length binary sequence, e(t),
such that e(t) = s(t) + t (mod 2), where Qe(ω) = (−1)ωPs(ω) (Lemma 2), so
low odd-length N PACF constructions trivially map to low odd-length N NACF
constructions. However most even-length sequences with low NACF cannot be
trivially derived from even-length sequences with known PACF, although we do
review some useful mappings in Section 5. In this paper cyclotomy is used to
construct binary sequence families of even length N = 2p (N = 4p) with low
NACF for certain p prime. Unlike the sequences of [1], the sequences of this pa-
per are not necessarily balanced or almost-balanced. Sequences with low NACF
can be used in spread-spectrum systems in a similar way to sequences with
low PACF, and for comparable complexity [9]. The Aperiodic Autocorrelation
Function (AACF) of a length N binary sequence, s(t), is,

As(ω) =
N−1
∑

t=0

(−1)s(t+ω)−s(t), − N < ω < N (3)

where s(t) = 0 for t < 0 or t ≥ N . AACF is the sum and difference of PACF
and NACF:

As(ω) = 1
2 (Ps(ω) + Qs(ω)), 0 ≤ ω < N

As(ω) = 1
2 (Ps(N − ω) − Qs(N − ω)), − N ≤ ω < 0

(4)

where |As(ω)| = |As(−ω)|. It is a well-known open problem to identify lowest
possible values of |As(ω)| for a length N sequence, s. ’Golay Merit Factor’ (MF)
[8] is a common metric used to measure aperiodic optimality of a sequence and
is given by,

Ms =
N2

2
∑N−1

ω=1 |As(ω)|2
(5)

Lower values of |As(ω)| give higher MF. The highest MF for a given length
N binary sequence is not known in general. The asymptote, Ms = 6.0, N →
∞ is the highest known asymptote for a sequence, s, belonging to an infinite
family of binary sequences, where the construction is a cyclic shift (cyclically
shifted by approximately N/4) of a Legendre or Modified-Jacobi sequence [7,
8], although Golay has constructed skewsymmetric binary sequences with MFs
generally between 8.00 and 9.00 [3–5] up to lengths N = 100 or so. 3

2 Computations show that binary s(t) satisfying mins(t)(max1≤ω<N |Qs(ω)|) = 2 ex-
ist for all even N up to N = 38. This is in contrast to PACF when 4|N , where
computations suggest mins(t)(max1≤ω<N |Ps(ω)|) = 4.

3 The Rudin-Shapiro-based constructions [2, 6, 11, 10], achieve PACF and NACF up-
per bounds which appear to be asymptotically of the same order, leading to an
asymptotic MF of 3.0.



This paper shows, experimentally, that the constructions of Theorems 1 and
2 also approach Ms = 6.0 as N → ∞, and Section 5 argues that this is because
these constructions are closely related to Legendre sequences.

2 Construction

Instead of constructing a length N sequence s(t), we construct a length 2N
sequence s′(t), where s′(t) = s(t), 0 ≤ t < N , s′(t) = s(t) + 1 (mod 2), N ≤ t <
2N . The NACF of s(t) and the PACF of s′(t) are related as follows,

Qs(ω) =
1

2
Ps′(ω), 0 ≤ ω < N

For example, if s′(t) = 11010111110010100000 then s(t) = 1101011111.
Ps′(ω) = 20, 0, 4, 0,−4, 0, 4, 0,−4, 0,−20, 0,−4, 0, 4, 0,−4, 0, 4, 0, so
Qs(ω) = 10, 0, 2, 0,−2, 0, 2, 0,−2, 0. The constructing method uses cyclotomy, as
in [1], to specify a subset C of Z2N to define the characteristic sequence s′(t) of
C:

s′(t) =

{

1, if t ∈ C
0, otherwise

The PACF is determined by the difference function,

dC(ω) = |C ∩ (C + ω)|

where C + ω denotes the set {c + ω : c ∈ C} and ’+’ denotes addition, mod 2N .
The PACF of s′(t) is then,

Ps′ (ω) = 2N − 4(|C| − dC(ω)) (6)

This paper gives constructions for N = 2p and N = 4p, p prime. We therefore
specify C over Z4p and Z8p. By the Chinese Remainder Theorem (CRT), Zrp is
isomorphic to Zr × Zp, gcd(r, p) = 1. For N = rp, let C ′ = {{n} × Cn | Cn ⊆
Z∗

p , 0 ≤ n < r}, F = {G× 0 | G ⊆ Zr}, and C = C ′ ∪F . Define ω = (ω1, ω2) ∈
Zr × Zp. Then,

dC(ω1, ω2) = |C ∩ (C + (ω1, ω2))|

=
∑r−1

k=0

∑r−1
n=0 |Cn ∩ (Ck−w1

+ w2)|

+|G ∩ (G + (w1, 0))| +
∑r−1

k=0 |G ∩ (k + w1, Ck + w2)|+

+
∑r−1

k=0 |(k, Ck) ∩ (G + (w1, w2))|

(7)

From (7) we see that if we know |Cn ∩ (Cm + ω2)|, ∀n, m, ω2 ∈ Zp, and if we
can also determine the last three terms involving G, then we can determine
dC(ω1, ω2) = dC(ω), ∀ω, and hence the PACF of s′(t). If we construct Cn from
the union of various cyclotomic classes over GF(p), ∀n, then |Cn ∩ (Cm +ω2)| is
computable from the cyclotomic numbers over GF(p). Let Di be the cyclotomic
class of order d, given by,

Di = {αi, αd+i, α2d+i, α3d+i, . . . , αp−1−d+i}, 0 ≤ i < d



where α is a primitive generator over GF(p). Then the cyclotomic number [i, j]
of order d over GF(p) is,

[i, j] = |(Di + 1) ∩ Dj | (8)

Note that |Cn ∩ (Cm + w2)| = |w−1
2 Cn ∩ (w−1

2 Cm + 1)|, (mod p), for w2 6= 0.
If Cn =

⋃

k∈Tn
Dk, Tn ⊆ Zr, and w−1

2 ∈ Dh, then w−1
2 Cn =

⋃

k∈Tn
Dk+h.

Therefore,

|w−1
2 Cn∩(w−1

2 Cm+1)| = |(
⋃

k∈Tn

Dk+h)∩(
⋃

k∈Tm

Dk+h+1)| =
∑

k∈Tn

∑

j∈Tm

[k+h, j+h]

(9)
i.e. a sum of cyclotomic numbers. We later use cyclotomic numbers to prove the
NACF of some of the sequences we construct.
Example 1: s′(t) is described by C comprising F and the Cn which are, in
turn, the union of various Di of order d. Let 2N = rp = 4p, d = 2, and C0 = D0,
C1 = D0, C2 = D1, C3 = D1. Let G = {1, 2}. Then, for p = 13 we can choose
α = 2 to give D0 = {1, 4, 3, 12, 9, 10} and D1 = {2, 8, 6, 11, 5, 7}. Thus, using the
CRT, mod 52, we construct the sets, F = {13, 26}, and,

(0, C0) = {40{1, 4, 3, 12, 9, 10}} (1, C1) = {13 + 40{1, 4, 3, 12, 9, 10}}
(2, C2) = {26 + 40{2, 8, 6, 11, 5, 7}} (3, C3) = {39 + 40{2, 8, 6, 11, 5, 7}}

Then C = (0, C0) ∪ (1, C1) ∪ (2, C2) ∪ (3, C3) ∪ F =
{1, 2, 4, 6, 7, 9, 11, 12, 13, 15, 16, 17, 18, 19, 25, 26, 29, 31, 34, 36, 40, 46, 47, 48, 49, 50}.

Therefore, s′(t) = 0110101101011101111100000110010100101000100000111110 ,
and

Ps′ (ω) = 52, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0,

− 52, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0,−4, 0, 4, 0

Finally, the first half of s′(t) is s(t) = 01101011010111011111000001 , and,

Qs(ω) = 26, 0,−2, 0, 2, 0,−2, 0, 2, 0,−2, 0, 2, 0,−2, 0, 2, 0,−2, 0, 2, 0,−2, 0, 2, 0

Example 1 highlights the following restriction.

Lemma 1. For s′(t) to satisfy s′(t + N) = s′(t) + 1 (mod 2), 0 ≤ t < N , we
require that, if Cn =

⋃

i∈Tn
Di Tn ⊆ Zd, then Cn+ r

2
=

⋃

i6∈Tn
Di. Moreover, if

j ∈ G (6∈ G), then j + r
2 (mod r) 6∈ G, (∈ G).

From Lemma 1 it is sufficient to describe s(t) by defining Cn for 0 ≤ n < r
2 , and

by defining G′ ⊂ Z r

2
, where G′ = {g | g ∈ G, g < r

2}.
A Compact Description for s(t): s(t) is compactly described by H =
(G′, {

⋃

i∈T0
Di}, {

⋃

i∈T1
Di}, . . . , {

⋃

i∈T r

2
−1

Di}).

So for Example 1 we define s(t) by H = ({1}, {D0}, {D0}). Example 1 is
taken from Theorem 1 of Section 3 and is a construction for length N = 2p
sequences, s(t), with low NACF.



3 Sequences with Low Negaperiodic Autocorrelation

3.1 Symmetries

Two length K sequences, u(t) and v(t) are called ’PACF-equivalent’ (’NACF-
equivalent’) if they have the same distribution of PACF (NACF) magnitudes,
and there exist well-defined operations that take u(t) to and from v(t). Such
operations are called PACF-equivalent (NACF-equivalent) operations. Before
presenting the constructions we first mention some PACF-equivalent operations
on s′(t). These translate into NACF-equivalent operations on s(t).

PACF-equivalent operation on s′(t) NACF-equivalent operation on s(t)

Cyclic Shift of s′(t) Negacyclic Shift of s(t)
Reversal of s′(t) Reversal of s(t)
Negation of s′(t) Negation of s(t)

The following theorems and conjectures only present constructions for NACF-
inequivalent sequences, s(t), and proofs of Theorems 1 and 2 are given at the
end of this section.

Theorem 1. Let p = 4f + 1 be prime and d = 2. The length N = 2p sequence
s(t) has conjectured optimal three-valued out-of-phase negaperiodic autocorrela-
tion, {−2, 0, 2}, if H = ({1}, {D0}, {D0}).

Theorem 2. Let p = 4f + 3 be prime and d = 2. The length N = 2p sequence
s(t) has conjectured optimal three-valued out-of-phase negaperiodic autocorrela-
tion, {−2, 0, 2}, if H = ({0, 1}, {D0}, {D0}) or H = ({−}, {D0}, {D0}).

In the following three Conjectures let γ = {a, b}{c, d}{e, f}{g, h} be short for
{Da ∪ Db}, {Dc ∪ Dd}, {De ∪ Df}, {Dg ∪ Dh}.

Conjecture 1. Let p be a prime of the form (n2 + 1)/2, 8|(p− 1), and d = 4. Let
s(t) be described by H = (G′, γ). Then, for a given γ chosen from Conjecture
1 of Table 1, ∃α and α−1 such that the length N = 4p sequence s(t) has near-
optimal five-valued out-of-phase negaperiodic autocorrelation {−4,−2, 0, 2, 4} or
{−18,−4, 0, 4, 18}, respectively, independent of choice of G′.

Table 1. G′ and γ Values for Conjectures 1 and 2

Conjecture 1
G′ γ

{2} {0, 3}{1, 2}{0, 1}{0, 1}
{0, 1, 2} {1, 2}{0, 3}{0, 1}{0, 1}
{3} {2, 3}{0, 1}{1, 2}{1, 2}

{0, 1, 3} {0, 1}{2, 3}{1, 2}{1, 2}

Conjecture 2
G′ γ

{0} {0, 3}{1, 2}{0, 1}{0, 1}
{1} {1, 2}{0, 3}{0, 1}{0, 1}

{0, 2, 3} {2, 3}{0, 1}{1, 2}{1, 2}
{1, 2, 3} {0, 1}{2, 3}{1, 2}{1, 2}



Conjecture 2. Let p be a prime of the form (n2 + 1)/2, 8 6 |(p − 1), and d = 4.
Let s(t) be described by H = (G′, γ). Then, for a given γ chosen from conjecture
2 of Table 1, ∃α and α−1 such that the length N = 4p sequence s(t) has near-
optimal five-valued out-of-phase negaperiodic autocorrelation {−4,−2, 0, 2, 4} or
{−22,−4, 0, 4, 22}, respectively, independent of choice of G′.

Conjecture 3. Let p be a prime of the form n2 + 4, and d = 4. Let s(t) be
described by H = (G′, γ). Then, for a given γ chosen from the left-hand (right-
hand) side of Table 2, ∃α and α−1 such that the length N = 4p sequence s(t) of H
has near-optimal five and seven-valued out-of-phase negaperiodic autocorrelation
{−4,−2, 0, 2, 4} or {−12,−4,−2, 0, 2, 4, 12}, respectively, for the single choice of
G′ from the left-hand (right-hand) side of Table 2.

Table 2. G′ and γ Values for Conjecture 3

G′ γ G′ γ

{0} {1, 3}{0, 2}{0, 1}{0, 1} {0, 3} {0, 1}{0, 2}{0, 2}{0, 1}
{0, 2}{1, 3}{0, 1}{0, 1} {0, 1}{1, 3}{1, 3}{0, 1}
{1, 3}{0, 2}{1, 2}{1, 2} {1, 2}{0, 2}{0, 2}{1, 2}
{0, 2}{1, 3}{1, 2}{1, 2} {1, 2}{1, 3}{1, 3}{1, 2}

Example 2: A representative sequence of Conjecture 3 is
H = ({0, 3}, {D0, D1}, {D0, D2}, {D0, D2}, {D0, D1}). Then
C = {(0, 0)∪ (3, 0)∪ (5, 0)∪ (6, 0)∪ (0, C0)∪ (1, C1)∪ (2, C2)∪ (3, C3)∪ (4, C4)∪
(5, C5) ∪ (6, C6) ∪ (7, C7)}, where

C0 = {D0 ∪ D1}, C1 = {D0 ∪ D2}, C2 = {D0 ∪ D2}, C3 = {D0 ∪ D1}
C4 = {D2 ∪ D3}, C5 = {D1 ∪ D3}, C6 = {D1 ∪ D3}, C7 = {D2 ∪ D3}

Let p = 29 and d = 4. Using α = 2 as a primitive generator, mod 29, D0 =
{1, 16, 24, 7, 25, 23, 20}, D1 = {2, 3, 19, 14, 21, 17, 11}, D2 = {4, 6, 9, 28, 13, 5, 22},
D3 = {8, 12, 18, 27, 26, 10, 15}. Using the CRT,

(0, C0) = 88{1, 16, 24, 7, 25, 23, 20, 2, 3, 19, 14, 21, 17, 11}(mod 232)
(1, C1) = 145 + 88{1, 16, 24, 7, 25, 23, 20, 4, 6, 9, 28, 13, 5, 22}(mod 232)
. . . etc

Similarly, F = {0, 203, 29, 174}
Therefore,
s(t) = 1101100001011011100101001100110011100101101110111100000101

0101010100111110111100011111001000100100001110100100001000

and the NACF of s(t) is,
116, 2, 0, 2,−4,−2, 0, 2, 4, 2, 0, 2,−4,−2, 0,−2, 4,−2, 0, 2,−4, 2, 0, 2, 4, 2, . . . etc



Proof. (of Theorem 1). We wish to compute dC(w1, w2) by evaluating (7) using (8)
and (9). For p = 4f + 1, w−1

2 ∈ Dh implies ±w2 ∈ D
h+1(mod 2)

, and we need this for

the last three terms of (7). The cyclotomic numbers of order d = 2 for p = 4f + 1 are
[0, 0] = p−5

4
, [0, 1] = [1, 0] = [1, 1] = p−1

4
. We have C0 = C1 = D0, C2 = C3 = D1,

G = {(1, 0), (2, 0)}. Therefore,

dC(0, 0) = |C| = 2(p − 1) + 2 = 2p

dC(1, 0) = |C0 ∩ C3| + |C1 ∩ C0| + |C2 ∩ C1| + |C3 ∩ C2| + |G ∩ (G + (1, 0))|
= |D0| + |D1| + 1 = p

dC(2, 0) = 2(|C0 ∩ C2| + |C1 ∩ C3|) + |G ∩ (G + (2, 0))| = 0 + 0 = 0
dC(3, 0) = dC(1, 0) = p (using dC(−w1,−w2) = dC(w1, w2))

dC(0, w2) =
∑r−1

n=0
|Cn ∩ (Cn + w2)| +

∑r−1

k=0
|G ∩ (k, Ck + w2)|

+
∑r−1

k=0
|(k, Ck) ∩ (G + (0, w2))|

= [0, 0] + [0, 0] + [1, 1] + [1, 1]
+|{(1, 0), (2, 0)} ∩ {(1, C1 + w2) ∪ (2, C2 + w2)}|
+|{(1, C1) ∪ (2, C2)} ∩ {(1, w2), (2, w2)}| = p − 3 + 1 + 1 = p − 1,

for w−1
2 ∈ D0, or w−1

2 ∈ D1

dC(1, w2) =
∑r−1

n=0
|Cn ∩ (Cn−1 + w2)| +

∑r−1

k=0
|G ∩ (k + 1, Ck + w2)|

+
∑r−1

k=0
|(k, Ck) ∩ (G + (1, w2))|

= [0, 1] + [0, 0] + [1, 0] + [1, 1]
+|{(1, 0), (2, 0)} ∩ {(1, C0 + w2) ∪ (2, C1 + w2)}|
+|{(2, C2) ∪ (3, C3)} ∩ {(2, w2), (3, w2)}| = p − 2 + 2 = p,

for w−1
2 ∈ D0, or w−1

2 ∈ D1

similarly dC(2, w2) = p − 1 + 1 + 1 = p + 1, dC(3, w2) = p − 2 + 2 = p

for w−1
2 ∈ D0, or w−1

2 ∈ D1

Substituting dC(w1, w2) back into (6) gives the PACF distribution {0, 4,−4, N} for
s′(t), implying an NACF distribution {0, 2,−2} for s(t). ut

Proof. (of Theorem 2) The proof is identical to that of Theorem 1, except that, for p =
4f +3, w−1

2 ∈ Dh implies w2 ∈ D
h+1(mod 2)

, and −w2 ∈ Dh. Moreover, the cyclotomic

numbers of order d = 2 for p = 4f +3 are [0, 1] = p+1
4

, [0, 0] = [1, 0] = [1, 1] = p−3
4

. ut

Conjectures 1 - 3 will hopefully be proved in a similar way to the above, but now

cyclotomic numbers of order 4 are required.

4 Asymptotic Merit Factors

By computation, using (5), the constructions of Theorems 1 and 2 give sequences,
s(t), with Merit Factor (MF) Ms → 6.0 as N → ∞. Figs 1 and 2 plot MF for
increasing prime values, p, for the constructions of Theorems 1 and 2. Very
good MFs occur for no negacyclic shift, but Fig 3 presents the best MF over all
negacyclic shifts. The highest MF sometimes occurs for a non-zero negacyclic
shift. The asymptote of Ms = 6.0 is the best known for an infinite construction
class of binary sequences [7, 8], where cyclically-shifted Legendre and Modified-
Jacobi sequences also attain this maximum. 4. Unlike Legendre and Modified-
Jacobi sequences, no final shift of the constructed sequences is required to obtain

4 The constructions of [1] appear to asymptote to Ms = 1.5 or Ms = 3.0
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Fig. 1. NegaPeriodic Construction, Theorem 1, p = 4f + 1
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Fig. 2. NegaPeriodic Construction, Theorem 2, p = 4f + 3

the asymptote of 6.0. Lemma 3 of the next section shows that the constructions
of Theorems 1 and 2 are closely related to Legendre sequences.

5 Mappings Between Periodic and Negaperiodic

Autocorrelation

Although the sequence constructions of this paper are new, we also highlight
further symmetries that trivially relate PACF and/or NACF coefficient distri-
butions of binary sequences s(t) and e(t), where s and e are not necessarily the
same length.

Lemma 2. Let e(t) = s(t)+t (mod 2), where s(t) and e(t) are binary sequences
of length K. Then,

Qe(ω) = (−1)ωPs(ω)
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Fig. 3. NegaPeriodic Constructions, p = 4f + 1, Theorem 1 (lh), p = 4f + 3 Theorem
2 (rh), Best Negacyclic Shift

Proof. Direct inspection, or by examination of the 2K-point Discrete Fourier
Transform (DFT) of s(t) and e(t). ut

Lemma 3. Let e(t) = s(t (mod K)), t = 0, 3 (mod 4), e(t) = s(t (mod K)) +
1 (mod 2), t = 1, 2 (mod 4), where s(t) and e(t) are binary sequences of length
K and 2K, respectively, K odd, and 0 ≤ t < 2K. Then,

Qe(ω) = 0 ω odd
Qe(ω) = (−1)

ω

2 2Ps(ω (mod K)) ω even, 0 ≤ ω < 2K

Proof. Direct inspection or by examination of K and 2K-point DFTs of s and
e, respectively. ut

Example 3: Consider the negated Legendre sequence of length K = 13, s(t) =
1101100001101. This sequence has PACF
Ps(ω) = 13, 1,−3, 1, 1,−3,−3,−3,−3, 1, 1,−3, 1 . e(t) is of length 2K = 26 and is
given by,

e(t) = 11011000011011101100001101 + 01100110011001100110011001 (mod 2)
= 10111110000010001010010100

and e(t) has NACF,

Qe(ω) = 26, 0,−6, 0,−2, 0,−6, 0, 6, 0, 2, 0,−2, 0, 2, 0,−2, 0,−6, 0, 6, 0, 2, 0, 6, 0

e(t) is identical to s′(t) of Example 1 apart from the first bit. In general, an
equivalent construction to that of Theorems 1 and 2 for K = p is to make s(t)
a negated Legendre sequence, apply Lemma 3, then flip bit 0 or bit K.

Lemma 4. Let e(t) = s(t (mod K)), 4 6 |t, e(t) = s(t (mod K)) + 1 (mod 2),
4|t, where s(t) and e(t) are binary sequences of length K and 4K, respectively,
K odd. Then,

Qe(ω) = 0 4 6 |ω
Qe(ω) = 4Ps(ω (mod K)) 4|ω, 0 ≤ ω < 4K



Proof. Direct inspection or by examination of K and 4K-point DFTs of s and
e, respectively. ut

6 Conclusion

This paper has presented new cyclotomic constructions for infinite families of
length N = 2p and N = 4p binary sequences with very low negaperiodic autocor-
relation. The technique builds length 2N sequences with low periodic autocor-
relation with the second half the negation of the first half. The desired length N
sequence is then simply the first half. Two of the constructions exhibit a Merit
Factor approaching 6.0 as N approaches infinity. This is the highest asymp-
tote currently known. A final section highlights further mappings which relate
periodic autocorrelation of a binary sequence to the periodic or negaperiodic
autocorrelation of another binary sequence.
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