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Abstract

Techniques from coding theory are able to improve the efficiency of neuro-inspired and

neural associative memories by forcing some construction and constraints on the net-

work. In this article the approach is to embed coding techniques into neural associative

memory in order to increase their performance in the presence of partial erasures. The

motivation comes from the recent works by Gripon, Berrou and co-authors, which re-

visited Willshaw networks and presented a neural network with interacting neurons that

partitioned into clusters. The model introduced stores patterns as cliques of small size

which can be retrieved in spite of partial error. We focus on improving the success

of retrieval by applying two techniques; first by doing a local coding in each cluster

and then by applying a pre-coding step. We use a slightly different decoding scheme,

which is appropriate for partial erasures and converges faster. Although the idea of lo-

cal coding and pre-coding are not new, the way we apply them is different. Simulations

show an increase in the pattern retrieval capacity for both techniques. Moreover we use

self-dual additive codes over field GF (4) which have very interesting properties and a

simple-graph representation.



1 Introduction

Neural associative memory is capable of memorising (learning) a set of patterns and re-

trieving the full matching pattern from a given noisy fragment of it. This functionality is

similar to communication over a noisy channel. Channel coding concerns reliable and

efficient retrieval of a set of patterns (codewords in coding theory terminology) from a

noisy version that the receiver receives. Generally speaking for digital error correcting

codes, a subset of all possible pattern configurations is chosen for transmission. Coding

techniques concern choosing this subset so that the receiver, which knows the allowed

patterns (codewords), can figure out whether the received pattern is an allowed one and

in the case of non-allowed patterns finds the closest allowed pattern (i.e. decodes the

received word to the most likely codeword sent). Therefore codes are carefully con-

structed to have high efficiency in the sense that the noise distance between pairs of

codewords is as large as possible given the size of the codeset. On the other hand neural

associative memories are generally able to memorise any set of randomly chosen pat-

terns and as a consequence they are not optimised for noise distance. Researchers who

have applied coding theory to neural associative memories include (Hopfield, 2008;

Berrou and Gripon, 2010; Gripon, 2011; Salavati, 2014; Berrou et al., 2014). One ap-

proach in this context is to focus on learning patterns that have some sort of inherent

redundancy - in another approach the network is designed to be able to memorise any

random set of patterns. For instance Berrou and Gripon (Berrou and Gripon, 2010)

achieved considerable improvements in the pattern retrieval capacity of Hopfield net-

works, by utilising Walsh-Hadamard sequences. Salavati et al proposed a neural as-

sociation mechanism that employs binary neurons to memorise patterns belonging to
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another family of low correlation sequences, called Gold sequences (Salavati et al.,

2011). In (Boguslawski et al., 2014) some strategies to store non-uniform patterns,

such as by adding random bits and using Huffman coding- which is a data compression

technique- are discussed.

Dividing a learnt pattern into sub-patterns can be shown to be useful in several ways,

see for instance (Berrou and Gripon, 2010; Hopfield, 2008; Gripon and Berrou, 2011;

Salavati and Karbasi, 2012), and for more details see (Gripon, 2011) and (Salavati,

2014). This approach also limits the allowed pattern configurations.

We follow the neural structure introduced in (Gripon and Berrou, 2011). These neu-

ral structures (called the GB model hereafter), which are based on Willshaw networks

(Willshaw et al., 1969), are formed by dividing a neural network with n neurons into c

clusters of size n/c each. The patterns are then chosen so that only one neuron in each

cluster is active for a given pattern. Therefore a pattern can be considered as a random

vector of length c log(n/c), where the log(n/c) part specifies the index of the active

neuron in a given cluster. To memorise a pattern one then forms edges between active

neurons and makes a clique (complete sub-graphs) of order c. The decoding process is

then to retrieve the erased nodes of the clique using edges stored during learning.

It is worth mentioning that in (Hopfield, 2008) there is a model of an associative mem-

ory developed within a biological setting. In this model neurons (n) are partitioned into

a number of categories (say c) with n/c possible values. A pattern then gets a single

value in each category -the cluster counterpart to the GB model - and like the GB model

learning a new pattern is achieved by establishing edges between active neurons. Al-
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though the topology and learning part are similar, the retrieval part is different. There

are other major differences that may be interesting to study because the Hopfield model

focuses more on the biological aspects whereas the GB model arises from coding tech-

niques. For instance, for about the same number of neurons the number of categories in

the simulations is much larger than the number of clusters and consequently the number

of neurons in each Hopfield category is much less than in GB clusters - as an example

compare 50 categories, each with 20 neurons, vs. 4 clusters, each with 256 neurons.

In the Hopfield model the pattern set is generated by randomly choosing a neuron in

each category, according to a power law distribution (p(n) ∼ 1
n1/2 ), whilst in the GB

model active neurons in clusters are independent and identically distributed (i.i.d.). As

mentioned previously, non-uniform distributions are also considered for the GB model

(Boguslawski et al., 2014). Moreover, the Hamming distance between two patterns in

the Hopfield model is defined as the number of neurons in which they differ, whilst

in the GB model the Hamming distance is the number of clique edges in which two

patterns differ, which means that distance is far better for the latter case.

The GB based models proposed in this article focus on improving storage perfor-

mance and making memory more resistant in the presence of partial erasure. Both

local coding and pre-coding are techniques used to enhance pattern retrieval capacity

and have been used in neural associative memory. For instance clustering the neurons

and applying the rule that just one neuron in each cluster is allowed to be active is it-

self a local coding (Hopfield, 2008; Gripon and Berrou, 2011). Another example is a

two-level neural associative model in (Salavati and Karbasi, 2012) in which the pattern

neurons are divided into clusters and each cluster is a bipartite graph - inspired from
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graph-based codes like LDPC (low density parity check) codes - where sub-patterns

should form a subspace - a code in coding terminology. The second level may enforce

constraints in the same sub-pattern space - just local coding - or in a totally different

space - a combination of local coding and pre-coding.

The local coding construction proposed in this paper does not affect the number of

neurons but adds redundancy to the patterns and then learns codewords assigned to each

sub-pattern in the neural network. Part of this work was presented at CWIT (Mofrad

et al., 2015) and here we improve on the decoding algorithm introduced there to make

it suitable for partial erasures, and this reduces the size of the neurons involved in the

retrieval process, and thus they converge faster especially in the context of iterative

decoding.

The pre-coding technique is a more straightforward way to improve the pattern re-

trieval capacity and there is an argument that working with structured patterns is biolog-

ically meaningful and that sensory inputs to the brain are pre-processed before actually

being stored, (Salavati et al., 2011; Salavati, 2014; Berrou et al., 2014).

The pre-coding technique that we consider simply encodes the patterns and then

splits the corresponding codewords and memorises each part in a cluster. We perform

experiments in the presence of partial erasure and compare local coding and pre-coding

models - these two schemes can then be combined if one needs more data protection.

For simulation we select two error correcting codes; the algebraic Reed-Solomon

(RS) code, which is a maximum distance separable (MDS) linear code (MDS means

that, for a fixed codeword length n, and pattern length k, then MDS codes have the

greatest error correcting and detecting capabilities). RS codes are widely used for data
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storage and are suitable for erasure errors (Reed and Solomon, 1960).

The second class of error correcting code that we select is the self-dual additive

codes over GF (4) see (Danielsen, 2008) and references therein. These codes can be

represented as simple graphs and have many interesting features. As far as we know

the graph-based codes that have been used in neuro-inspired memories in the literature

have bipartite representation - see (Salavati, 2014) and (Berrou and Gripon, 2010) for

instance. Although in this article we do not consider the graphical representation of

these codes and just consider them as a second error correcting code because these codes

have more flexible parameters suited to the design of the network, in future work we

shall apply message-passing algorithms to the simple graphs representing theseGF (4)-

additive codes to improve decoding performance.

The rest of the paper is as follows: Section 2 reviews the basics and the clique-

based networks introduced by Gripon and Berrou -notations from (Gripon and Berrou,

2011) mostly. Section 3 is devoted to the local coding scheme and pre-coding model.

In Section 4 our decoding algorithm is explained by an example. Section 5 contains

the simulation results and a comparison of neural networks both with and without local

coding. The results for local coding and pre-coding are also compared and discussed.

Section 6 concludes, and the detailed decoding algorithm is provided in the appendix.

2 GB model of neural networks

Gripon and Berrou introduced a model where, by splitting a network of n neurons

into c clusters of size l = n/c, any alphabet (say A) with cardinality |A| = l can be
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depicted. The model allows for different size alphabets and clusters but, for simplicity,

is considered fixed with l = 2κ, so as to ease working with binary patterns. Each binary

pattern of length κ is then assigned to a unique neuron or equivalently to a character of

alphabet A:

f : {0, 1}κ → [|1; l|].

where [|1; l|] is the subset of integers between 1 and l.

The learning process is simply to store patterns of length k = cκ as cliques of size c

where a unique neuron is selected from each individual cluster. More formally consider

learning pattern m:

C : m = m1m2 · · ·mc → (f(m1), f(m2), · · · , f(mc))

where each mi ∈ {0, 1}κ, 1 ≤ i ≤ c is a binary pattern of size κ. The active neurons,

f(mi), connect together by edges to make a clique, as in Fig. 1. The value of each

neuron is considered binary, i.e. if a node is within a clique for a given pattern, its value

is 1, and 0 otherwise. If W (m) denotes the set of edges of the clique for pattern m, then

the edges after learning a set of patterns, M , will be:

W =
⋃
m∈M

W (m)

Retrieving or recalling part of a learned pattern is done in two steps and can be

iterative. The algorithm finds the most probable active neuron in each cluster.

See (ABOUDIB et al., 2014; JIANG, 2014) for a detailed study of the retrieval

algorithm. For instance, the different approaches of Global Winners-Take-All (GWsTA)

and Global Losers-Kicked-Out (GLsKO) both improve the retrieval performance. Our

decoding is designed for partial erasures and reduces computations.
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Figure 1: Learning process in a network with 64 neurons which split into four clusters of

16 neurons each. Red edges represent the binary pattern 0000, 1011, 0101, 0010 which

is learned as a clique.

3 Local coding technique and a pre-coding clique-based

model

As mentioned in the introduction, the GB model inherently has a local coding in which

the allowed sub-patterns are those with exactly a 1 in their binary representation (a kind

of constant weight code in each cluster). However, our idea for local coding is to map a

codeword instead of a sub-pattern to each neuron. English language is a good example

to explain our local coding technique. Consider the set of learning patterns consisting

of meaningful sentences with a fixed length (i.e. each with the same number of words,

for instance consider as a sample this quote from Nelson Mandela as a pattern to be

memorised; “A winner is a dreamer who never gives up”). So the network we choose

has 9 clusters and there is a one-to-one map between all possible words (sub-patterns)
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and the neurons in each cluster. A partial erasure then is like “A w-n–r i- - dr—– w-o

n–er giv-s up” and the local retrieval deals with spelling of the words and meaningful

words - well separated codewords in the model - and in the higher level the grammar

or the meaning of the sentence is checked - clique connections in the model. The

local coding technique in this example is implemented in terms of those words that are

allowed in the sentence, i.e. codewords in the model are allowed words in this example.

Local codes can be chosen from different alphabets, rates and minimum Hamming

distances -and it is possible to consider different codes with different codebook sizes

for each cluster. The Hamming distance between two words of the same length - or

codewords - is the number of positions with different symbols. The minimum distance

of a code 1, is the lowest Hamming distance between any two codewords in the code.

If we choose a code with high minimum distance and a partial erasure happens, then

the minimum distance of a local code may eliminate that erasure and then the ordinary

decoding of GB neural networks can be done more efficiently.

More formally, consider that the goal is to learn patterns of type m = m1m2 · · ·mc

where each mi, 1 ≤ i ≤ c is a non-binary pattern of size κ. Components of mi can be

binary as well, but we choose them from the finite field GF (2p) and use an algebraic

Reed-Solomon (RS) code, which is a maximum distance separable (MDS) linear code

and has the best possible minimum distance. Therefore a neural network of c clusters,

each with l = 2pκ neurons, can represent patterns like m. Recall that if no local coding

is done then each sub-pattern mi maps to neuron f(mi) in the ith cluster:

m = m1m2 · · ·mc → (f(m1), f(m2), · · · , f(mc))

1Minimum distance is a very important parameter in designing block codes
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where f : GF (2p)κ → [|1; l|].

Linear codes, like RS codes, have a generator matrix whose rows form a basis for them.

So codewords of a code C with generator matrix G have codewords like g(mi) = miG

for each sub-pattern mi. Then m maps to mg = g(m1)g(m2) · · · g(mc) and f : C →

[|1; l|] maps a codeword to a neuron and in general:

m = m1m2 · · ·mc → (f(g(m1)), f(g(m2)), · · · , f(g(mc)))

As a toy example let l = 16 and the local code be a Hamming code (Hamming,

1950) (7, 4) i.e. a binary sub-pattern mi = (m1
im

2
im

3
im

4
i ) is coded into g(mi) =

(p1p2m
1
i p3m

2
im

3
im

4
i ) where p1 = m1

i + m2
i + m4

i , p2 = m1
i + m3

i + m4
i and p3 =

m2
i +m3

i +m4
i where all additions are modulo 2. Then G is:

G =



1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 1 0 1 0 0 1


. (1)

and it can be seen easily that g(mi) = miG. See Fig. 2 for the local coding scheme

using Hamming code (7, 4).

3.1 Pre-Coding clique-based neural networks

We recruit another example from language to explain the pre-coding technique to make

comparison between local coding and pre-coding easier. Consider the patterns after pre-

coding be a set of meaningful words -codewords in the model- with the same number of

syllables -the number of clusters in the network. A syllable, which may or may not have
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Figure 2: Each neuron in the cluster is assigned to a sub-pattern before local coding

(left) and to a codeword of Hamming code (7, 4) after local coding (right)

a meaning, is made up of phonemes and each neuron represents a syllable. Because a

phoneme is the smallest unit of sound that distinguishes one word from another, we

can consider them as the alphabet used in the pre-coding. For instance to memorize

“astronomical”, /æs.tr@.nA.mI.k@l/, we need 5 clusters and in each cluster we have a

one-to-one map between all syllables and neurons2. On recalling, a clue like /æ-.t-

@.--.m-.k@l/ may be given. Although there is not a meaning (a particular minimum

distance), syllables are not a random combination of phonemes and some degree of

regularity holds which facilitates erasure correcting in clusters. The edges established

to make cliques in this example can represent the spelling or meaning for instance. In

this example the role of cliques is more important and the distance between cliques is

greater.

2The length of syllables is not important in this example, but as the length is fixed in the model,

one can consider a fixed 3 phoneme for all neurons and add an empty sign to those syllables with less

phonemes
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We compare local coding with pre-coding in Section 5 by results from simulations.

4 Recalling from a partially erased pattern

We receive some partially erased pattern from which erased symbols must be retrieved.

Equivalently in clique-based models we must find a clique that contains the provided

symbols as active neurons -i.e. neurons whose value is 1. As the given part of a learnt

pattern is assumed correct, then recalling is simply a matter of finding a match from

memorized patterns. To avoid unnecessary computation, we introduce a decoding al-

gorithm suitable for retrieving partial erasures. We explain the two level retrieval algo-

rithm by examples from English language provided in Section 3 and a formal version

of the algorithm can be found in the Appendix.

Suppose from the partially erased sentence “A w-n— i- - dr—– w-o n–er giv-s up”,

the memory tries to recall the complete sentence. The first step is the local search

within the clusters for all possible words that match. If there is a unique option, like

‘A’ in the first cluster and ‘gives up’ in the last cluster -we suppose there are no other

words that match ‘giv-s up’- the corresponding neuron is active and all edges contained

in the learned edge set W with one end point at these active neurons are established.

Suppose for the second cluster there are candidate words (neurons): {‘window’, ‘win-

ner’, ‘winter’, ‘winrar’, ‘wonder’}. Similarly for the third cluster: {‘id’,‘if’, ‘in’, ‘is’,

‘it’ }; fourth cluster: {‘A’,‘I’}; fifth cluster: {‘dragoon’, ‘dreamed’, ‘dreamer’, ‘driving,

‘drunken}; sixth cluster: {‘who’, ‘woo’}; and the seventh cluster: {‘nagger’, ‘nailer’,

‘never’, ‘number’}. A better minimum distance in local coding reduces the size of these
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candidate sets. The second level then checks the degree of each word. Starting from

the second cluster, suppose the degree of ‘wonder’ is zero, and the degree of ‘window’

and ‘winrar’ is 1 and the degree of ‘winner’ and ‘winter’ is 2. So from the sentence

(cliques) information, we know that just two valid words remain at the second posi-

tion (cluster). The word candidates are: {‘winner’,‘winter’}. By the same argument

suppose new sets update as follows; third cluster: {‘if’, ‘is’ }; fourth cluster: {‘A’};

fifth cluster: { ‘dreamer’, ‘drunken’}; sixth cluster: {‘who’}; and the seventh cluster:

{‘never’}. So the active neurons in the fourth, sixth and seventh cluster are found and

the algorithm repeats by establishing edges from these three neurons and checking the

degree of each to remove the ones whose degree is less than 5. This recall may be suc-

cessfully finished after one or two more iterations. But consider the case where we end

up with the sentence “A winner is a dr—– who never gives up” and both remaining can-

didates, i.e. ‘dreamer’ and ‘drunken’, have degree 7. In this case recalling fails. These

kinds of failure would happen because there is no rule that forbids too similar sentences

being members of the learning set. More formally, sub-patterns are chosen randomly

and although the clique form plays the role of grammar or meaning for instance, sen-

tences that are too close may still cause problems. In comparison, such a problem will

not happen with the pre-coding technique because the learning set patterns have a high

pairwise minimum distance.

Overall, a good local coding limits the possible matching set3, on the other hand a pre-

coding forces patterns to be well separated. The best strategy is to use both techniques

3For instance ‘who’ and ‘woo’ have Hamming distance 1 and in a good coding scheme both can not

be codewords simultaneously
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together to have a more reliable memory.

For the last example let the pattern set be all sentences of length c, with at least dp dif-

ferent words between any pair of sentences, and at least dl different letters between any

two words in the same position. The condition is strict but the greater dp and dp can be

made, the more reliable the retrieval.

5 Simulation Results

To see the performance of the proposed associative memory with local coding we first

consider a network of 4096 neurons that are clustered in 8 sets, each with 512 neurons.

For local coding the [7, 3, 5]8 RS code is used, i.e. with this code any sub-pattern of

length 3 where its components are taken from GF (8), maps to a codeword of length 7

so that the minimum Hamming distance of the new set of codewords is 5. By fixing the

learning set size, we see the results for different partial erasure probabilities in Fig. 3,

and the retrieval performance when erasure probability is fixed and learning set size is

growing is shown in Fig. 4.4

See Fig. 5 and Fig. 6 for the same comparison in a network of 512 neurons that

are clustered in 8 sets each with 64 neurons when the local coding is the (6, 26, 4)

Hexacode, (see Conway and Sloane, 1988, for instance). The Hexacode is a self-dual

GF (4) additive code and so can be represented by a simple graph. Its generator matrix

4As can be seen, the performance obtained with the proposed local-coding is dramatically better than

the uncoded performance. The main cost of this performance is an increased word length (3 symbols in

GF (8) to 7 symbols in the same field) for each node.
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Figure 3: Comparison of performance of an uncoded associative memory of 8 clusters,

each with 512 neurons (blue curve), with the coded version (red curve) where local

coding uses the [7, 3, 5]8 RS code for |M | = 50000.

corresponding to graph (b) is 5:

G =



ω 1 1 1 0 0

1 ω 1 0 1 0

1 1 ω 0 0 1

1 0 0 ω 1 1

0 1 0 1 ω 1

0 0 1 1 1 ω

 Two graph representations of the hexacode

(Danielsen, 2008)

5The generator matrix is obtained from the adjacency matrix of the graph, (b), by setting all the

diagonal entries to ω.
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Figure 4: Comparison of performance for an uncoded associative memory of 8 clusters,

each with 512 neurons (blue curve), with the coded version where local coding uses

the [7, 3, 5]8 RS code (red curve). The erasure rate for each symbol is 0.7. The largest

dataset here is 100000.

As opposed to the RS code, the number of neurons using local coding with the

Hexacode does not change, i.e. the length of each sub-pattern remains fixed but the

field changes from GF (2) to GF (4).6

As mentioned in the Introduction, we propose to use self-dualGF (4) additive codes

as their parameters are more flexible. Moreover, we also intend to use such codes in our

future works because of their graphical representations. In particular it is known that

nested-clique graphs represent many of the strongest GF (4) additive codes in terms of

pairwise distance and optimum edge sparsity and are therefore good candidates from

which to build nested-clique neural networks. The idea would be to embed a self-dual

6The hexacode is an additive code, i.e. a binary vector mi (sub-pattern for local coding) generates all

26 codewords by miG (i.e. mi is taken over GF (2) not GF (4)).
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Figure 5: Comparison of performance of an uncoded associative memory of 8 clusters,

each with 64 neurons (blue curve), with the coded version where local coding uses the

hexacode (6, 26, 4) for |M | = 4000.

code inside each neuron and benefit from this graph code during the retrieval process.

For the pre-coding technique we choose a (12, 212, 6) self-dualGF (4) additive code

(the dodecacode) (Calderbank et al., 1998). This code maps any binary pattern of size

12 to a codeword of size 12 inGF (4) with minimum distance 6. We have c = 4 clusters

each with l = 64 neurons and the length of each sub-pattern is 3. This is compared to

an uncoded version as well as to a local coding version. For the local coding we use the

hexacode again but the number of clusters is set to be 4.

Fig 7 and 8 confirm the expectation that pre-coding improves the capability of mem-

orising a larger set of patterns and to recall successfully in the presence of stronger

partial erasure. From Fig. 7 we see that when the erasure rate is smaller than 0.4 the
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Figure 6: Comparison of performance for an uncoded associative memory of 8 clusters,

each with 64 neurons (blue curve), with the coded version where local coding uses the

hexacode (6, 26, 4). The erasure rate for each symbol is 0.6.

pre-coding technique gives better results. But in the case of higher erasure probability,

local coding outperforms. This is justified by the following argument: after the first

check, whenever partial erasure is low, the number of clusters with an active neuron is

large. So the pre-coding technique is able to benefit more from its minimum distance

than that associated with the distance between cliques. On the other hand, when erasure

probability is higher, the ability of local retrieval is more important, which is what the

local coding model was designed for.

Then to compare storage capacity, we fix erasure at 0.4 -where both techniques showed

similar error rate in retrieval. Fig. 8 shows that when the learning set is smaller then

local coding technique performs better, whilst for larger learning sets the pre-coding

technique outperforms. Again, this result is as expected. For a fairly small learning set
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Figure 7: Comparison of performance of an uncoded associative memory of 4 clusters,

each with 64 neurons (blue curve), with the local coded version where local coding uses

the hexacode (6, 26, 4) (red curve) and is pre-coded with the (12, 212, 6) code (green

curve) for |M | = 3000.

the number of edges is smaller and the cliques are more likely to have a higher minimum

distance, so the role of local coding is more important. In contrast, when the number of

edges is increased by increasing the size of the learning set, the role of pre-coding and

minimum distance amongst the cliques become more important.

Note that in all simulations the learning part is done independently of whether local

coding is done or not. Indeed the symbols in the patterns are considered i.i.d. random

variables. If we do local coding then the set of edges is exactly the same, but pre-coding

changes the shape of cliques, so W is not the same any more.

As the data set is chosen randomly, we repeat the experiment 100 times and com-
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Figure 8: A comparison of the performance for an uncoded associative memory of 4

clusters, each with 64 neurons (blue curve), with the local coded version where local

coding uses the hexacode (6, 26, 4) (red curve) and pre-coded with the (12, 212, 6) code

(green curve). The erasure rate for each symbol is 0.4.

pute the average to have more reliable results (i.e. choose 100 random patterns from the

learning set as the input and partially erase it). Again, for any erasure probability, the

symbols to be erased are chosen randomly, so we partially erased each pattern by 100

different randomly chosen erasure vectors. We then tried retrieving the chosen pattern

and if the pattern is completely retrieved the algorithm is successful, otherwise it fails.

Finally, the ratio can be computed for each data set and an average taken over 100 dif-

ferent erasure vectors.
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6 Conclusion

Some applications of coding techniques in neuro-inspired associative memories have

been discussed, and we have shown that both the local coding and pre-coding mod-

els based on the GB model have excellent error performance in the presence of partial

erasures. The results are somewhat theoretical but, due to their structure and ability

to retrieve patterns from a partial clue, such memories have potential application to

content-addressable memories and to search engine algorithms. Our simulation results

suggest that the local coding model is more suited to the case where the erasure prob-

ability is high and/or the learning set is pretty small. In contrast, the pre-coding model

seems to be more suited to the situation where the erasure probability is not that high

and/or the size of the learning set is rather large. A new version of the decoding al-

gorithm is presented which reduces the computational complexity and is suitable for

partial erasures.

It is not necessary that the local coding be non-binary or use extension fields over

GF (2p). We chose RS codes because they are suitable for storage and erasure type

errors. We also considered self-dual GF (4) additive codes as we shall exploit their

graph representations in future work.

Appendix

The detailed version of the recalling algorithm is provided here. It assumes the neural

network has local coding but it can also be used for an uncoded version, similar to a
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pre-coding model as well. We assume that the same code C is used in all clusters.

Consider that a noisy version of a learned pattern

mg = (m11m12 · · ·m1t|m21m22 · · ·m2t| · · · |mc1mc2 · · ·mct)

is m̂g = (m̂11m̂12 · · · m̂1t|m̂21m̂22 · · · m̂2t | · · · |m̂c1m̂c2 · · · m̂ct) where symbol mir is

given: m̂ir = mir , or is erased: m̂ir = e, and t is the length of the codeword, so t > κ

if we have local coding and t = κ otherwise.

We also assign m̂i = mi iff all the mir are known and m̂i = e iff at least, for one r,

m̂ir = e.

To begin, we separate clusters into two sets Cu and Ce for unerrored and errored

components, respectively:

Cu = {i : m̂i = mi} and Ce = {i : m̂i = e}, 1 ≤ i ≤ c.

Each neuron is shown with nij, 1 ≤ i ≤ n, 1 ≤ j ≤ l, that is equivalent to a unique

value in {0, 1, 2, · · · , l − 1}. So nij is a node in the graphical representation of mi and

for a specific j in cluster i we assign nij = f(mi). Note that mi is a codeword here.

Also for i ∈ Ce we define and initialize sets T (i) = {nij|m̂ir = mir or m̂ir =

e; ∀j, r}. As we will see these sets play an important role in reducing computational

complexity.

Once we construct all T (i) sets a local check is done as follows:

For all i ∈ Ce; if T (i) = {nij} for some j then

• Let Cu = Cu ∪ {i} and Ce = Ce \ {i},

• Correct m̂i by putting m̂i = f−1(nij)
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Indeed as the nij correspond to codewords of a code, some erasures were corrected

by this local check.

Values of the neurons are defined as:

v(nij) =


1 if i ∈ Cu and nij = f(mi),

0 otherwise.
(2)

We establish all edges contained in the learned edge set W , so that at least one node

for each edge has value 1. More formally we initialise the edge set w = {(nij, ni′j′) ∈

W |v(nij) = 1 or v(ni′j′) = 1} where 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l.

Now we can start iterative retrieval, see Alg. 1. If the first part of the algorithm (until

line 32) retrieves the original pattern then it stops, but if there are several candidate

neurons in each cluster Ce then we search in W for edges with end nodes in the T (i)

that make a clique of size |Ce|. This happens when the partial erasure is high and

distributed so the active neuron in most clusters is unknown. Note that the definition of

w is changed for the second part of the recalling (line 34).
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Algorithm 1 Retrieval algorithm

Require: Initialize Ce, Cu, T (i) for i ∈ Ce, d(nij) = deg(nij) for all neurons in T (i),

v(nij), w, vmax = |Cu|, Flag = True, Counter = 0, Retrieval = Failed

1: while Flag = True do . In this loop the Alg. removes elements from the T (i)

sets and finds an active neuron in cluster i whenever |T (i)| = 1

2: if vmax = c then . vmax = c means all clusters have their unique active neuron,

Alg. stops by setting Flag = False

3: Retrieval = Succeed

4: Flag = False

5: return Retrieval

6: else if vmax = 0 then . vmax = 0 means no active neuron is found at the first

stage, go to line 33

7: Flag = False

8: else

9: for i ∈ Ce do . The edges cause some candidates to be removed from T (i)

10: for nij ∈ T (i) do

11: if d(nij) 6= vmax then

12: T (i)← T (i) \ {nij} . i.e. a new active neuron is found

13: end if

14: end for

15: if |T (i)| = 1 (i.e. T (i) = {nij} for one j) then

16: v(nij) = 1

17: m̂i = f−1(nij)
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18: w = w ∪ {(nij, ni′j′) ∈ W} . New edges establish from new

activated neurons, Cu and Cv will update

19: Cu = Cu ∪ {i}

20: Ce = Ce \ {i}

21: Counter = Counter + 1

22: end if

23: end for

24: end if

25: if Counter ≥ 1 then . i.e. a new active neuron is found in this iteration

26: Update d(nij) based on updated w

27: vmax = |Cu|

28: Counter = 0

29: else

30: Flag = False . i.e. exit while loop and go to line 33

31: end if

32: end while

33: if vmax < c then . Now all the remaining T (i) sets have

more than one neuron, so the alg. searches for a clique among neurons in T (i) sets

by establishing edges with at least one end within candidates

34: w = {(nij, ni′j′) ∈ W |nij ∈ T (i) or ni′j′ ∈ T (i′)}

35: where i, i′ ∈ Ce, 1 ≤ j, j′ ≤ l

36: Ni′→i = {nij|(nij, ni′j′) ∈ w, 1 ≤ j, j′ ≤ l}

37: where i 6= i′ and i, i′ ∈ Ce
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38: d(nij) =
∑

i′∈Ce\{i}

χNi′→i
(nij) . The characteristic function χNi′→i

is used to

show the number of connected clusters to nij by at least 1 candidate neuron. The

number of connections from a specific cluster does not matter.

39: Flag = True

40: while Flag=True do

41: if vmax = c then

42: Retrieval = Succeed

43: Flag = False

44: else

45: for i ∈ Ce do

46: for nij ∈ T (i) do

47: if d(nij) 6= |Ce| − 1 then . Those neurones which are not

connected to all clusters in Ce are removed from T (i)

48: T (i)← T (i) \ {nij}

49: end if

50: end for

51: if |T (i)| = 1 (i.e. T (i) = {nij}) then

. An active neuron nij is found

52: v(nij) = 1

53: m̂i = f−1(nij)

54: w = w \ {(nij′′ , ni′j′) ∈ w|1 ≤ i′ ≤ c and 1 ≤ j′, j′′ ≤ l}

. Updating w by removing edges from the newly activated neuron nij
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55: Cu = Cu ∪ {i}

56: Ce = Ce \ {i}

57: Update Ni→i′ by new Ce and w sets

58: Counter = Counter + 1

59: end if

60: end for

61: if Counter ≥ 1 then . At least one neuron is activated

62: Update d(nij) based on updated Ni→i′

63: vmax = |Cu|

64: Counter = 0

65: else

66: Flag = False . No new neuron is activated in the last iteration

67: end if

68: end if

69: end while

70: end if

return Retrieval
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