
MultiLeg.tex, 04.10.00, M.G.Parker

A Modified Jacobi Sequence Construction Using

Multi-Rate Legendre Sequences

Matthew.G.Parker 1

Inst. for Informatikk, University of Bergen,

5020 Bergen, Norway,

matthew@ii.uib.no

http://www.ii.uib.no/ matthew/MattWeb.html

Abstract

We propose a construction for length n = pq Modified Jacobi sequences

using multi-rate length p and length q Legendre sequences, thereby reducing

the LFSR complexity of Modified Jacobi sequence generation from O(pq) to

O(p + q).

1 Introduction

This paper investigates the generation of a binary Modified Jacobi sequence

by means of an additive combination of constituent binary Legendre se-

quences which are clocked at different rates. These multi-rate combinations

demonstrate that sequences of large linear complexity can be generated with-

out resorting to linear feedback shift registers (LFSRs) of large length. Re-

sults on the linear complexity of Legendre sequences [3, 5] show that we can

generate Legendre sequences of length p using length O(p) LFSRs. More-

over, [2, 7] showed that length pq Modified Jacobi sequences have linear

complexity ' pq or ' pq
2

. A direct LFSR generation of a Modified Jacobi

sequence would therefore require a length pq or pq
2

LFSR. Alternatively, in

this paper we show that an equivalent multi-rate construction can generate

the same sequences, but using a multi-rate parallel combination of Legen-

dre sequences of lengths p and q, thereby only requiring length O(p) + O(q)

LFSRs. For reasons of space we omit some proofs.

1This work was funded by NFR Project Number 119390/431
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2 A Conventional Modified Jacobi Sequence Con-

struction

We define a Modified Jacobi sequence {s(t)} of period pq for t = 0, 1, 2, . . . , pq−

1, where p < q are distinct odd primes,

s(t) =


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


















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

0 if t ≡ 0( mod pq)

0 if
(

t
p

)

·
(

t
q

)

= 1

1 if
(

t
p

)

·
(

t
q

)

= −1

0 if t 6≡ 0( mod p) and t ≡ 0( mod q)

1 if t ≡ 0( mod p) and t 6≡ 0( mod q)

(1)

where
(

t
p

)

is the Legendre symbol.

We also present here a symmetry of the Modified Jacobi sequence:

Lemma 1 For p, q prime, define a length pq sequence f(t) such that f(t) =

0 for t satisfying gcd(t, pq) = 1, and f(t) = 1 otherwise. Then, if s(t) is a

length pq Modified Jacobi sequence, then s(t)+ f(t) is also a length pq Mod-

ified Jacobi sequence, possessing the same periodic and aperiodic correlation

properties to within sign change.

3 A Multi-Rate Example

Before presenting the multi-rate construction, let us set the scene with a

small example. Let p = 3 and q = 5. The length three Legendre sequence is

101. The length five Legendre sequence is 10110. The length 15 ’product’

binary sequence obtained by summing, mod 2, five repetitions of the length

3 sequence with 3 repetitions of the length 5 sequence as follows,

101101101101101 +

101101011010110

---------------

000000110111011

5 is a Quadratic Non-Residue, mod 3, so we now add the complement of the

length 3 Legendre sequence onto the above ’product’ sequence at every 5th

position. Thus,
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000000110111011 +

0 1 0

---------------

000001110111011

We also add the length 5 Legendre sequence onto the above sequence at

every 3rd position. Thus,

000001110111011 +

1 0 1 1 0

---------------

100001010011011

This is equivalent to (1) under Lemma 1. In fact, this special example

of a Modified Jacobi sequence is simultaneously also a Twin-Prime sequence

and an m-sequence.

4 A Trace Representation For Legendre Sequences

Definition 1 Let QRp be the set of Quadratic Residues, mod p, i.e. those

elements of Z∗

p which have square-roots in Z∗

p .

Let QNRp be the set of Quadratic NonResidues, mod p, i.e. those elements

of Z∗

p which do not have square-roots in Z∗

p .

We define the Legendre sequence as follows:

Definition 2 Let rp(t) be the binary Legendre sequence of length p, p prime,

such that

rp(t) =



























1 if t ≡ 0( mod p)

0 if t ∈ QRp

1 if t ∈ QNRp

rp(t) = 0 if t non-integer

Definition 3 The Witness Set WS(x, n) is the set of all factors of xn − 1

which do not occur as factors of xt − 1, t|n, t 6= n.
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We now present a trace representation for all Legendre sequences. This

is similar to that given in [5]. However, [5] achieves a trace right down to

the base field, GF(2), whereas the representation presented here only traces

down to GF(2a), (a is defined below). A proof for Theorem 1 can be found

in [8].

Theorem 1 [8] The Legendre sequence, rp(t), of prime period, p, has a

minimal trace representation defined by,

rp(0) = 1, rp(t) =

p−1

2v
−1

∑

i=0

Trn
2a(αu2it + αu2ik), k ∈ QR, t > 0

where α is a pthroot of 1, p ∈ WS(2, n), α ∈ GF(2n), n = 2av, v odd, and

u is a primitive element of Zp. Without loss of generality k can be chosen

as 1.

It is evident that, when a = 0, p = 2n−1 prime, and the Legendre sequence

is of Mersenne prime length [6]. The combined results of [3, 5, 8] all give a

linear complexity for a Legendre sequence of length p to be O(p).

The following section formally describes the Multi-Rate Modified Jacobi

construction.

5 A Multi-Rate Modified Jacobi Sequence Con-

struction

Definition 4 Define Cx(r(t)) = r(t) if x = 0 and r(t) if x = 1, where ∗

means ’complement’ each element of ∗.

We now define a Modified Jacobi sequence {s(t)} of period pq for t =

0, 1, 2, . . . , pq − 1, where p < q are distinct odd primes, as follows.

Theorem 2 If p or q is of the form 4k + 1, k a positive integer,

s(t) = rp(t) + rq(t) + Cq∈QNRp
(rp(

t

q
)) + Cq∈QRp

(rq(
t

p
))

Alternatively, if p and q are both of the form 4k + 3, k a positive integer,

s(t) = rp(t) + rq(t) + Cq∈QRp
(rp(

t

q
)) + Cq∈QRp

(rq(
t

p
))
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The Twin-Prime sequence is a special case of Theorem 2 where q = p+2.

In this case, either p or q is of the form 4k + 1, so the first of the two

expressions in Theorem 2 is used.

6 Proof of Theorem 2

Our aim is to prove that Theorem 2 gives a sequence construction identical,

up to symmetry, to the conventional Modified Jacobi construction of (1).

For our proof we need the following well-known Theorem and Lemma.

Theorem 3 [1] The Law of Quadratic Reciprocity states: If p and q are

distinct primes, then,

p ∈ QRq ⇒ q ∈ QRp, p ∈ QNRq ⇒ q ∈ QNRp

iff p and/or q are of the form 4k + 1, k a positive integer

Similarly,

p ∈ QRq ⇒ q ∈ QNRp, p ∈ QNRq ⇒ q ∈ QRp

iff neither p or q are of the form 4k + 1, k a positive integer

Lemma 2 Let x0, x1 ∈ QRp, y0, y1 ∈ QNRp. Then x0y0 ∈ QNRp,

x0x1, y0y1 ∈ QRp.

We prove only the first of the two constructions in Theorem 2, that is

where p or q are of the form 4k+1. The second construction follows a similar

proof. Likewise we only prove for the case q ∈ QNRp, the case q ∈ QRp

being similarly proved.

It is easy to see that Theorem 2 is equivalent to (1) for positions t where

gcd(t, pq) = 1.

For the other positions we have two different possibilities, depending on

whether q ∈ QNRp or q ∈ QRp. For q ∈ QNRp we have the following:

Consider the non-zero positions t = kq, k integer, of s(t). At such

positions Theorem 2 states that,

s(kq) = rp(kq) + rq(kq) + rp(k) + rq(
kq

p
) (2)
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From Definition 2 rq(
kq
p

) = 0 and rq(kq) = 1. Substituting into (2),

s(kq) = rp(kq) + rp(k) + 1

Using Lemma 2 and the fact that q ∈ QNRp gives rp(kq) = rp(k) ∀k. In

this case s(kq) = 1.

Now consider non-zero positions t = jp, j integer, of s(t). At such

positions Theorem 2 states that,

s(jp) = rp(jp) + rq(jp) + rp(
jp

q
) + rq(j) (3)

From Definition 2 rp(
jp
q

) = 0 and rp(jp) = 1. Substituting into (3),

s(jp) = rq(jp) + rq(j) + 1

Using Lemma 2, q ∈ QNRp, and applying Theorem 3, then p ∈ QNRq

and rq(jp) = rq(j) ∀k. In this case s(jp) = 0.

Now consider position t = 0. In this case Theorem 2 simplifies to,

s(0) = 1

So, in summary, for the case where either p or q is of the from 4k + 1,

and where q ∈ QNRp we have,

s(t) =
















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








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





1 if t ≡ 0( mod pq)

0 if
(

t
p

)

·
(

t
q

)

= 1

1 if
(

t
p

)

·
(

t
q

)

= −1

1 if t 6≡ 0( mod p) and t ≡ 0( mod q)

0 if t ≡ 0( mod p) and t 6≡ 0( mod q)

This is equivalent to (1) under Lemma 1. The other case where q ∈ QRp

is similarly proved, as are the cases where neither p or q are of the form 4k+1.

7 Final Note

Upon completion of this paper, the author became aware of a recent publi-

cation [4] which also proposes the same Modified Jacobi construction using

multi-rate Legendre sequences. Hence this paper remains unpublished!
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