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Abstract

We argue that a Golay complementary sequence is naturally viewed as a projection of a multi-
dimensional Golay array. We present a three-stage process for constructing and enumerating
Golay array and sequence pairs:

1. construct suitable Golay array pairs from lower-dimensional Golay array pairs;

2. apply transformations to these Golay array pairs to generate a larger set of Golay array
pairs; and

3. take projections of the resulting Golay array pairs to lower dimensions.

This process greatly simplifies previous approaches, by separating the construction of Golay
arrays from the enumeration of all possible projections of these arrays to lower dimensions.

We use this process to construct and enumerate all 2h-phase Golay sequences of length 2m

obtainable under any known method, including all 4-phase Golay sequences obtainable from
the length 16 examples given in 2005 by Li and Chu [12].

1 Introduction

Golay complementary sequence pairs were introduced by Golay [8] in 1951. They have been applied
in diverse areas of digital information processing, including multislit spectrometry [8], optical time
domain reflectometry [14], and power control for multicarrier wireless transmission [4].

In 1999 Davis and Jedwab [4] gave an explicit algebraic normal form for a set of 2h-phase Golay
sequence pairs of length 2m, demonstrating an unexpected connection with Reed-Muller codes.
For the next six years this was sufficient to describe all known 2h-phase Golay sequence pairs of
length 2m. But in 2005 Li and Chu [12] discovered 1024 “non-standard” (not having this algebraic
normal form) 4-phase Golay sequences of length 16, by computer search. Although the origin of
these sequences was explained shortly afterwards by means of “cross-over” 4-phase Golay sequence
pairs of length 8 [6], the question as to which other non-standard Golay sequences of length 2m

could be derived from the cross-over pairs using known constructions proved more difficult. In 2006
the present authors explicitly derived new infinite families of such Golay sequences [7], but were
unable to determine explicitly the full generalisation of a key example [7, Example 6]. Furthermore,
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while the framework of constructions for Golay sequences presented in [7] simplifies many of the
previous approaches it is still rather cumbersome.

In this paper we demonstrate the power of the recently-introduced view [11] of a Golay sequence
pair as the “projection” of a multi-dimensional Golay array pair. While the paper [11] focussed on
determining whether at least one Golay array pair of a given size exists, particularly for the binary
case, this paper deals with the systematic construction and enumeration of a large set of distinct
Golay array pairs of a given size. Although Golay arrays have been previously studied by Lüke [13]
and especially Dymond [5], and shown to be of use in coded imaging [15], it appears that for the
most part they have been ignored or else regarded as merely another generalisation of a familiar
combinatorial object.

We propose on the contrary that a Golay array, constructed in as many dimensions as possible,
is in fact the fundamental object of study, and that lower-dimensional Golay arrays (in particular
Golay sequences) should be regarded as derived objects! In particular, there is no real distinction
to be made between “interleaving” and “concatenation” constructions for Golay sequences (as
distinguished in [9, General Properties (9) and (10)] and [7, Lemmas 3 and 4], for example): the
two forms are just different projections of the same higher-dimensional construction.

We divide the construction of Golay sequence (and array) pairs into three stages, removing a
great deal of the complication of previous approaches. The first stage is to construct suitable Golay
array pairs from lower-dimensional Golay array (or sequence) pairs explicitly via repeated use of
a generalisation of Dymond’s construction [5]. The second stage is to enlarge the constructed set
of Golay array pairs by means of a simple transformation. The third stage is to take all possible
projections of the resulting Golay array pairs to lower dimensions, including to sequences.

We will illustrate the three-stage process by showing that all “standard” (as constructed in [4])
H-phase Golay sequence pairs of length 2m can be derived from a single m-dimensional Golay
array pair that is constructed from Golay sequence pairs of length 1 in the first stage. We will then
determine and count the Golay array pairs with 2m elements arising from the same m-dimensional
array under projection to an intermediate number of dimensions between 1 and m. Finally we will
apply the three-stage process once more, using a combination of Golay sequence pairs of length 1
and cross-over 4-phase Golay sequence pairs of length 8 to construct the Golay array pairs of the
first stage. The projections to sequences give the desired full generalisation of [7, Example 6], and
include as special cases all previously known 4-phase Golay sequence pairs with 2m elements.

The rest of the paper is organised as follows. Section 2 contains definitions and notation.
Section 3 introduces projection mappings for reducing the dimension of an array, and gives a
graphical means of tracking the effect of successive projections. Section 4 describes two methods
for constructing a Golay array pair from two other Golay array (or sequence) pairs, and gives
an explicit form for the result of applying the second method recursively. Section 5 defines a
transformation that generates a set of Golay array pairs from a single Golay array pair. Section 6
uses trivial input Golay array pairs in the explicit construction form, followed by the transformation,
and finally applies successive projection mappings in order to construct Golay array pairs in all
dimensions from 1 to m. Section 7 repeats this process but uses an arbitrary combination of trivial
and cross-over 4-phase Golay sequence pairs as inputs to the explicit form. This gives a concise
construction and enumeration of all 4-phase Golay array pairs with 2m elements obtainable under
any known method. Section 8 contains a summary of results.
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2 Definitions and notation

We define an array of size s1 × · · · × sr to be an r-dimensional matrix A = (A[i1, . . . , ir]) of
complex-valued entries, where i1, . . . , ir are integer, for which

A[i1, . . . , ir] = 0 if, for any k ∈ {1, 2, . . . , r}, ik < 0 or ik ≥ sk.

In the case r = 1, A = (A[i1]) is a length s1 sequence. Call the set of array elements

{A[i1, . . . , ir] | 0 ≤ ik < sk for all k}

the in-range entries of A. The energy of A is

ε(A) :=
∑
i1

· · ·
∑
ir

|A[i1, . . . , ir]|2, (1)

which equals the volume s1 · · · sr of A if |A[i1, . . . , ir]| = 1 for all in-range entries of A.
Usually the in-range entries of A are constrained to lie in a small finite set S called the array

alphabet. Let ξ denote exp(2π
√
−1/H) (a primitive H-th root of unity) for some H, where H

represents an even integer throughout the paper. If S = {1, ξ, ξ2, . . . , ξH−1} then A is an H-
phase array. Particular cases of interest are the binary case H = 2, for which S = {1,−1}, and the
quaternary caseH = 4, for which S = {1,

√
−1,−1,−

√
−1}. If S = ZH then A is an array over ZH .

The in-range entries of an s1× · · ·× sr H-phase array A = (A[i1, . . . , ir]) can be represented in the
form

ξa[i1,...,ir] := A[i1, . . . , ir], where each a[i1, . . . , ir] ∈ ZH . (2)

We say that the s1 × · · · × sr array (a[i1, . . . , ir]) given by (2) is the array over ZH corresponding
to A. (Here and elsewhere, in defining the elements of an array of a stated size, the definition
implicitly applies only to the in-range entries.) We will consistently use lower-case letters for
arrays over ZH and upper-case letters for complex-valued arrays; the same letter (for example a
and A) will indicate that the arrays correspond.

The aperiodic autocorrelation function of an s1×· · ·×sr complex-valued arrayA = (A[i1, . . . , ir])
is given by

CA(u1, . . . , ur) :=
∑
i1

· · ·
∑
ir

A[i1, . . . , ir]A[i1 + u1, . . . , ir + ur] for integer u1, . . . , ur, (3)

where bar represents complex conjugation. The aperiodic autocorrelation function of an array
over ZH is that of the corresponding H-phase array. An s1 × · · · × sr Golay array pair is a pair of
s1 × · · · × sr arrays A and B for which

CA(u1, . . . , ur) + CB(u1, . . . , ur) = 0 for all (u1, . . . , ur) 6= (0, . . . , 0).

An array A is called a Golay array if it forms a Golay array pair with some array B. The standard
Golay sequence pairs of length 2m over ZH are those given in Corollary 10.

The generating function corresponding to the complex-valued array (A[i1, . . . , ir]) is the poly-
nomial

A(y1, . . . , yr) :=
∑
i1

· · ·
∑
ir

A[i1, . . . , ir]yi1
1 · · · yir

r in indeterminates (y1, . . . , yr) 6= (0, . . . , 0)

(where we distinguish the generating function from the complex-valued array by means of round
brackets instead of square brackets). The generating function and energy of an array over ZH are
those of the corresponding H-phase array. Straightforward manipulation shows that

A(y1, . . . , yr)A(y−1
1 , . . . , y−1

r ) =
∑
u1

· · ·
∑
ur

CA(u1, . . . , ur)yu1
1 · · · yur

r ,
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from which it follows that A = (A[i1, . . . , ir]) and B = (B[i1, . . . , ir]) form an s1 × · · · × sr Golay
array pair if and only if

A(y1, . . . , yr)A(y−1
1 , . . . , y−1

r ) +B(y1, . . . , yr)B(y−1
1 , . . . , y−1

r ) is constant for all (y1, . . . , yr), (4)

and if (4) holds then the value of the constant is ε(A) + ε(B), from (1) and (3).
Given a complex-valued s1 × · · · × sr array A = (A[i1, . . . , ir]), define A∗ = (A∗[i1, . . . , ir]) to

be the s1 × · · · × sr array given by

A∗[i1, . . . , ir] := A[s1 − 1− i1, . . . , sr − 1− ir] for all (i1, . . . , ir). (5)

It is easy to show that the generating functions of A and A∗ are related by

A∗(y1, . . . , yr) = ys1−1
1 · · · ysr−1

r A(y−1
1 , . . . , y−1

r ), (6)

and that their aperiodic autocorrelation functions are identical. The corresponding array (a∗[i1, . . . , ir])
over ZH is given by

a∗[i1, . . . , ir] = −a[s1 − 1− i1, . . . , sr − 1− ir] for all (i1, . . . , ir). (7)

Since addition of a constant in ZH to all elements of an array over ZH does not change its aperiodic
autocorrelation function, all arrays in the set

E(A) := {(a[i1, . . . , ir] + c) | c ∈ ZH} ∪ {(a∗[i1, . . . , ir] + c) | c ∈ ZH}

(which has H elements if (a∗[i1, . . . , ir]) = (a[i1, . . . , ir] + c) for some c ∈ ZH , and 2H elements
otherwise) have identical aperiodic autocorrelation function. Therefore, if (A,B) is an s1×· · ·× sr

Golay array pair over ZH then so is every element of E(A)× E(B).
It is possible that two arrays A, A′ over ZH of the same size have identical aperiodic auto-

correlation function, even though E(A) 6= E(A′). In this case we say that the pair (A,A′) has
the shared autocorrelation property. Suppose that (A,B) and (A′,B′) are Golay array pairs, where
E(A) 6= E(A′) and E(B) 6= E(B′). If the pair (A,A′) has the shared autocorrelation property,
then so does the pair (B,B′); and moreover (A,B′) and (A′,B) both form Golay array pairs by a
“cross-over” of their autocorrelation functions, as illustrated in Figure 1.

The only known examples of cross-over Golay sequence pairs of length 2m over Z2h occur for
m = 3 and h = 2. For example, the sequences [0, 0, 0, 2, 0, 0, 2, 0] and [0, 1, 1, 2, 0, 3, 3, 2] form a
length 8 cross-over Golay pair over Z4. All 512 ordered cross-over Golay sequence pairs of length 8
over Z4 can be derived from this pair, as shown in Theorem 12. Moreover the existence of the 1024
non-standard length 16 Golay sequences over Z4 found by Li and Chu [12] can be explained in
terms of these length 8 cross-over pairs [6]. The study of which other non-standard Golay sequence
pairs of length 2m can be constructed from the length 8 cross-over pairs under known constructions
was begun in [6], continued in [7], and is completed in this paper.

3 Projection of arrays to lower dimensions

In this section we describe projection mappings that reduce the dimension of an array, and give a
graph-theoretic means of tracking the effect of successive projections. The importance of projection
mappings is that they preserve the Golay array property.

We firstly define a mapping ψ1,2 from the set of s1 × · · · × sr arrays (where r ≥ 2) to the set
of s1s2 × s3 × · · · × sr arrays. Given an s1 × · · · × sr complex-valued array A = (A[i1, . . . , ir]), the
mapping ψ1,2(A) is the array (B[i, i3, . . . , ir]) given by

B[i1 + s1i2, i3, . . . , ir] := A[i1, . . . , ir] for all (i1, . . . , ir). (8)

4



E(B) E(B′)

E(A) E(A′)

complementary
autocorrelation

function

identical
autocorrelation

function

�
�

�
�

�
�

�
�

�
�

�
�Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

cross-over of
autocorrelation

functions

Figure 1: Cross-over of autocorrelation functions for Golay pairs (A,B) and (A′,B′), where E(A) 6=
E(A′) and E(B) 6= E(B′)

For distinct j, k ∈ {1, . . . , r}, the array ψj,k(A) is given similarly by removing the array argument ij
and replacing the array argument ik by ij+sjik. For example, ifA = (A[i1, i2, i3, i4]) is an 8×5×7×6
array over Z6 then ψ1,3(A) = (B[i2, i, i4]) is the 5× 56× 6 array over Z6 given by

B[i2, i1 + 8i3, i4] := A[i1, i2, i3, i4] for 0 ≤ i1 < 8, 0 ≤ i2 < 5, 0 ≤ i3 < 7, 0 ≤ i4 < 6,

and ψ4,2(A) = (C[i1, i, i3]) is the 8× 30× 7 array over Z6 given by

C[i1, i4 + 6i2, i3] := A[i1, i2, i3, i4] for 0 ≤ i1 < 8, 0 ≤ i2 < 5, 0 ≤ i3 < 7, 0 ≤ i4 < 6.

We can interpret the action of ψj,k on an array as replacing the sj × sk “slice” of the array formed
from dimensions j and k by the sequence obtained when the elements of the slice are listed column
by column. The definition of ψj,k holds without modification for an array over ZH because the
mapping changes the locations but not the values of array elements. We call ψj,k(A) a projection
of the array A (from r to r − 1 dimensions), and call ψj,k a projection mapping that joins index j
to index k.

The reason for our interest in projection mappings is that they preserve the Golay array prop-
erty:

Theorem 1 (Jedwab and Parker [11, Theorem 11]). For integer r ≥ 2, suppose that A and B
form an s1 × · · · × sr Golay array pair over an alphabet S. Then ψ2,1(A) and ψ2,1(B) form an
s1s2 × s3 × · · · × sr Golay array pair over S.

The 8× 30× 7 array (C[i1, i, i3]) described above can instead be represented as the 8× 7× 30
array (C ′[i1, i3, i]), where

C ′[i1, i3, i] = C[i1, i, i3] for 0 ≤ i1 < 8, 0 ≤ i < 30, 0 ≤ i3 < 7,

by reordering dimensions. However we do not consider arrays obtained by reordering dimensions to
be distinct: they are different formal representations of the same object. By reordering dimensions
in Theorem 1 we see that the arrays ψj,k(A) and ψj,k(B) also form a Golay array pair, for any
distinct j, k ∈ {1, . . . , r}.
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We wish to apply successive projection mappings to a given r-dimensional array. In order to
keep track of their effect, we represent the array indices by vertices 1, . . . , r of a directed graph
and represent successive projection mappings by arcs between vertices (according to the original
index labellings). For example, suppose that three successive projection mappings applied to a
2 × 2 × 2 × 2 array join index 4 to index 3, then the original index 1 to the original index 2, and
finally the joined indices 4 and 3 to the joined indices 1 and 2. The corresponding graph on four
vertices 1, 2, 3, and 4 has an arc from vertex 4 to vertex 3, an arc from vertex 1 to vertex 2, and
an arc from vertex 3 (the final vertex of the path from vertex 4 to vertex 3) to vertex 1 (the initial
vertex of the path from vertex 1 to vertex 2):

4• −→ 3• −→ 1• −→ 2• (9)

The same graph would be obtained by joining index 4 to 3, then joining these joined indices
to index 1, and then joining these joined indices to index 2. Algebraically, this equivalence is a
consequence of the equality of the array arguments (i4 +2i3)+4(i1 +2i2) and ((i4 +2i3)+4ii)+8i2.

In general, the graph representing the successive application of j projection mappings to an
r-dimensional array comprises r vertices and a set of disjoint directed paths, each representing a
set of joined indices; the total length of all paths is j. Applying a further projection mapping
joins the final vertex of the path representing a first set of joined indices to the initial vertex of
the path representing a second set of joined indices. Proposition 2 shows that the projected array
corresponding to such a graph does not depend on the order in which arcs are added (as already
suggested with reference to (9)). In particular, the sequence obtained by applying r− 1 successive
projection mappings to a given r-dimensional array is completely described by a directed path of
the form

σ(1)
• −→

σ(2)
• −→ · · · −→

σ(r)
•

for some permutation σ of {1, . . . , r}.

Proposition 2. Let (A[i1, . . . , ir]) be an s1×· · ·×sr array over an alphabet S, let σ be a permutation
of {1, . . . , r}, and let j be an integer satisfying 0 ≤ j ≤ r−1. Then the application to (A[i1, . . . , ir])
of any j successive projection mappings whose corresponding graph is

σ(1)
• −→

σ(2)
• −→ · · · −→

σ(j + 1)
•

σ(j + 2)
• · · ·

σ(r)
•

results in the projected array (B[i, iσ(j+2), . . . , iσ(r)]) of size
(∏j+1

k=1 sσ(k)

)
× sσ(j+2) × · · · × sσ(r)

over S given by

B[v1iσ(1) + · · ·+ vj+1iσ(j+1), iσ(j+2), . . . , iσ(r)] = A[i1, . . . , ir] for all (i1, . . . , ir), (10)

where vi :=
∏i−1

k=1 sσ(k) (and v1 := 1).

Proof. The proof is by induction on j. The base case j = 0 holds trivially; assume all cases up to
j−1 hold. The graph representing the first j−1 projection mappings of case j must have the form

σ(1)
• −→

σ(2)
• −→ · · · −→

σ(`)
•

σ(`+ 1)
• −→

σ(`+ 2)
• −→ · · · −→

σ(j + 1)
•

σ(j + 2)
• · · ·

σ(r)
•

for some integer ` satisfying 1 ≤ ` ≤ j. Regard this graph as arising from the composition of two
sequences of projection mappings, the first corresponding to the path σ(1) → σ(2) → · · · → σ(`)
and the second corresponding to the path σ(`+ 1) → σ(`+ 2) → · · · → σ(j + 1). By the inductive
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hypothesis, the projected array (C[i, i′, iσ(j+2), . . . , iσ(r)]) of size
(∏`

k=1 sσ(k)

)
×
(∏j+1

k=`+1 sσ(k)

)
×

sσ(j+2) × · · · × sσ(r) corresponding to the composition mapping then satisfies

C[
(
v1iσ(1) + · · ·+ v`iσ(`)

)
,
(
w`+1iσ(`+1) + · · ·+ wj+1iσ(j+1)

)
, iσ(j+2), . . . , iσ(r)]

= A[i1, . . . , ir] for all (i1, . . . , ir), (11)

where wi :=
∏i−1

k=`+1 sσ(k) = vi/
∏`

k=1 sσ(k) (and w`+1 := 1), by the definition of vi. The array
(B[i, iσ(j+2), . . . , iσ(r)]) now results from application of the projection mapping ψ`,`+1 (using the
original index labellings). Therefore (8) and (11) imply (10), since

(
v1iσ(1) + · · ·+ v`iσ(`)

)
+

(∏̀
k=1

sσ(k)

)(
w`+1iσ(`+1) + · · ·+ wj+1iσ(j+1)

)
= v1iσ(1) + · · ·+vj+1iσ(j+1).

This establishes case j and completes the induction.

We have shown that the application of a sequence of projection mappings to a given r-
dimensional array can be completely described by a graph G on r vertices comprising a set of
disjoint directed paths: repeated application of Proposition 2 (once for each directed path) shows
that the corresponding projected array is independent of the sequence of projection mappings that
leads to G.

4 Construction of Golay array pairs

In this section we generalise Dymond’s construction [5] for a binary Golay array pair from two
other binary Golay array pairs, and derive a second construction from it. We apply this second
construction recursively, producing an explicit form for the resulting Golay array pair over ZH .
This will be the main construction theorem in later sections.

We begin with Dymond’s construction theorem for binary Golay array pairs, which is a gen-
eralisation to multiple dimensions of Turyn’s 1974 composition theorem [19, Lemma 5] for binary
Golay sequence pairs:

Theorem 3 (Dymond [5, Theorem 4.24]). Let ⊗ represent the Kronecker product of arrays. Sup-
pose that A and B form an s1×· · ·×sr binary Golay array pair, and that C and D form a t1×· · ·×tr
binary Golay array pair (where any of the sk and tk can take the value 1). Then the arrays

A⊗
(
C +D

2

)
+ B ⊗

(
C − D

2

)
,

A⊗
(
C∗ −D∗

2

)
− B ⊗

(
C∗ +D∗

2

)
form an s1t1 × · · · × srtr binary Golay array pair.

Write (r) to represent 1 × · · · × 1, in which r copies of 1 appear, and likewise write n(r) to
represent the corresponding expression with r copies of any positive integer n. Consider specialising
Theorem 3 to the case where A and B have size s1 × · · · × sr × (v), and C and D have size
(r)× t1×· · ·× tv, so that the Kronecker product simplifies to the tensor product. (We do not lose
anything by this specialisation: Theorem 3 can be recovered by setting v = r and then applying
Theorem 1 to the resulting binary Golay array pair of size s1×· · ·×sr× t1×· · ·× tr in order to give
an s1t1×· · ·× srtr binary Golay array pair.) Now generalise this tensor product construction from
binary to H-phase input arrays, adding a condition on C and D to ensure that the constructed
arrays are also H-phase arrays:
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Theorem 4. Abbreviate i1, . . . , ir and j1, . . . , jv to i and j respectively, and abbreviate s1×· · ·×sr

and t1 × · · · × tv to s and t respectively. Suppose that (A[i]) and (B[i]) form an H-phase Golay
array pair of size s. Suppose that (C[j]) and (D[j]) form an H-phase Golay array pair of size t
and that

for each j, either C[j] = D[j] or C[j] = −D[j]. (12)

Then the H-phase arrays (F [i, j]) and (G[i, j]) of size s× t given by

F [i, j] := A[i] ·
(
C[j] +D[j]

2

)
+B[i] ·

(
C[j]−D[j]

2

)
,

G[i, j] := A[i] ·
(
C∗[j]−D∗[j]

2

)
−B[i] ·

(
C∗[j] +D∗[j]

2

)
 (13)

form a Golay array pair.

Proof. The arrays (F [i, j]) and (G[i, j]) have size s × t by construction, and are H-phase arrays
by condition (12). We will show that they form a Golay array pair, modelling the proof on the
generating function approach of [5, Theorem 4.24].

Abbreviate y1, . . . , yr and z1, . . . , zv to y and z respectively, and abbreviate y−1
1 , . . . , y−1

r and
z−1
1 , . . . , z−1

v to y−1 and z−1 respectively. From (13) we obtain the generating function equations

2F (y,z) = A(y)
(
C(z) +D(z)

)
+B(y)

(
C(z)−D(z)

)
,

2G(y,z) = A(y)
(
C∗(z)−D∗(z)

)
−B(y)

(
C∗(z) +D∗(z)

)
= zt1−1

1 · · · ztv−1
v

(
A(y)

(
C(z−1)−D(z−1)

)
−B(y)

(
C(z−1) +D(z−1)

))
,

by (6). Straightforward manipulation then shows that, for all (y,z),

F (y,z)F (y−1,z−1) +G(y,z)G(y−1,z−1)

=
1
2

(
A(y)A(y−1) +B(y)B(y−1)

)(
C(z)C(z−1) +D(z)D(z−1)

)
,

which is constant by (4). Therefore (F [i, j]) and (G[i, j]) form a Golay array pair, by (4).

Theorem 4 produces an H-phase Golay array pair of size s× t from H-phase Golay array pairs
of size s and t, subject to the condition (12) on the input pair of size t. We now use Theorem 4
to derive an alternative construction which does not require this condition to hold, but instead
produces an H-phase Golay array pair of size s× t× 2 from the same input array pairs:

Theorem 5. Abbreviate i1, . . . , ir and j1, . . . , jv to i and j respectively, and abbreviate s1×· · ·×sr

and t1 × · · · × tv to s and t respectively. Suppose that (A[i]) and (B[i]) form an H-phase Golay
array pair of size s, and that (C[j]) and (D[j]) form an H-phase Golay array pair of size t. Then
the H-phase arrays (F [i, j, x]) and (G[i, j, x]) of size s× t× 2 given by

F [i, j, 0] := A[i] · C[j], F [i, j, 1] := B∗[i] ·D[j],

G[i, j, 0] := B[i] · C[j], G[i, j, 1] := −A∗[i] ·D[j]

}
(14)

form a Golay array pair. The corresponding arrays over ZH can be represented as

f [i, j, x] :=
(
b∗[i] + d[j]− a[i]− c[j]

)
x+ a[i] + c[j],

g[i, j, x] :=
(
a∗[i] + d[j]− b[i]− c[j] +

H

2

)
x+ b[i] + c[j].

 (15)
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Proof. We construct (F [i, j, x]) and (G[i, j, x]) as an H-phase Golay array pair by two applications
of Theorem 4.

Since (B∗[i]) has the same aperiodic autocorrelation function as (B[i]), we see that (A[i]) and
(B∗[i]) form a Golay array pair of size s. Apply Theorem 4, taking the input ((A[i]), (B[i])) to
be the Golay array pair ((A[i]), (B∗[i])) of size s, and the input ((C[j]), (D[j])) to be the Golay
array pair ([1, 1], [1,−1]) of size 2 that satisfies (12). This produces an H-phase Golay array pair
((F ′[i, x]), (G′[i, x])) of size s× 2 given by

F ′[i, 0] := A[i], F ′[i, 1] := B∗[i],

G′[i, 0] := A[i], G′[i, 1] := −B∗[i].

Now apply Theorem 4 a second time, taking the input ((A[i]), (B[i])) to be the Golay array pair
((C[j]), (D[j])) of size t, and the input ((C[j]), (D[j])) to be the Golay array pair ((F ′[i, x]), (G′[i, x]))
of size s × 2 that satisfies (12). Writing F ′[i, x] := A[i](1 − x) + B∗[i]x, we see from (5) that
F ′∗[i, x] = A∗[i]x+B[i](1−x), and similarly G′∗[i, x] = A∗[i]x−B[i](1−x). Therefore this second
application of Theorem 4 produces the H-phase Golay array pair ((F [i, j, x]), (G[i, j, x])) of size
s× t× 2 given in (14), as claimed.

From (14), the arrays over ZH corresponding to (F [i, j, x]) and (G[i, j, x]) are defined by

f [i, j, 0] := a[i] + c[j], f [i, j, 1] := b∗[i] + d[j],

g[i, j, 0] := b[i] + c[j], g[i, j, 1] := a∗[i] + d[j] +H/2,

and these definitions can be represented in the form (15), as claimed.

Example 6. The length 8 sequences (a[i]) := [0, 0, 0, 2, 0, 0, 2, 0] and (b[i]) := [2, 1, 1, 0, 2, 3, 3, 0]
over Z4 form a (cross-over) Golay sequence pair, and likewise so do the length 8 sequences (c[j]) :=
[0, 0, 0, 2, 0, 0, 2, 0] and (d[j]) := [2, 3, 3, 0, 2, 1, 1, 0]. Apply Theorem 5 with H = 4 and s = t = 8 to
obtain the 8× 8× 2 Golay array pair

(f [i, j, x]) =





0 0 0 2 0 0 2 0
0 0 0 2 0 0 2 0
0 0 0 2 0 0 2 0
2 2 2 0 2 2 0 2
0 0 0 2 0 0 2 0
0 0 0 2 0 0 2 0
2 2 2 0 2 2 0 2
0 0 0 2 0 0 2 0


x=0

(a[i]+c[j])



2 3 3 0 2 1 1 0
3 0 0 1 3 2 2 1
3 0 0 1 3 2 2 1
0 1 1 2 0 3 3 2
2 3 3 0 2 1 1 0
1 2 2 3 1 0 0 3
1 2 2 3 1 0 0 3
0 1 1 2 0 3 3 2


x=1

(b∗[i]+d[j])


,

(g[i, j, x]) =





2 1 1 0 2 3 3 0
2 1 1 0 2 3 3 0
2 1 1 0 2 3 3 0
0 3 3 2 0 1 1 2
2 1 1 0 2 3 3 0
2 1 1 0 2 3 3 0
0 3 3 2 0 1 1 2
2 1 1 0 2 3 3 0


x=0

(b[i]+c[j])



0 2 0 0 2 0 0 0
1 3 1 1 3 1 1 1
1 3 1 1 3 1 1 1
2 0 2 2 0 2 2 2
0 2 0 0 2 0 0 0
3 1 3 3 1 3 3 3
3 1 3 3 1 3 3 3
2 0 2 2 0 2 2 2


x=1

(a∗[i]+d[j]+2)


,

where the horizontal and vertical direction of each 8× 8 array corresponds to the array arguments
i and j respectively. Project this Golay array pair to a length 128 Golay sequence pair over Z4

by joining index 2 to index 1 to index 3: for each array of the pair this corresponds to listing the
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elements of both 8 × 8 arrays in turn, column by column. The resulting sequence pair is precisely
that of [7, Example 6].

We now apply Theorem 5 recursively to obtain the main construction theorem of the paper.

Theorem 7. Let m ≥ 1 be an integer and abbreviate x1, . . . , xm to x; for k = 0, 1, . . . ,m, ab-
breviate ik,1, . . . , ik,rk

to ik and sk,1 × · · · × sk,rk
to sk. Suppose that (ak[ik]) and (bk[ik]) form a

Golay array pair of size sk over ZH , for k = 0, 1, . . . ,m. Then the arrays (fm[i0, . . . , im,x]) and
(gm[i0, . . . , im,x]) of size s0 × · · · × sm × (m) over ZH given by

fm[i0, . . . , im,x] :=
m−1∑
k=1

(
ak[ik] + a∗k[ik]− bk[ik]− b∗k[ik] +

H

2

)
xkxk+1 +

m∑
k=1

(
b∗k−1[ik−1] + bk[ik]− ak−1[ik−1]− ak[ik]

)
xk +

m∑
k=0

ak[ik],

gm[i0, . . . , im,x] := f ′m[i0, . . . , im,x] +
H

2
x1,

form a Golay array pair, where f ′m[i0, . . . , im,x] is fm[i0, . . . , im,x] with a0[i0], b0[i0] interchanged
and with a∗0[i0], b

∗
0[i0] interchanged.

Proof. For ease of presentation we will suppress the dependence of each ak and bk on ik, writing

f1 = (b∗0 + b1 − a0 − a1)x1 + a0 + a1, (16)
g1 = (a∗0 + b1 − b0 − a1 +H/2)x1 + b0 + a1, (17)

fm = f1 +
m∑

k=2

ek, (18)

gm = g1 +
m∑

k=2

ek, (19)

where

ek = (ak−1+a∗k−1−bk−1−b∗k−1+H/2)xk−1xk +(b∗k−1+bk−ak−1−ak)xk +ak for 2 ≤ k ≤ m. (20)

We firstly prove by induction on m that

g∗m − fm = (am + a∗m − bm − b∗m +H/2)xm + b∗m − am + (m mod 2)H/2 for m ≥ 1. (21)

The array (c[i0, x1]) := (a0[i0]x1) satisfies c∗[i0, x1] = a∗0[i0](1 − x1) by (7), so from (16) and (17)
we find

g∗1 − f1 = (a0 + b∗1 − b∗0 − a∗1 +H/2)(1− x1) + b∗0 + a∗1 − (b∗0 + b1 − a0 − a1)x1 − a0 − a1

= (a1 + a∗1 − b1 − b∗1 +H/2)x1 + b∗1 − a1 +H/2,

which is the base case m = 1 of (21). For m ≥ 2, assume that (21) holds up to m − 1. By (18),
(19) and (20),

g∗m − fm = g∗m−1 − fm−1 + e∗m − em

= g∗m−1 − fm−1 + (am−1 + a∗m−1 − bm−1 − b∗m−1 +H/2)(1− xm−1)(1− xm)
+ (bm−1 + b∗m − a∗m−1 − a∗m)(1− xm) + a∗m − (am−1 + a∗m−1 − bm−1 − b∗m−1 +H/2)xm−1xm

− (b∗m−1 + bm − am−1 − am)xm − am

=
(
g∗m−1 − fm−1 − (am−1 + a∗m−1 − bm−1 − b∗m−1 +H/2)xm−1

)
+ (am + a∗m − bm − b∗m +H/2)xm + am−1 − am − b∗m−1 + b∗m +H/2.
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Applying the inductive hypothesis to the bracketed expression involving g∗m−1 − fm−1 gives (21),
completing the induction.

Furthermore, writing f∗m − gm = −(g∗m − fm)∗, it follows from (21) that

f∗m − gm = g∗m − fm +H/2 for m ≥ 1. (22)

We now prove by induction on m that fm and gm form a Golay array pair of size s0×· · ·×sm×(m)

form ≥ 1, making use of (21) and (22). The base casem = 1 is given by applying Theorem 5, taking
the input ((a[i]), (b[i])) to be the Golay array pair (a0, b0) of size s0 and the input ((c[j]), (d[j]))
to be the Golay array pair (a1, b1) of size s1. For m ≥ 2, assume by the inductive hypothesis that
fm−1 and gm−1 form a Golay array pair. Apply Theorem 5, taking ((a[i]), (b[i])) to be (fm−1, gm−1)
of size s0× · · · × sm−1×(m−1) and ((c[j]), (d[j])) to be (am, (bm + (1 +m mod 2)H/2)) of size sm

to yield a Golay pair (f, g) of size s0 × · · · × sm × (m). (The second pair inherits the Golay
property from the array pair (am, bm), since (bm[im]) and (bm[im] + c) have identical aperiodic
autocorrelation functions for any constant c ∈ ZH .) Then from (15) and (21) we have

f − fm−1 =
[
g∗m−1 − fm−1 + bm − am + (1 +m mod 2)H/2

]
xm + am

=
[
(am−1 + a∗m−1 − bm−1 − b∗m−1 +H/2)xm−1 + b∗m−1 − am−1 + bm − am

]
xm + am

= em

by (20). Therefore f = fm, by (18). Similarly

g − gm−1 =
[
f∗m−1 − gm−1 + bm − am + (m mod 2)H/2

]
xm + am

= em

using (22), and so g = gm by (19). Therefore fm and gm form a Golay array pair of size s0 × · · · ×
sm × 2(m), completing the induction.

Theorem 7 can take any Golay array pairs as inputs, but it is sufficient for our purposes to
restrict the inputs to be Golay sequence pairs, either trivial pairs (of length 1) or cross-over pairs
of length 8 over Z4.

5 Affine Offsets

Theorem 7 constructs a Golay array pair from m+ 1 smaller Golay array pairs, which is the first
stage of the three-stage construction process of the paper. We now show that, by taking “affine
offsets”, we can generate a set of Golay array pairs from a single Golay array pair. This generalises
[6, Corollary 2] to multiple dimensions, and is the second stage of the process.

Lemma 8. Suppose that ((a[i1, . . . , ir]), (b[i1, . . . , ir])) is an s1×· · ·×sr Golay array pair over ZH .
Then the affine offset((

a[i1 . . . , ir] +
r∑

k=1

ekik + e0

)
,

(
b[i1 . . . , ir] +

r∑
k=1

ekik + e′0

))
is also an s1 × · · · × sr Golay array pair over ZH , for all e′0, e0, e1, . . . , er ∈ ZH .

Proof. Let ξ denote exp(2π
√
−1/H) (a primitive H-th root of unity), and let A, B, A′ and B′ be

the complex-valued arrays corresponding to the four given arrays over ZH , in the order in which
they are mentioned. Fix (u1, . . . , ur) 6= (0, . . . , 0). By the definition of aperiodic autocorrelation,

CA′(u1, . . . , ur) =
∑
i1

· · ·
∑
ir

ξa[i1,...,ir]+
Pr

k=1 ekik+e0ξa[i1+u1,...,ir+ur]+
Pr

k=1 ek(ik+uk)+e0

= ξ−
Pr

k=1 ekukCA(u1, . . . , ur),
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and the same relation holds when A′ and A are replaced by B′ and B respectively. Therefore

CA′(u1, . . . , ur) + CB′(u1, . . . , ur) = ξ−
Pr

k=1 ekuk(CA(u1, . . . , ur) + CB(u1, . . . , ur))
= 0,

since A, B form a Golay pair. Therefore A′, B′ form a Golay pair.

6 Golay array pairs of volume 2m from trivial Golay sequence pairs

In this section we construct a single m-dimensional Golay array pair from m + 1 trivial input
Golay array pairs using Theorem 7, and take affine offsets using Lemma 8. The third stage of the
three-stage construction process is then to project these array pairs to lower dimensions.

We begin with a special case of this process, in which we consider just the projection to se-
quences. We will see in Corollary 10 that this recovers the “standard” Golay sequence pairs of
length 2m given in [4].

Theorem 9. Let m ≥ 1 be integer and let e′0, e0, e1, . . . , em ∈ ZH . For any permutation π of
{1, . . . ,m}, the sequences (a[x]) and (b[x]) of length 2m over ZH given by

a[xm + 2xm−1 + · · ·+ 2m−1x1] :=
H

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ekxπ(k) + e0,

b[xm + 2xm−1 + · · ·+ 2m−1x1] :=
H

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ekxπ(k) + e′0 +
H

2
xπ(1)


for all (x1, . . . , xm) ∈ Zm

2

form a Golay sequence pair.
As e′0, e0, e1, . . . , em and π range over all their possible values, the number of Golay sequences

of length 2m over ZH of this form is{
Hm+1m!/2 for m > 1

H2 for m = 1,

and the corresponding number of ordered Golay sequence pairs is at least Hm+2m!

Proof. We construct the Golay sequence pair ((a[x]), (b[x])) according to the three-stage process.

Stage 1. Apply Theorem 7, taking each of the input pairs ((ak[ik]), (bk[ik])) for k = 0, 1, . . . ,m
to be the trivial length 1 Golay pair ([0], [0]) over ZH . This gives a Golay array pair of size
(m+1) × (m) over ZH . By removing all dimensions equalling 1 we can write this as a Golay
array pair ((f ′[x1, . . . , xm]), (g′[x1, . . . , xm])) of size (m) over ZH , where

f ′[x1, . . . , xm] :=
H

2

m−1∑
k=1

xkxk+1,

g′[x1, . . . , xm] :=
H

2

m−1∑
k=1

xkxk+1 +
H

2
x1

 for all (x1, . . . , xm) ∈ Zm
2 .
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Stage 2. Apply Lemma 8 with r = m to show that the affine offset ((f [x1, . . . , xm]), (g[x1, . . . , xm]))
is a Golay array pair of size (m) over ZH , where

f [x1, . . . , xm] :=
H

2

m−1∑
k=1

xkxk+1 +
m∑

k=1

ekxk + e0,

g[x1, . . . , xm] :=
H

2

m−1∑
k=1

xkxk+1 +
m∑

k=1

ekxk + e′0 +
H

2
x1

 for all (x1, . . . , xm) ∈ Zm
2 .

(23)

Stage 3. Apply m−1 successive projection mappings to the m-dimensional arrays (f [x1, . . . , xm])
and (g[x1, . . . , xm]), where the associated directed graph G on m vertices is

π−1(m)
• −→

π−1(m− 1)
• −→ · · · −→

π−1(1)
•

(see Section 3). By Proposition 2 with r = m, j = m−1, and sk = 2 and σ(k) = π−1(m+1−k)
for 1 ≤ k ≤ m, the resulting sequences of length 2m over ZH are (a′[x]) and (b′[x]), where

a′[xπ−1(m) + 2xπ−1(m−1) + · · ·+ 2m−1xπ−1(1)] := f [x1, . . . , xm],

b′[xπ−1(m) + 2xπ−1(m−1) + · · ·+ 2m−1xπ−1(1)] := g[x1, . . . , xm]

}
for all (x1, . . . , xm) ∈ Zm

2 .

These forms are equivalent to

a′[xm + 2xm−1 + · · ·+ 2m−1x1] := f [xπ(1), . . . , xπ(m)],

b′[xm + 2xm−1 + · · ·+ 2m−1x1] := g[xπ(1), . . . , xπ(m)]

}
for all (x1, . . . , xm) ∈ Zm

2 ,

so that (a′[x]) = (a[x]) and (b′[x]) = (b[x]) by (23). Furthermore, by Theorem 1, (a′[x])
and (b′[x]) form a Golay sequence pair since (f [x1, . . . , xm]) and (g[x1, . . . , xm]) form a Golay
array pair.

It remains to determine the sequence and sequence pair counts, as e′0, e0, e1, . . . , em ∈ ZH

and π range over all their possible values. For m = 1 we have a[x1] := e1x1 + e0 and b[x1] :=
(e1 + H/2)x1 + e′0, giving H2 distinct Golay sequences and H3 ordered Golay sequence pairs, as
required. For the rest of the proof, take m > 1.

Each permutation π corresponds to a unique projection graph G. Consider the multiset S of
Golay sequences obtained under projection, as (e0, e1, . . . , em) and G range over their Hm+1m!
values. Observe that f [x1, . . . , xm] is invariant under the mapping

xk 7→ xm+1−k and ek 7→ em+1−k for 1 ≤ k ≤ m, (24)

and that this mapping relabels each vertex k of G as m + 1 − k to give a distinct projection
graph G′ (in which all arc directions are reversed). Therefore the projected sequence obtained
from (e0, e1, . . . , em) and G is the same as the projected sequence obtained from (e0, em, . . . , e1)
and G′, so the multiplicity of each sequence in S is 2. (This multiplicity is exact, rather than
a lower bound, because by Proposition 2 two projected sequences in S are identical only if their
unprojected m-dimensional arrays are identical under reordering of dimensions, and the only non-
identity permutation mapping of the xk and ek under which f [x1, . . . , xm] is invariant is (24).)
Therefore the number of distinct Golay sequences in S is Hm+1m!/2.

For given (e0, e1, . . . , em), the array (f [x1, . . . , xm]) forms a Golay sequence pair with (g[x1, . . . , xm])
for any of H values of e′0 ∈ ZH . Furthermore, f [x1, . . . , xm] is invariant under the mapping (24)
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but g[x1, . . . , xm] maps to g[x1, . . . , xm] + H
2 (x1 + xm), which is distinct from g[x1, . . . , xm] for

any e′0 ∈ ZH because m > 1. Therefore each distinct m-dimensional array (f [x1, . . . , xm]) forms
an ordered Golay array pair with at least 2H other arrays. By applying the same sequence of
projection mappings to any such pair we see that the number of ordered Golay sequence pairs
of length 2m over ZH is at least 2H times the corresponding number of distinct Golay sequences
(using Proposition 2 to rule out the possibility that two distinct m-dimensional array pairs project
to the same sequence pair in S), namely 2H ·Hm+1m!/2 = Hm+2m!

In the language of Section 2, the final paragraph of the proof of Theorem 9 shows that |E(A)| =
2H for each constructed Golay sequence A = (a[x]). The use of “at least” in the final sentence of
the proof is required, because two such sequences could have the shared autocorrelation property
(as do the sequence pairs of Theorem 12).

Now the algebraic normal form of a sequence (f [x]) of length 2m over ZH is the unique function
f ′(x1, . . . , xm) : Zm

2 → ZH satisfying

f ′(x1, . . . , xm) = f [xm + 2xm−1 + · · ·+ 2m−1x1] for all (x1, x2, . . . , xm) ∈ Zm
2 .

(The sequences [0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], and [0, 1, 0, 1, 0, 1, 0, 1] of length 8 over ZH

have algebraic normal form x1, x2, and x3 respectively; note some authors use a different labelling
convention for these sequences.) The algebraic normal form of the Golay sequence pair (a[x])
and (b[x]) of Theorem 9 is immediate, as stated in Corollary 10; the case H = 2h of this corollary
was given by Davis and Jedwab [4, Theorem 3], and Paterson [17] showed that the case H 6= 2h

holds without modification to the construction in [4]:

Corollary 10. Let m ≥ 1 be integer and let e′0, e0, e1, . . . , em ∈ ZH . For any permutation π of
{1, . . . ,m}, the sequences of length 2m over ZH having algebraic normal form

a(x1, . . . , xm) :=
H

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ekxπ(k) + e0,

b(x1, . . . , xm) :=
H

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ekxπ(k) + e′0 +
H

2
xπ(1)


form a Golay sequence pair, called a standard Golay sequence pair in [7].

(In general, let (a[x]) be a sequence of length 2m over ZH , obtained from an array (f [x1, . . . , xm])
of size (m) over ZH by applying m−1 successive projection mappings. Stage 3 of the proof of The-
orem 9, together with Corollary 10, illustrates how to find the algebraic normal form a(x1, . . . , xm)
of (a[x]): interpret the array arguments x1, . . . , xm as variables of the algebraic normal form, and
represent the projection mappings using a permutation π.)

Theorem 9 deals with the special case in which the m-dimensional Golay array pair (23) is
projected to 1 dimension. We now extend the argument used in Stage 3 of the proof of Theorem 9,
in order to describe the projection to j dimensions for any j satisfying 1 ≤ j ≤ m. (In Theorem 11,
0! takes its usual value 1, and the binomial coefficient

(
r
i

)
for integer r and i is 1 for i = 0 and is 0

for nonzero i > r.)

Theorem 11. Let m and j be integers satisfying m > 1 and 1 ≤ j ≤ m. The number of j-
dimensional Golay arrays of volume 2m over ZH that can be derived from affine offsets and pro-
jection mappings, after taking all input array pairs in Theorem 7 to be trivial, is

1
2

(
Hm+1nm−j(m) +Hdm/2e+1tm−j(m)

)
,
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and the corresponding number of ordered Golay array pairs is at least 2H times this number, where

ni(m) := i!
(
m

i

)(
m− 1
i

)
for i ≥ 0,

ti(m) :=

{
ni/2(bm/2c) · 2i/2 for i even,

0 for i odd.

Proof. From Stage 2 of the proof of Theorem 9, the arrays (f [x1, . . . , xm]) and (g[x1, . . . , xm]) of
size (m) over ZH given by

f [x1, . . . , xm] :=
H

2

m−1∑
k=1

xkxk+1 +
m∑

k=1

ekxk + e0,

g[x1, . . . , xm] :=
H

2

m−1∑
k=1

xkxk+1 +
m∑

k=1

ekxk + e′0 +
H

2
x1

 for all (x1, . . . , xm) ∈ Zm
2

form a Golay array pair, for any choice of affine offset variables e′0, e0, e1, . . . , em ∈ ZH . Let Gi(m)
be the set of all graphs comprising m distinguished vertices and i arcs arranged as disjoint directed
paths. Consider applying any m − j successive projection mappings to the m-dimensional Golay
array (f [x1, . . . , xm]). Each resulting j-dimensional array of volume 2m over ZH is a Golay array
by Theorem 1, and can be represented by the pair ((e0, e1, . . . , em), G) for some G ∈ Gm−j(m) (see
Section 3).

Let S be the multiset of j-dimensional Golay arrays arising in this way, as ((e0, e1, . . . , em), G)
ranges over all Hm+1|Gm−j(m)| values in Zm+1

H × Gm−j(m). We now show that each array in S
occurs with multiplicity 1 or 2. As before, f [x1, . . . , xm] is invariant under the mapping

xk 7→ xm+1−k and ek 7→ em+1−k for 1 ≤ k ≤ m.

For a given G ∈ Gm−j(m), let G′ ∈ Gm−j(m) be the graph obtained by relabelling each vertex k
as m + 1 − k, for 1 ≤ k ≤ m. Since this relabelling corresponds to the mapping xk 7→ xm+1−k,
we see that the array represented by the pair ((e0, e1, . . . , em), G) is the same as the array repre-
sented by the pair ((e0, em, . . . , e1), G′). The multiplicity in S of the array represented by the pair
((e0, e1, . . . , em), G) is therefore 1 if

(e1, . . . , em) = (em, . . . , e1) and G = G′, (25)

and 2 otherwise. (These multiplicities are exact, by a similar argument to that used in the proof
of Theorem 9.)

We claim firstly that |Gi(m)| = ni(m), so that the total number of pairs ((e0, e1, . . . , em), G) ∈
Zm+1

H ×Gm−j(m) is Hm+1nm−j(m). We claim secondly that the number of G ∈ Gi(m) satisfying
G = G′ is ti(m), so that the number of pairs ((e0, e1, . . . , em), G) satisfying (25) isHdm/2e+1tm−j(m).
It follows that the number of distinct arrays in S (each of which is a j-dimensional Golay array of
volume 2m over ZH) is

1
2

(
Hm+1nm−j(m)−Hdm/2e+1tm−j(m)

)
+Hdm/2e+1tm−j(m),

as required. The corresponding number of ordered Golay array pairs is at least 2H times this
number, by a similar argument to that used in the proof of Theorem 9 (replacing “sequence of
length 2m” by “j-dimensional array of volume 2m”).

For the first claim, each graph in Gi(m) has exactly m distinguished vertices and i arcs arranged
as disjoint directed paths. Consider enumerating the graphs inGi(m) by choosing i of them vertices
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to have an outgoing arc and then assigning to each of these i arcs in turn any destination vertex
that has no incoming arc so that no loop or cycle is created. This gives |Gi(m)| =

(
m
i

)
(m− 1)(m−

2) · · · (m− i) = ni(m), establishing the first claim.
For the second claim, each graph G ∈ Gi(m) satisfying G = G′ has i arcs that are arranged in

pairs joining vertex k1 to k2 and vertex m+ 1− k1 to m+ 1− k2. If i is odd then clearly there are
no such graphs, so take i to be even. In the case that m is odd, vertex (m+ 1)/2 cannot have any
incoming or outgoing arc. We can therefore enumerate all such graphs as follows:

1. choose a graph in Gi/2(bm/2c) on the first bm/2c vertices (where bm/2c ≥ 1 since m > 1);

2. for each of the i/2 arcs of this graph independently, choose to leave the destination vertex k
unchanged or to replace it by m+ 1− k, so that each arc now joins a vertex k1 ≤ bm/2c to
a vertex k2;

3. for each arc joining a vertex k1 ≤ bm/2c to a vertex k2, add the arc joining vertex m+1−k1

to m+ 1− k2.

The total number of such graphs is therefore ni/2(bm/2c) · 2i/2 = ti(m) for i even, establishing the
second claim.

In the sequence case j = 1, the counts in Theorem 11 for m > 1 match those in Theorem 9
(noting that tm−1(m) = 0 for m > 1, reflecting the fact that no graph G ∈ Gm−1(m) satisfies
G = G′ for m > 1). We can obtain explicit forms for the j-dimensional Golay array pairs counted
in Theorem 11, by representing each graph G ∈ Gm−j(m) using a permutation σ and applying
Proposition 2 to the array pair (23). The Golay array count given in Theorem 11 has been verified
computationally for 3 ≤ m ≤ 6 and 1 ≤ j ≤ m.

7 Golay array pairs from length 8 cross-over pairs over Z4

In this section we use Theorem 7 to obtain Golay array pairs of length 2n over Z2h that are
different from those counted in Theorem 11. Since Theorem 7 captures the result of applying a
construction method (Theorem 5) recursively, we require at least one input Golay array pair of
length 2m over Z2h not contained in Theorem 11. The only source of such array pairs currently
known is the 512 cross-over Golay sequence pairs of length 8 over Z4:

Theorem 12 (Fiedler and Jedwab [6]). Each of the sequence pairs in the set

P := {(A,B), (A,B∗), (A∗,B), (A∗,B∗), (B,A), (B,A∗), (B∗,A), (B∗,A∗)}

is a cross-over Golay sequence pair of length 8 over Z4, where

A := [0, 0, 0, 2, 0, 0, 2, 0],
B := [0, 1, 1, 2, 0, 3, 3, 2].

All 512 ordered cross-over Golay sequence pairs of length 8 over Z4 occur as affine offsets of the 8
pairs in P , using Lemma 8.

Theorem 12 simplifies the results of [6], showing how 4 · 42 = 64 standard Golay sequences give
rise to 8 · 43 = 512 non-standard Golay sequence pairs. In Theorem 14 we will take c ≥ 1 of the
m+1 input Golay array pairs for Theorem 7 to be from the set P , and the rest of the input pairs to
be trivial. In preparation, we show that certain related input arrays for Theorem 7 lead to related
output arrays; the proof consists of straightforward algebraic manipulation.
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Lemma 13. Let the output array (fm) of Theorem 7 for the input Golay array pairs

((ak[ik]), (bk[ik])) for k = 0, 1, . . . ,m

be (hm[i0, . . . , im, x1, . . . , xm]). Then the output array (fm) of Theorem 7 for the input Golay array
pairs

((am−k[im−k]), (b∗m−k[im−k])) for k = 0, 1, . . . ,m

is (hm[i0, . . . , im, xm, . . . , x1]).

Theorem 14. Let m, j and c be integers satisfying m ≥ 1 and 1 ≤ c ≤ m+ 1 and 1 ≤ j ≤ m+ c.
The number of j-dimensional Golay arrays of volume 8c2m over Z4 that can be derived from affine
offsets and projection mappings, after taking c of the m + 1 input array pairs in Theorem 7 to be
from the set P of Theorem 12 and the remaining m+ 1− c input array pairs to be trivial, is

1
2

[(
m+ 1
c

)
8c4m+c+1nm+c−j(m+ c) +

(
dm/2e
c/2

)
8c/24dm/2e+c/2+1tm+c−j(m+ c)

]
,

and the corresponding number of ordered Golay array pairs is at least 8 times this number, where

ni(m) := i!
(
m

i

)(
m− 1
i

)
for i ≥ 0,

ti(m) :=

{
ni/2(bm/2c) · 2i/2 for i even,

0 for i odd.

Proof.

Stage 1. The sequence of Golay array pairs (a0, b0), . . . (am, bm) used as input to Theorem 7 is de-
termined by the indices k of the c non-trivial array pairs, and by which of the 8 possible values
in P each non-trivial array pair takes. Therefore the number of allowed values for this se-
quence of pairs is

(
m+1

c

)
8c. Apply Theorem 7 to any of these choices of input array pairs, then

remove any dimensions equalling 1 and relabel the remaining array arguments ik as i1, . . . , ic
in order to give a Golay array pair ((f ′[i1, . . . , ic, x1, . . . , xm]), (g′[i1, . . . , ic, x1, . . . , xm])) of
size (c) × (m) over Z4.

Stage 2. For any choice of affine offset variables e′0, e
′
1, . . . , e

′
c, e0, e1, . . . , em ∈ Z4, apply Lemma 8

with r = m+c to give the Golay array pair ((f [i1, . . . , ic, x1, . . . , xm]), (g[i1, . . . , ic, x1, . . . , xm])),
where

f [i1, . . . , ic, x1, . . . , xm] := f ′[i1, . . . , ic, x1, . . . , xm] +
c∑

k=1

e′kik +
m∑

k=1

ekxk + e0,

g[i1, . . . , ic, x1, . . . , xm] := g′[i1, . . . , ic, x1, . . . , xm] +
c∑

k=1

e′kik +
m∑

k=1

ekxk + e′0

 (26)

for all (i1, . . . , ic, x1, . . . , xm) ∈ Zc
8 × Zm

2 .

Stage 3. Define Gi(m) as in the proof of Theorem 11, recalling that |Gi(m)| = ni(m) and that, for
m > 1, ti(m) is the number of graphs in Gi(m) that are invariant under the vertex relabelling
k 7→ m + 1 − k for 1 ≤ k ≤ m. Consider applying any p := m + c − j successive projection
mappings to the (m + c)-dimensional Golay array (f [i1, . . . , ic, x1, . . . , xm]). Each resulting
j-dimensional array of volume 8c2m over Z4 is a Golay array by Theorem 1, and can be
represented by the triple

(((a0, b0), . . . , (am, bm)), (e′1, . . . , e
′
c, e0, e1, . . . , em), G) (27)

for some G ∈ Gp(m+ c), where we label the vertices of Gp(m+ c) as x1, . . . , xm and i1, . . . ic.
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Let S be the multiset of j-dimensional Golay arrays arising in this way, as the triple (27) ranges
over all its (

m+ 1
c

)
8c · 4m+c+1np(m+ c) (28)

allowed values. By Lemma 13, f ′[i1, . . . , ic, x1, . . . , xm] is invariant under the mapping

(ak, bk) 7→ (am−k, b
∗
m−k) for 0 ≤ k ≤ m; ik 7→ ic+1−k for 1 ≤ k ≤ c;

xk 7→ xm+1−k for 1 ≤ k ≤ m

(where the given mapping of the relabelled array arguments i1, . . . , ic is equivalent to the map-
ping “ik 7→ im−k for 0 ≤ k ≤ m” for the original array arguments i0, . . . , im). Therefore
f [i1, . . . , ic, x1, . . . , xm] is invariant under the mapping

(ak, bk) 7→ (am−k, b
∗
m−k) for 0 ≤ k ≤ m; ik 7→ ic+1−k and e′k 7→ e′c+1−k for 1 ≤ k ≤ c;

xk 7→ xm+1−k and ek 7→ em+1−k for 1 ≤ k ≤ m,

and (by reference to the proof of Theorem 9) under no other non-identity permutation mapping of
the xk, ek, ik and e′k. Therefore the multiplicity in S of the array represented by the triple (27)
is 1 if

((a0, b0), . . . , (am, bm)) = ((am, b
∗
m), . . . , (a0, b

∗
0)) and

(e′1, . . . , e
′
c, e1, . . . , em) = (e′c, . . . , e

′
1, em, . . . , e1) and G = G′,

}
(29)

and 2 otherwise, where G′ ∈ Gp(m+ c) is the graph obtained from G under the vertex relabelling

xk 7→ xm+1−k for 1 ≤ k ≤ m; ik 7→ ic+1−k for 1 ≤ k ≤ c. (30)

We claim that the number of triples (27) satisfying (29) is 0 for c odd,(
dm/2e
c/2

)
8c/24dm/2e+c/2+1tp(m+ c) for c even.

Since the total number of allowed triples (27) is given by (28), and p = m + c − j, the number
of distinct arrays in S (each of which is a j-dimensional Golay array of volume 8c2m over Z4) is
then as required. The corresponding number of ordered Golay array pairs is at least 8 times this
number, by a similar argument to that used in the proof of Theorems 9 and 11.

To prove the claim, note that the first equality of (29) forces the indices of the c non-trivial
array pairs taken from the set P to occur in pairs {k,m − k} (where k 6= m/2 for m even,
since no array pair (a, b) from the set P satisfies b = b∗). Therefore when c is odd there are no
triples (27) satisfying (29). We therefore take c to be even, and determine the required number of
triples (27) as the product of three terms, one for each of the equalities in (29). The number of
allowed sequences ((a0, b0), . . . , (am, bm)) satisfying the first equality of (29) is

(dm/2e
c/2

)
8c/2, which

gives the first term. The number of (m + c + 1)-tuples (e′1, . . . , e
′
c, e0, e1, . . . , em) satisfying the

second equality of (29) is 4dm/2e+c/2+1, which gives the second term. For the third term, relabel
the vertices i1, . . . , ic/2, x1, . . . , xm, ic/2+1, . . . , ic of the graph G ∈ Gp(m+ c) as 1, . . . ,m+ c in that
order. The mapping (30) then becomes

k 7→ m+ c+ 1− k for 1 ≤ k ≤ m+ c,

and so the number of graphs G ∈ Gp(m+ c) satisfying G = G′ is tp(m+ c), which gives the third
term of the product. Multiplication of these three terms establishes the claim.
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We can obtain explicit forms for the j-dimensional Golay array pairs counted in Theorem 14, by
representing the graph G ∈ Gm+c−j(m+c) using a permutation σ and applying Proposition 2 to the
array pair (26); this array pair can itself be obtained explicitly by substituting the input Golay array
pairs (ak, bk) taken from the set P into Theorem 7. The Golay array count given in Theorem 14 has
been verified computationally for 1 ≤ j ≤ m+ c, where (m, c) ∈ {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2)}.

The case j = 1 of Theorem 14, giving Golay sequence pairs, is of particular interest:

Corollary 15. Let m and c be integers satisfying m ≥ 1 and 1 ≤ c ≤ m + 1. The number of
(non-standard) Golay sequences of length 2m+3c over Z4 that can be derived from affine offsets and
projection mappings, after taking c of the m + 1 input array pairs in Theorem 7 to be from the
set P of Theorem 12 and the remaining m+ 1− c input array pairs to be trivial, is

22m+5c+1

(
m+ 1
c

)
(m+ c)!,

and the corresponding number of ordered Golay sequence pairs is at least 8 times this number.

The case c = 1 of Corollary 15 gives a count of 22m+6(m + 1)(m + 1)! non-standard Golay
sequences over Z4 and at least 22m+9(m+1)(m+1)! non-standard Golay pairs over Z4, in agreement
with [7, Corollary 11]. The subcase of the case c = 1, in which the single cross-over Golay sequence
pair is either the input (a0, b0) or the input (am, bm) of Theorem 7, is related to the constructions
for “near-complementary” sequences given by Parker and Tellambura [16, Theorem 6] and Schmidt
[18, Theorem 7] (see [7, Section 8] for details).

We can combine the counts for Golay sequences and Golay sequence pairs given in Theorem 9
and Corollary 15:

Corollary 16. Let n > 3 be an integer. There are at least

b(n+1)/4c∑
c=0

22n−c+1

(
n− 3c+ 1

c

)
(n− 2c)!

Golay sequences of length 2n over Z4, and at least 8 times this number of Golay sequence pairs of
length 2n over Z4.

Proof. Write n = m+3c, where m and c are any integers satisfying m ≥ 1 and 0 ≤ c ≤ m+1 (and
m > 3 if c = 0). There are 22n−c+1

(
n−3c+1

c

)
(n− 2c)! Golay sequences of length 2n over Z4, and at

least 8 times as many Golay sequence pairs: use Corollary 15 for c ≥ 1, and Theorem 9 for c = 0.
We claim that any two Golay sequences arising from different values of c and c′ are distinct. The
required lower bound on the number of Golay sequences and Golay sequence pairs then follows by
summing over the allowed values of c, noting that n = m+3c ≥ (c−1)+3c = 4c−1; the condition
m = n− 3c ≥ 1 imposes an extra constraint only when n = 3, which is excluded.

It remains to prove the claim. Let F = (f [i1, . . . , ic, x1, . . . , xm]) be a Golay array of size
(c) × (m) over Z4, obtained by taking exactly c ≥ 0 of the m+ 1 input array pairs in Theorem 7
to be from the set P of Theorem 12 and the others to be trivial, followed by addition of an affine
offset (as described in (26) for c ≥ 1 and in (23) for c = 0). Similarly let G be a Golay array of
size (c′) × (m′) over Z4 formed by taking exactly c′ of m′ + 1 input array pairs in Theorem 7 to
be from the set P and the others to be trivial, where c′ > c and n = m+ 3c = m′ + 3c′.

Suppose, for a contradiction, that the same Golay sequence of length 2n is obtained under
projection from F and under projection from G. It follows from Proposition 2 that G can be
obtained from F by applying 2(c′ − c) successive projection mappings. Set r := 3(c′ − c− 1) and
reorder dimensions so that we can write G = (g[i1, . . . , ic′ , xr+4, . . . , xm]), where by Proposition 2

g[i1, . . . , ic, 4x1 +2x2 +x3, . . . , 4xr+1 +2xr+2 +xr+3, xr+4, . . . , xm] = f [i1, . . . , ic, x1, . . . , xm]. (31)
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Now Theorem 7 associates an input array pair (ak, bk) with array arguments ik and xk (prior to
removal of any dimensions equalling 1 and subsequent relabelling of the ik). In the construction
of G from Theorem 7, let the array argument i := 4x1 +2x2 +x3 be associated with an input array
pair (a, b) ∈ P and the array argument xj , where j ≥ r + 4. Write g[i, xj ] for the 8 × 2 array
obtained from g[i1, . . . , ic′ , xr+4, . . . , xm] by setting all of the ik except i to 0, and all of the xk

except xj to 0. From Theorem 7 and (26) we have

g[i, xj ] = (b[i]− a[i])xj + a[i] + e′i+ ejxj + e0 for 0 ≤ i < 8 and 0 ≤ xj < 2

for some affine offset variables e′, ej , e0, so that

g[i, 1]− g[i, 0] = b[i]− a[i] + ej for 0 ≤ i < 8. (32)

Now let f [x1, x2, x3, xj ] be the 2× 2× 2× 2 array obtained from f [i1, . . . , ic, x1, . . . , xm] by setting
all of the ik to 0, and all of the xk except x1, x2, x3, xj to 0. By (31),

g[4x1 + 2x2 + x3, xj ] = f [x1, x2, x3, xj ]

and so
g[4x1 + 2x2 + x3, 1]− g[4x1 + 2x2 + x3, 0] = f [x1, x2, x3, 1]− f [x1, x2, x3, 0].

But the left hand side is quadratic in x1, x2 and x3 for any cross-over pair (a, b) ∈ P (as can
easily be verified from (32) and the algebraic normal forms given in [7, Theorem 2]), whereas the
right hand side is linear in x1, x2 and x3 (by examination of Theorem 7). This gives the required
contradiction.

The smallest value of n for which the minimum Golay sequence count in Corollary 16 exceeds
the previously known minimum count [7, Table 1] is n = 7, for which the value c = 2 gives an
additional 214 · 3! Golay sequences. The minimum Golay sequence and sequence pair counts in
Corollary 16 are known by exhaustive search to be exact for lengths 2, 4, 8 and 16, but it is not
currently known whether they are exact for larger lengths of the form 2n.

8 Summary

We have argued that the natural viewpoint for a Golay complementary sequence is as a projection
of a multi-dimensional Golay array. We have given a greatly simplified and completely elementary
process for constructing Golay array and sequence pairs:

1. construct suitable Golay array pairs from lower-dimensional Golay array pairs using Theo-
rem 7;

2. take affine offsets of these Golay array pairs using Lemma 8; and

3. take projections of the resulting Golay array pairs to lower dimensions, using a directed graph
representation and Proposition 2.

We have used this process to construct new infinite families of Golay sequences of length 2m

over Z4. All Golay arrays and sequences of volume 2m over Z2h obtainable under any known
method can be constructed in this way (see Theorems 11 and 14). In particular we have found the
full generalisation of [7, Example 6] that was sought in [7].

Howard, Calderbank and Moran [10] have recently given an alternative explanation for the
existence of binary Golay sequences of length 2m in terms of the (2m + 1)-dimensional discrete
Heisenberg-Weyl group over the field Z2. Although this makes a connection between such Golay
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sequences and higher-dimensional structures, it does not mention Golay arrays, does not construct
new Golay sequences, and is restricted to a binary alphabet. Our methods relate m-dimensional
Golay arrays to Golay arrays of all lower dimensions, apply to any alphabet ZH (where H is
necessarily even), and construct and enumerate infinite new families of Golay array and sequence
pairs.

We can also now answer a question posed in [6]: why do standard Golay sequences of length 2m

over ZH occur as complete cosets of the first-order Reed-Muller code (that is, their algebraic normal
form in the variables x1, . . . , xm contains a term

∑m
k=1 ekxk + e0 for arbitrary ek ∈ ZH), whereas

the non-standard examples of Li and Chu [12] and their derived Golay sequences do not? The
structural explanation sought in [6] is found in the form of the inputs to Theorem 7. We have
seen in Theorem 9 and Corollary 10 that standard Golay sequence pairs can be constructed from
trivial input array pairs, and that the affine offsets provided by Lemma 8 give complete first-order
cosets under the mapping to algebraic normal form. In contrast, the known non-standard pairs are
constructed from at least one cross-over Golay sequence pair of length 8 over Z4, which crucially
cannot be represented as a 2× 2× 2 (or even 4× 2) Golay array. Application of Lemma 8, followed
by the mapping to algebraic normal form, then gives an incomplete subset of the first-order Reed-
Muller code.

The algebraic normal form of any length 8 sequence is expressed using three Z2 variables, and it
is easy to check from [7, Theorem 2] that, for any cross-over Golay sequence pair (a, b) of length 8
given in Theorem 12, the expression a+a∗− b− b∗ is linear in these three variables. It follows from
the form of Theorem 7 that all the non-standard Golay sequences counted in Corollary 15 (which
are constructed using Theorem 7) have a cubic algebraic normal form. However, even in the case
c = 1, this algebraic normal form is unwieldy (and rather uninformative) when written explicitly,
as seen in [7, Theorem 10].

We conclude with some open questions:

1. How can the three-stage construction process of this paper be used to simplify or extend
known results on the construction of Golay sequences in other contexts, such as 16-QAM
modulation [1], a ternary alphabet {1, 0,−1} [3], or quaternary sequences whose length is
not a power of 2 [2]?

2. What underlies the shared autocorrelation property that gives rise to the length 8 quaternary
cross-over Golay sequence pairs of Theorem 12? Are there further examples of Golay pairs of
length 2m over Z2h having the shared autocorrelation property? If so, this would allow the
construction of further infinite families of non-standard Golay sequences and pairs via a new
cross-over of autocorrelation functions.
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