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Modular Arithmetic
Using Low Order Redundant Bases

M.G. Parker and M. Benaissa, Member, IEEE

Abstract —N-digit, radix-a bases are proposed for VLSI

implementation of redundant arithmetic, mod m, where aN

m
= ±1,

a j

m
π ±1, for 0 < j < N and m is prime. These bases simplify

arithmetic overflow and are well suited to redundant arithmetic. The
representations provide competitive, multiplierless T-point Number
Theoretic Transforms, mod m, where T | N or T | 2N.

Index Terms —Modular arithmetic, redundant number systems,
number theoretic transforms, residue and polynomial number systems.

————————   ✦   ————————

1 INTRODUCTION

MODULAR integer arithmetic can realize VLSI signal processing,
fault-tolerant and error-correction systems, using Number Theo-
retic Transforms (NTTs) [5] and/or Residue and Polynomial Resi-
due Number Systems (RNS/PRNS) [3], [8]. This correspondence

proposes low order redundant a-bases, defined over suitable inte-

ger moduli, m, with m prime and a N

m
= ±1, a j

m
π ±1 for 0 < j

< N (i.e., a has order N, mod m, where N is low), where a is also
the integer radix of the basis, mod m, and *

m
 means, “take the

residue of *, mod m.” These “low order” a-bases simplify arith-
metic overflow, mod m, and utilize Redundant Number Repre-
sentations (RNR) to limit carry-propagation and allow parallel
computation of digit sums/products [6]. An integer, e, mod m, is

represented using N radix-a digits, di,

e d d qi
i

i

N

m

i= Œ = - + +
=

-

Â a a ga a
0

1

0 1 1D D, , , ,Km r ,     (1)

where q specifies redundancy and g is chosen to centralize the digit-

set, Da, about zero, (i.e., g = -Î(|a| - 1 + q)/2˚), a, q, g, and N are all

integers and a can be negative. The ensuing discussion refers to

“RNR(qc) a-radix bases,” where q indicates redundancy and c that

the digit-set, Da, is centralized about zero. Highly-efficient T-point
NTTs, mod m, are possible using these bases, where T|2N, and the
ideas generalize arithmetic and transforms over Fermat and Mer-
senne moduli [5] to nonbinary radices. In [9], only radix-3 is consid-
ered and a generalized form of Leibowitz arithmetic is proposed, not
explicitly using redundant representations. In [2], a generalization of

the form M = (qpn - 1)/(qn - 1) is proposed, but only developed for
radix-2 and, again, RNR is not explicitly used. It is argued here that
RNR is well matched to nonbinary radices for VLSI implementation
of modular arithmetic using conventional binary hardware.

2 CHOICE OF MODULUS, m, SUPPORTING A LOW
ORDER BASIS

Restricting ourselves to m prime, m is chosen so that,

m Na ± 1e j . (2)

In general the wordlength of (1), (N digits), is overlarge unless m is

a large prime factor of aN ± 1. Cyclotomic factorization [1] speci-

fies a aN
kk N

- = ’1 F ( )  where,

a a a a a aN
N

N
N N- = + =1 11 2 2F F F Fb g b g b g b g  for  prime

a aN
N N+ =1 22F b g  for  a power of 2 ,    (3)

where F1(a) = a - 1, F2(a) = a + 1, and Fk(a) is the kth cyclotomic
polynomial in a. Primality is not guaranteed for FN(a) or F2N(a),
as specified in (3). For the cases of (3), an element, mod m, is repre-
sented by a radix-a low order basis of minimum or marginally
overlarge N-digit wordlength and

m f f m fN N= F Fa ab g b g or  prime,   a small integer,  ideally 12 ,  (4)

A few examples for positive a are given in Table 1 (there are many
more). For a given m and N prime, an equivalent -a basis always
exists, as FN(a) = F2N(-a), so negative a is implicit in Table 1.

3 REDUNDANT NUMBER REPRESENTATIONS (RNR)
Consider arithmetic, mod m, using centralized redundant digit-

sets, Da, with redundant input and output. Using binary logic to
represent each digit-set, redundancy, (q > 0), must at least double

the number of bits per digit-set if a = ± 2. For |a| not a power of
2, redundancy is achieved without any bit increase at all. For in-

stance, with a = ± 7, RNR(0c) and RNR(1c) both require three bits
per digit-set, i.e., redundancy demands no extra bits. In general,

q £ -2 2log ( )a a  is possible without any bit increase per digit-set.

RNR(1c) limits carry-propagation to three stages for addition and
to three stages for multiplication, which can be reduced to one

stage when a = ±2. With RNR(2c), addition is reduced to two

stages, but still three stages for a = ±2 and, for multiplication,

three stages are required, but only two for a = ±3. Higher redun-
dancies achieve no more reduction in stages for addition or multi-
plication. (The definition of an arithmetic “stage” is clarified by the

ensuing example). Values of a = ±(2w - 1) or ±(2w - 2), for some

positive integer, w, are well-suited to RNR radix-a bases using
binary logic. More generally, using V-state multivalued logic,

(MVL), a is ideally chosen so that,

a = ± - ± -V V ww w1 2e j e j  or   a positive integer, .        (5)

It is not essential that a satisfies (5), especially for large a. Equation
(5) only identifies where RNR optimally matches V-state hardware.

4 ADVANTAGES OF LOW ORDER RNR BASES

Prime moduli, m, given by (4), are chosen over which to specify N-

digit, radix-a, RNR(qc) bases. The combination of low order basis
and RNR ensures limited carry-propagation and only one long end-

around carry for each arithmetic stage, mod m, as a N

m
= ±1.

Wrap-arounds can be localized using two-planar VLSI layout, or
by “folding” each stage back on itself in a single plane, to realize

fully-systolic solutions. Fully-centralized digit-sets (i.e., |a| - 1 + q
even) ensure trivial implementation of wrap-around inversion
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when a N

m
= -1, by simply inverting digit-set states, and is an

alternative to the Leibowitz technique [9], both for a = 2 or other-

wise. If |a| - 1 + q is odd then full digit-set centralization is im-
possible. However it is still possible, using digit-set offsets, to
trivially absorb wrap-around digit inversion, and the use of offsets
will be demonstrated in the ensuing example. It is expected that
corresponding VLSI implementations will be advantageous in
terms of area, speed and throughput, even if wordlengths are
marginally overlarge. Wordlengths can sometimes be reduced

from N digits to N - 1 digits, prior to transmission, as follows:

If m = FN(a), N prime, then m i

i

N
=

=

-Â a
0

1
. Using RNR(1c) the range,

r, covered by the first N - 1 digits is r mi

i

N
= ¥ = -

=
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0

2
1. If m =

F2N(a), N prime, then m i

i

N
= -

=
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0

1
. Using RNR(1c) the range

covered by the first N - 1 digits is r mi

i

N
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=

-Â a a( )
0

2
1 . In

both cases r is sufficient to represent every element, mod m, using

N - 1 digits.

Bit-wordlengths for redundant (“R”), transmission (“t”) and con-
ventional (“c” = Èlog2(m)˘) representations are given in Table 1 for
each value of m, along with suggested redundancy parameters, g and
q. Table 1 shows that it is possible that t = c and, for large a, marginally
less than a power of two, R = c is possible, so wordlengths are not
necessarily increased. If a is not small digit-set arithmetic can be de-
composed over RNS. RNS moduli, pi, will satisfy,

a - + = ’1 q pp i
i

(6)

TABLE 1
EXAMPLE LOW ORDER REDUNDANT BASES, MOD m

a N m g q R t c pi:qp

2 8 F16(2) = 257 -1 1 16 9 9 -
2 16 F32(2) = 65,537 -1 1 32 17 17 -
2 7 F7(2) = 127 -1 1 14 7 7 -
2 7 F14(2) = 43 -1 1 14 6 6 -
3 7 F7(3) = 1,093 -1 1 14 12 11 -
3 7 F14(3) = 547 -1 1 14 12 10 -
3 13 F13(3) = 797,161 -1 1 26 24 20 -
3 13 F26(3) = 398,581 -1 1 26 24 19 -
3 16 F32(3)/2 -1 1 32 30 25 -
3 32 F64(3)/2 -1 1 64 62 50 -
3 64 F128(3)/2 -1 1 128 126 101 -
5 5 F10(5) = 521 -3 2 15 12 10 2,3:1

5 13 F13(5) -3 2 39 36 29 2,3:1

6 4 F8(6) = 1,297 -3 2 12 12 11 -
6 7 F7(6) = 55,987 -3 2 21 18 16 -
6 11 F22(6) -3 2 33 30 26 -
7 4 F8(7)/2 = 1,201 -3 1 12 12 11 -
7 5 F5(7) = 2,801 -3 1 15 12 12 -
7 13 F13(7) -3 1 39 36 34 -
7 17 F34(7) -3 1 51 48 46 -

11 4 F8(11)/2 = 7,321 -6 2 16 16 13 3,4:1

15 3 F3(15) = 241 -7 1 12 8 8 -
15 3 F6(15) = 211 -7 1 12 8 8 -
23 5 F5(23) = 292,561 -12 1 25 20 19 2,3,4:1

24 4 F8(24) = 331,777 -12 2 20 20 19 4,7:4

27 3 F3(27) = 757 -14 2 15 10 10 4,7:1

29 4 F8(29)/2 = 353,641 -15 2 20 20 19 2,3,5:1

59 3 F3(59) = 3,541 -30 2 18 12 12 3,4,5:1

120 2 F4(120) = 14,401 -60 1 14 14 14 2,7,9:6

124 2 F4(124) = 15,377 -62 1 14 14 14 2,7,9:2

126 2 F4(126) = 15,877 -63 1 14 14 14 2,5,13:4
R = red¢ bit-w¢len, t = trans¢ bit-w¢len, c = È log2(m) ˘ = conv¢ bit-w¢len
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where qp is the redundancy using digit-set RNS. Suggested pi and
qp are given in Table 1. This method is developed in [4].

EXAMPLE: Let a = 6, q = 1, and g = -3. Then a radix-6, RNR(1c)
multiplier can be proposed, as shown in Fig. 1, with the data
flow shown in Fig. 2, where,

a a b b c c
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Fig. 1. Six-basis RNR(1c) multiplier, mod m|(6
N
 + 1), N odd.
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In Fig. 1, circled “+” (+ x), “¥,” “-,” imply addition (+
offset x), multiplication, and negation, respectively, and
squared “+x” implies offset by x. The three stages of digit-
set multiplication are as follows,

Stage Carry Sum Computation
1 3 3 3 3
2 1 2 4 1
3 1 0 2 3

3 3

3 3 3 3 1 2 6 4 1
1 2 4 1 1 0 6 2 3

2 3 1 0 3 3
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But 6 1N

m
= - , so the most-significant-digit, (msd), car-

ries are inverted on wrap-around. For stage 1, the msd out-

put carry digit-set, {-1, º, 2}, is inverted to become {-2, º, 1}.

An offset of 1 is then added to {-2, º, 1} to give {-1, º, 2} =

{-2, º, 1} + 1, before passing the digit to the input carry of
the least-significant-digit, (lsd), of stage 2. Similarly the msd

output carry digit-set, {-1, 0}, of stage 2 is inverted and off-

set by -1 to give {-1, 0} = -1{-1, 0} - 1. The two offsets, 1 and

-1, cancel to give a partial product without offset.
The three stages of digit-set addition of partial products

are as follows,
Stage Carry Sum Computation

4 3 3 3 3 3
5 0 1 3 3 3
6 1 0 2 3

3 3

3 3 3 3 3 0 1 6 3 3
0 1 3 3 3 1 0 6 2 3

1 0 2 3 3 3

- + - +
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- -
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- + - + Œ + -
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Stages 4 and 5 offset the sum by 3 6
0

1
( )i

i

N

=

-Â  and

-
=

-Â 3 6
0

1
( )i

i

N
, mod m, respectively. These offsets cancel. Once

again the msd carries undergo inversion and offset, and these
offsets also cancel. The final product output, c, therefore un-

dergoes no offset. All offsets and inversion are implicitly im-
plemented in the associated cells and are without cost. Figs. 2

and 3 show the data flow through a multiplier where m|(aN +

1), N odd and even, respectively, where the circled “-” imply
digit-set negation. The negation is implicitly implemented and
costs nothing. Fig. 1 is shown for N odd.

Examples for m|(aN - 1) are implemented in a similar fashion
but without negation on wrap-around.

5 APPLICATIONS

Consider the NTT,

X k x n L m T LL T nk

n

T

m

=
=

-

Â a ae j
0

1

  where  has order  and , mod ,  (7)

Using an N-digit, low order, redundant basis, with L = N or 2N, (7)
will require multiplication implemented as (skew) cyclic rotations
and T(T - 1) additions. These NTTs are highly efficient and can, in
turn, realize efficient T-point (skew) cyclic convolutions or PRNS,
mod xT ± 1, using the same arithmetic. Furthermore, longer
blocklength NTTs can be decomposed into smaller length T-point
NTTs using a combination of the Prime Factor Algorithm and
repeated applications of Rader’s algorithm, as detailed in [7].
These NTTs compete with Fermat and Mersenne Transforms, pro-
vide a wide choice of moduli and many more NTT blocklengths.
Identical blocklength NTTs over different moduli, mi, can be com-
bined using RNS, to increase dynamic range.

6 ASSESSMENT AND CONCLUSION

Low order redundant bases have been defined over suitable prime
moduli, m, to simplify arithmetic overflow and limit carry-

Fig. 2. Data flow for a-basis multiplier, mod m|(aN
 + 1), N odd.
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propagation, mod m. Redundancy is suited to non-power-of-two
radices. VLSI implementations of adders and multipliers, mod m,
will be symmetric and systolic, as demonstrated by the example,
which also highlights the implicit inclusion of offset and negation.
The area and latency of a multiplier will be O(N2) and O(N), re-
spectively, where N is the wordlength in digits, and the circuits
can be pipelined down to an arithmetic “stage,” where carries
propagate over two or three arithmetic “stages.” As a comparison,
the Montgomery modular multiplier of [10] achieves approxi-
mately the same figures for complexity. However, the systolic cells
of [10] will be larger and slower as each cell also has to realize a
modular reduction. Moreover there is some unavoidable post-
processing for [10]. On the other hand, [10] does not need to ac-
commodate wrap-around interconnections, has less restrictions on
choice of modulus, m (and is therefore more suited to crypto-

graphic applications), and, unlike the circuits of this paper, is fully
systolic in a single VLSI plane. Future work will apply the low
order basis to Montgomery multipliers. Low order redundant
bases are ideal for defining T-point NTTs, mod m, T|N or T|2N,
where the radix, a, has order N or 2N, mod m, (N prime or 2N, a
power of 2). These arithmetic and transform modules can realize a
wide range of signal processing, fault-tolerant, and error-
correction systems.
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