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Abstract

In this thesis we work with message-passing decoding on self-dual F4-additive
codes. We present and disprove the a decoding scheme proposed by Parker et
al. in an unpublished manuscript [17]. We refer to this scheme as Embedded
Factor Graph decoding. The method of Discriminative decoding is developed
and described in this work as a replacement for the embedded decoding. It is
shown to be exact for trees. We implement a simulation tool for simulating
message-passing decoding. The tool can simulate both the embedded decoding
and the discriminative decoding. Some results from executing simulations on
trees and graph with cycles are presented.
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Chapter 1

Introduction

1.1 The Problems of Communication

Alice and Bob are each holding a tin-can connected by a string; it’s their
tin-can telephone. Any message spoken into a can on the one side carries along
the string and into the other. They use it to convey important messages,
but unfortunately, this mode of communication is fallible. Transmission
interference can at any moment disturb their communication, as the string
is vulnerable to external influences, such as cats and wind. It may also
have inherent flaws that cannot be fixed nor changed. They need to reliably
communicate from afar, but all they have is a tin-can telephone. What should
Alice and Bob do to ensure they get their messages across? It is possible for
them to increase the energy of their signals by yelling. Another instinctive
strategy would be to repeat messages over and over again until certainty is
reached in that the other party has received them. But how loud of a signal
will the string transmit - is there a limit to volume? And how long are Alice
and Bob willing to stand there repeating themselves? Dealing with noise
imposed by communication channels is one of the fundamental problems of
communication. Decades of research have been dedicated to devise tools
and techniques aiding Alice and Bob, and it is safe to say that yelling and
repetition are not very efficient strategies.

Forward error correction (FEC) is a technique for limiting errors during
transmission. The main idea is to use error correcting codes to strengthen
transmissions, such that they can withstand noisy conditions. Using one of
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Figure 1.1: Alice and Bob communicating via a tin-can telephone.

them increases the probability of Alice and Bob getting their messages across.
All error correcting codes share a common design: add redundancy. Take the
message you wish to send and add some strategic redundancy, such that the
original message can be pieced together in the event of transmission distortion.
The acts of adding redundancy and piecing messages together are formally
called, encoding and decoding, respectively.

For the sake of demonstration, let’s assume Alice and Bob decide to use an
inefficient method of repetition. They encode by enforcing a chosen pattern
on a message and decode by performing majority vote [14] on said pattern.
The pattern they choose to encode with is to repeat each word three times in
a row. Alice sends the following transmission.

“The the the president president president rode rode rode
his his his bicycle bicycle bicycle into into into a a a tree
tree tree”

Bob, knowing the encoding pattern, pays attention to each triplet of words
and listens for what is most common. For example, should he hear the triplet
‘rode rode ode’ he would determine that what Alice meant to say was ‘rode’
and that somewhere along the way noise disturbed the last repetition. For
Bob knows that under reasonable assumption, it is less likely that noise has
disturbed two repetitions as opposed to one. This type of decoding is called
majority vote and is based on the assumption that the majority of received
symbols represents the symbol that was sent. Bob receives the following
erroneous message.



“The the the president president president rode rode rode
his his his bicycle bicycle bicycle into onto into a a a tree
tree me”

The two errors ‘onto’ and ‘me’ are easily handled, because the redundancy
in this case leaves no room for confusion. The majority of the two corre-
sponding triplets are ‘into’ and ‘tree’, respectively. Bob decodes the received
transmission to the message ‘The president rode his bicycle into a tree’.
The redundancy they added to their transmissions guarded their informa-
tion against noise. The main intuition to take away from this example is
that redundancy added by error correcting codes increases the reliability of
communication in the presence of noise.

1.2 A Model of Communication

The need for reliability is not exclusively relevant to conversations on the
phone. All systems that handle data need to do so accurately; this includes
hard drives, CDs, mobile phones, DNA sequencing systems and the deep
space network. Despite differences in function and physical manifestation,
all of these systems can benefit from using error correcting techniques in
the presence of noise. Hence, we abstract away from engineering specific
details and employ a general model of communication, which we depict in
Figure 1.2. Here we see that information flows from Alice – the source,
through the channel and two stages of encoding/decoding, in order to end up
with Bob – the sink. Source coding, or data compression, is the procedure
of transforming the information from Alice into a bit stream. An efficient
representation of her message is achieved by removing redundancy from the
source, while maintaining the most accurate representation of the information
as possible [19]. For our purposes we assume the components of this process
to be managed.

Channel coding, is the process of adding redundancy to Alice’s bit stream
in order to guard against noise [19]. There are two major branches of
channel coding schemes, forward-error-correction (FEC) and request-for-
repeat (ARQ) [20]. In short, ARQ refers to a collection of schemes for
requesting a retransmission once an error has been detected by a code. These
schemes are not included in the text, since we are solely concerned with FEC.
As illustrated by our introductory example, FEC schemes involve detection
and correction of transmission errors by means of error-correcting codes.
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Figure 1.2: Point-to-point communication.

1.3 Graph Codes

The class of codes we work with in this thesis are additive code over F4,
self-dual with respect to the Hermitian inner product. F4 has the elements
{0, 1, ω, ω2}, where ω2 = ω + 1. That is to say, the information Alice and
Bob send using these codes is not given by natural language, nor by a classic
binary representation, but a quaternary representation.

These codes may be interpreted as quantum codes [5], or boolean functions [7].
It is also know that every self-dual F4-additive code is equivalent to a graph
code [9], which are codes that have interpretations as graphs. This has also
been proven in the context of isotropic systems [4, 7], and quantum stabilizer
codes [21]. Definitions and concepts that are relevant for this thesis are given
in the following Chapter.

1.4 Iterative Decoding

In this thesis we aim to find an iterative decoder [19] for self-dual additive
codes over Fn

4 [18]. The general term iterative decoding refers to a class of
algorithms that iteratively solve the problem of decoding; the main principle
of which is to do so by performing local operations of graphical representations
of the code [19]. This technique was first introduced to coding theory by
Gallager’s work on Low-density Parity-check codes (LDPC) [13].

The particular sub-class of algorithms we work with are called message
passing algorithms [23]. They are used to solve a broad range of inference,
optimization, and constraint satisfaction problems far beyond the context
of coding theory. Message passing algorithms operate on structures known
as factor graphs [23], which are visual representations of the factorization



of a global function [16]. These representations are usually bipartite graphs
comprised of factor nodes and variable nodes. The set of variable nodes
represent the entire domain of the global function and factor nodes represent
factorizations of the global function, such that any edge between a variable
node and a factor node indicates that the variable node is a part of the domain
of that factorization. This representation facilitates the decomposition of a
large complex problem into a finite collection of lesser problems.

In particular, we pursue message passing decoding on self-dual F4-additive
codes using the sum-product algorithm (SPA). This generic message passing
algorithm computes the marginals of functions associated with the global
function of a factor graph [16]. When performed on a factor graph representing
the global function of a code, it serves as a tool in error-detection and
error-correction. The marginal values computed provide the foundation for
decoding decisions akin to the ones Bob made when interpreting Alice’s
transmission.

1.5 Structural Overview

In Chapter 2 we give an introduction to the concepts of coding theory, algebra,
and combinatorics relevant for this thesis. In Chapter 3 we present and
disprove the a decoding scheme proposed by Parker et a. in an unpublished
manuscript [17]. In this thesis we refer to this scheme as Embedded Factor
Graph decoding. In Chapter 4, we describe the method of Discriminative
decoding, which was developed in this work as a replacement for the embedded
decoding. At the end of this we provide proof that Discriminative decoding
computes the global marginals for nodes on any tree. In Chapter 5, we describe
the decoding simulation tool developed during the course of this work. It can
be used to simulate both decoding methods of Chapter 3 and Chapter 4. In
Chapter 6, we provide some general results from executing the Discriminative
decoding scheme with the simulation tool of Chapter 5. Finally, in Chapter
7, we conclude our work and describe a direction for further development of
our presented method.





Chapter 2

Theoretical Background

Both modern and classical coding theory depend on elements from algebra and
combinatorics, such as fields and graphs. The beginning of this chapter focuses
briefly on the algebraic structures and graph theoretical notions central to
work of this thesis. In subsequent sections we move on to present our subjects
of inquiry; error correcting codes and message passing decoding. The full
scope of the subjects in this chapter is not covered. There are many books and
papers available to the reader who wishes to explore in-depth explanations.
For our purposes we need only to establish the following.

2.1 Finite Fields, Vector Spaces, and Graphs

The codes we work with are vector spaces – objects with strong algebraic
properties and the decoding methods we use are dependent on graph theory.
Here we give two brief but self-contained presentations of the algebraic
structures and graph theoretical notions important to the work of this thesis.
For more on the topic of algebraic structures the reader is directed to John B.
Fraleigh’s introductory book on abstract algebra [12]. Readers interested in
graphs are directed to the seminal text book on graph theory by Reinhard
Diestel [11].

A vector space requires the algebraic ingredients of a field and a group.
We say that a set G closed under a binary operation ∗, is a group 〈G, ∗〉, if
the following conditions hold:
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1. ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c) (Associativity)

2. ∃e ∈ G ∀a ∈ G : e ∗ x = x ∗ e = x (Identity element)

3. ∀a ∈ G ∃a′ ∈ G : a ∗ a′ = a′ ∗ a = e (Inverse)

A group 〈G′, ∗〉 is a subgroup of 〈G, ∗〉 if G′ ⊆ G and G′ forms a group under
∗. If ∀a, b ∈ G : a ∗ b = b ∗ a, i.e. G is commutative, then we say that 〈G, ∗〉 is
abelian. The notion of a commutative group provides the grounds for defining
a field. We say that a field, 〈F,+, ∗〉, is a set F under the operations addition
and multiplication, such that the following holds.

1. F is a commutative group under +, with identity element 0. (Commutativity under +)

2. F \ {0} is a commutative group under ∗. (Commutativity under *)

3. ∀a, b, c ∈ F : a ∗ (b + c) = a ∗ b + a ∗ c (Distributivity)

The field 〈F,+, ∗〉 is defined over two operations, and as such, we denote the
additive identity of F as 0 and the multiplicative identity by 1. There are
many interesting and useful properties to both fields and groups, but for now
we are only interested in them as means to understand vector spaces, which
we shall now define.

Definition 2.1.1. Given a field F = 〈F,+, ∗〉, abelian with respect to V =
〈V,+〉, and a multiplicative operation ∗ between F and V, we say that V is a
vector space over F if V satisfies the following axioms.

1. ∀a ∈ F ∀v ∈ V : a ∗ v ∈ V

2. ∀a, b ∈ F ∀v ∈ V : (a ∗ b) ∗ v = a ∗ (b ∗ v)

3. ∀a ∈ F ∀v, u ∈ V : a ∗ (u + v) = a ∗ u + a ∗ v

4. ∀a, b ∈ F ∀v ∈ V : (a + b) ∗ v = a ∗ v + b ∗ v

5. ∀v ∈ V : 1 ∗ v = v ∗ 1 = v, where 1 ∈ F

Any element a ∈ F with respect to a vector space is a referred to as a scalar
and may be combined with any vector v ∈ V by multiplication, as seen in
Item 1. of Definition 2.1.1. This is called scalar multiplication. Furthermore,
we call the addition on V, +, vector addition. Given the vectors v1, v2, ..., vk
and the scalars a1, a2, ..., ak, we say that (2.1) is a linear combination.

a1v1 + a2v2 + ... + akvk (2.1)

The sum of two linear combinations is also a linear combination. The same
holds for the scalar multiplication of a linear combination. We say that a



set of vectors v1, v2, ..., vk are linearly independent if for all scalars aj ∈ F
a1va + a2v2 + ... + akvk = 0 implies that a1 = a2 = ... = ak = 0 [20].

Definition 2.1.2. F is a field and V = 〈V,+〉 is a vector space over F, and
S ⊆ V . If S = 〈S,+〉 satisfies the conditions of Definition 2.1.1, then we say
that S is a subspace of V.

A graph is a pair of sets G = (V,E) such that E ⊆ V × V . The elements
of V are called nodes (or vertices, or points), and the elements of E are called
edges. Generally, graphs are depicted as dots with lines between them. The
dots represent nodes and the lines represent edges. The number of nodes in
G is called the order and is denoted |G|, or |V |. We denote the number of
edges in G by |E|. Both the order and |E| may in principle be finite, infinite,
or even uncountably infinite. We only work with graphs of a finite order,
therefore G denotes a finite graph, unless otherwise is stated.

Figure 2.1: A butterfly graph, K1 on 2P2, and a tree.

Any two nodes connected by an edge are neighbors. For any n ∈ V , we denote
its set of neighbors by Nn. The degree of a node n ∈ V , deg(n), is the number
of edges incident on n. By the definition of a graph provided above we have
that deg(n) = |Nn| for all n ∈ V 1. A path is a non-empty graph P = (V,E)
such that V = {n0, n1, ..., nk} and E = {(n0, n1), (n1, n2), ..., (nk−1, nk)},
where all ni are distinct. If the edge (n0, nk) also exists then P is a cycle.
The length of any path or cycle is equal to the number of edges.

Let G = (V,E) and G′ = (V ′, E ′) be graphs. G′ is a subgraph of G, if V ′ ⊆ V
and E ′ ⊆ E. Furthermore, we say that G is acyclic, or a tree, if it does
not contain a cyclic subgraph. The butterfly graph in Figure 2.1 has two
cycles. G is complete if there exists an edge between every pair of nodes
ni, nj ∈ V . We call complete graphs and subgraphs cliques. Lastly, G is said
to be bipartite if V can be partitioned into two sets, V ′ and V ′′, such that for
all (ni, nj) ∈ E we have that ni ∈ V ′ and nj ∈ V ′′, or vice versa.

1Multigraphs allow loops, which are edges that begin and end in the same node, and
they allow several edges between two nodes. [11]



2.2 Block Codes

Block codes are a class of error-correcting codes that add redundancy to
blocks of information at a time. An encoding function maps k-length messages
to n-length codewords. We define a block code, C, to be the set of n-length
codewords, i.e. the codomain of encoding function. A linear code, denoted
[n, k], is a code of length n and rank k over a field Fq, such that it is a linear
subspace of the vector space Fn

q [14]. Linear codes have the property that
any linear combination of any two codewords yields another codeword [15].
Any linear code may be expressed by means of two matrices; the generator
matrix and the parity-check matrix. The k × n generator matrix, G, is a
basis for the vector space of codewords, and may consist of any set of k
linearly independent codewords. It defines the encoding function such that,
for any message m of length k, we have by the multiplication, mG = c,
a codeword of length n. The parity-check matrix, H, defines an indicator
function for determining code membership. It is a (n− k)× n parity-check
matrix consisting of any set of n− k linearly independent row vectors of the
dual code of C, such that for all c ∈ C, we have that cH> = 0. Generally, there
are several potential generator matrices and parity-check matrices [14].

Definition 2.2.1 (Dual code). Given a [n, k] code C spanned by the k × n
generator matrix G, we have that the code spanned by the (n− k)× n parity-
check matrix H is the generator matrix of the [n, n − k] code C⊥, dual to
C [14].

Definition 2.2.2 (Self-orthogonal code [14]). A code C is self-orthogonal if
C ⊆ C⊥.

Definition 2.2.3 (Self-dual code [14]). A code C is self-dual if C = C⊥.

We define the Hamming distance between two codewords to be the total
number of digits in which they differ [15]. The minimum distance, or simply
distance, d, of a code C is said to be the least number of digits with which any
two codewords can differ. A code of minimum distance d, denoted [n, k, d],
can detect d − 1 errors and correct (d − 1)/2 errors. The terminology of
Hamming distance stems from the work of Richard W. Hamming, who in the
late 40s developed error correcting codes out of spite for a relay computer he
had access to only on weekends [22].

“Two weekends in a row I came in and found that all my stuff had
been dumped and nothing was done.. And so I said, ‘Damn it, if the
machine can detect an error, why can’t it locate the position of the
error and correct it?” [22, p.vii]



Example 2.2.1. For the [7, 4, 3] Hamming code, we have the following gen-
erator matrix, G, and parity-check matrix, H.

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 H =

 1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1



2.2.1 Graph Codes

Given a vector space Fn
4 over F4 = {0, 1, ω, ω2}, where ω2 = ω + 1, we define

an additive code C over Fn
4 , as an additive subgroup of Fn

4 for some 0 ≤ k ≤ 2n,
such that |C| = 2k [9]. C may be defined by a k × n generator matrix G,
whose rows additively span C.

The Hermitian inner product [9] of two vectors, u, v ∈ F4, u = (u0, u1, ..., un)
and v = (v0, v1, ..., vn) is given by:

u ? v =
n∑

i=0

uiv
2
i + u2

i vi(mod 2) (2.2)

The dual code C⊥ of C, with respect to the Hermitian inner product, is
C⊥ = {u ∈ Fn

4 |u ? c = 0, forallc ∈ C}. If C = C⊥, then C is self-dual and
we call C a self-dual F4-additive code with respect to the Hermitian inner
product. Two codes are considered to be equivalent if one can be obtained
from the other by some permutation of vector coordinates, or equivalently, a
permutation of the columns of a generator matrix. Two codes C and C ′ are
also equivalent if a generator matrix G of C can be obtained from a generator
matrix G′ of C ′, via an invertible linear transformation G′ = L×G.

Definition 2.2.4 (Graph Code). A graph code is an additive code over F4

that has a generator matrix of the form G = A + ωI, where I is the identity
matrix and A is the adjacency matrix of a simple graph. [9]

Danielsen and Parker showed [9] that all self-dual F4-additive codes with
respect to the Hermitian inner product are equivalent to a graph code. We
occasionally refer to these codes as graph codes, or self-dual F4-additive codes,
instead of referring to their full description.



2.3 The Sum-Product Algorithm

The sum-product algorithm (SPA) is a generic message-passing algorithm for
performing optimization, inference, and constraint satisfaction on graphical
models, such as Bayesian networks, Trellis graphs, Markov models, factor
graphs [16, 23, 19]. It is a generalization of several algorithms; the For-
ward/Backward algorithm, the Viterbi algorithm, Belief Propagation on
Bayesian networks, among others.

At the receiving end of a transmission the algorithm serves as a tool for
error-detection and error-correction. The execution of SPA in our context is
dependent upon the indicator function defined by the parity-check matrix
H and soft information provided by the channel. With H we construct a
factor graph representing the constraints of the code and by performing SPA
on it we compute the marginals of each bit of the codeword, which are used
to make decisions about the state of each transmitted bit. Given an acyclic
factor graph, the marginals computed by the SPA are exact, otherwise it
computes approximates of the marginals [16, 20].

Assume C is a code of length n defined over F4. We describe the decoding
scenario using the sum-product algorithm as follows. Alice sends a transmis-
sion c ∈ C over the channel. Bob receives the vector r ∈ Fn

4 , which may or
may not be a codeword of C. Additionally, he receives n vectors of length
four containing soft information from the channel. Each length-4 vector
contains probability values representing the beliefs regarding the state of
a bit of in the originally transmitted message x, given the observed vector
r. This information is the basis for our error-detection and error-correction
process. We denote the channel information for each ri of the received vector
by si = (ei, fi, gi, hi), such that:

s0 = P (xi = 0| ri)
s1 = P (xi = 1| ri)
s2 = P (xi = ω| ri)
s3 = P (xi = ω2| ri)

Message-passing begins after initial beliefs have been provided. However,
before examining this procedure, we introduce the factor graph and the mes-
sage calculation procedures performed by each type of node during message-
passing.



2.3.1 Factor Graphs

Factor graphs graphically represent the factorization of global functions. They
provide a suitable structure upon which to compute the marginals of func-
tions, such as joint mass probability functions, by exploiting the distributive
law [16, 19]. Consider the function g(X), where X = {x0, x1, x2, x3, x4}, such
that:

g(X) = f0(x0)f1(x1)f2(x0, x1, x2)f3(x2, x3)f4(x2, x4) (2.3)

From this factorization of g(X), we can construct a factor graph, G. We let
every variable of xi ∈ X constitute a variable node, and every factorization fi
constitute a factor node. Moreover, for every fi(Xi) and every xj ∈ Xi there
is an edge (fi, xj) in G.

f0 f1 f2 f3 f4

x0 x1 x2 x3 x4

Figure 2.2: Factor graph G of g(X).

Given the parity-check matrix, H, of a code C, we construct a factor graph
of C. Every row of the matrix represents a factor node and every column
represents a variable node, such that, for all factor nodes fi and variable
nodes xj, there is an edge between them if and only if the entry aij of the
parity-check matrix is a 1. Using the parity-check matrix of Example 2.2.1
we obtain the factor graph of Figure 2.3.

2.3.2 Message Calculation

Factor nodes. Each factor node fi represents an indicator function fi(Xi)
defined by a truth table of size 4|Xi|, where Xi ⊆ X. Messages sent by fi
are interpreted as fi’s beliefs concerning the state of the recipient. They are
length-4 messages computed entirely on the basis of the information fi has
received from all of its neighbors – excluding the recipient. We define the



f0 f1 f2

x3x2x1x0 x4 x5 x6

Figure 2.3: Factor graph of function in Example 2.2.1.

message calculation performed by fi in terms of its truth table. Consider the
scenario where f0(x0, x1, x2) is sending a message to x0 and has received the
following messages from x1 and x2, representing their beliefs about their own
state.

m(x1,f0) =


a
b
c
d

 m(x2,f0) =


e
f
g
h



m(f0,x0) =


ae + af + be + bf
cg + ch + dg + dh
ae + af + be + bf
cg + ch + dg + dh


For the general case messages from fi to any xj ∈ Ni are given by (2.4) [16],
where the notation

∑
x̃j

denotes the sum of products over all values of

xj ∈ {0, 1, ω, ω2}.

m(fi,xj) =

(∑
x̃j

f(Xi)
∏

xk∈Ni\xj

m(xk,fi))
)

(2.4)

Variable Nodes. Messages passed by variable nodes are considered to be
beliefs about themselves. For xj to send a message to fi, it simply takes the
pointwise product of all messages it has received from neighbors other than
fi. This message is given by (2.5) [16]. This message then becomes equivalent
of xj telling fi what everyone else believes about him.



x2 x1 x0 f0

e a p0 1 ae
e a p1 0 ae
e a pω 1 ae
e a pω2 0 ae
e b p0 1 be
e b p1 0 be
e b pω 1 be
e b pω2 0 be
e c p0 0 ce
e c p1 1 ce
e c pω 0 ce
e c pω2 1 ce
e d p0 0 de
e d p1 1 de
e d pω 0 de
e d pω2 1 de
f a p0 1 af
f a p1 0 af
f a pω 1 af
f a pω2 0 af
f b p0 1 bf
f b p1 0 bf
f b pω 1 bf
f b pω2 0 bf
f c p0 0 cf
f c p1 1 cf
f c pω 0 cf
f c pω2 1 cf
f d p0 0 df
f d p1 1 df
f d pω 0 df
f d pω2 1 df

f0 x0 x1 x2

ag 0 p0 a g
ag 1 p1 a g
ag 0 pω a g
ag 1 pω2 a g
bg 0 p0 b g
bg 1 p1 b g
bg 0 pω b g
bg 1 pω2 b g
cg 1 p0 c g
cg 0 p1 c g
cg 1 pω c g
cg 0 pω2 c g
dg 1 p0 d g
dg 0 p1 d g
dg 1 pω d g
dg 0 pω2 d g
ah 0 p0 a h
ah 1 p1 a h
ah 0 pω a h
ah 1 pω2 a h
bh 0 p0 b h
bh 1 p1 b h
bh 0 pω b h
bh 1 pω2 b h
ch 1 p0 c h
ch 0 p1 c h
ch 1 pω c h
ch 0 pω2 c h
dh 1 p0 d h
dh 0 p1 d h
dh 1 pω d h
dh 0 pω2 d h

Figure 2.4: Truth table of f0(x0, x1, x2).



m(xj ,fi) =

( ∏
fk∈Nj\i

m(fk,xj)

)
(2.5)

2.3.3 Message Scheduling

It is possible to use the SPA to compute single marginals, but we only describe
the scenario where each marginal is computed, as we are interested in the
marginal of each bit of the received codeword. If the factor graph in question
is cycle-free, i.e. is a tree, then the algorithm is exact and the marginal values
always converge [23]. Otherwise, the algorithm is not guaranteed to be exact.
When cycles are present one runs the risk of getting stuck in an infinite loop,
if the values do not converge inside the cycle. [23, 19] Furthermore, cycles
may amplify false information by reverberating assumptions. We will explain
the message scheduling for trees and graphs with cycles that may be used in
this thesis.

Trees. Choose an arbitrary node as the root node - either factor or variable.
Begin message-passing at leaf nodes and propagate up towards the root. After
the root has received messages from each child, begin message-passing from
root through the rest of the tree towards the leaves. When the leaves have
received messages, then one can calculate the marginals of each variable by
multiplying the incoming and the outgoing messages of a single edge incident
on each variable node. [16]

Cycles. Here we exploit an iterative approach with no natural termination,
and the general procedure [16] is as follows. Assume initially that an identity
message has been sent on every edge in each direction. Thereafter, we iterate
over each edge of the graph and pass messages in both directions, until the
values have converged, or a decided upon stop criteria is met. We say that
one iteration of the decoding has been performed once messages have been
passed on every edge.



Chapter 3

Embedded Factor Graph
Decoding

Developing a decoding scheme for self-dual F4-additive codes, or graph codes,
is motivated by that fact they have been identified as quantum error correction
codes [6, 18]. The Embedded Factor Graph decoding scheme was proposed
in an unpublished manuscript by Parker et al. [17]. Its strategy is to perform
message passing decoding with the sum-product algorithm on a factor graph
implicitly represented in the graph of these codes.

The first section of this chapter is dedicated to describing the manner in which
factor graphs are represented, or embedded, in graph codes. Followed by a brief
account of message scheduling. In the second section of this chapter we show
that messages sent by embedded factor nodes are consistently ambiguous —
they convey uncertainty with respect to the state of the recipient. We end this
chapter by arguing that this approach is does not lead to a decoding decision
due to the ambiguity of messages propagated during message passing.

3.1 Factor Graph Embedding

In embedded factor graph decoding we define two structural levels; the graph
of the hermitian self-dual F4-additive codes and the embedded factor graph
described by it. Here we give a precise description of the embedded factor
graph. Assume a graph code, C, of length n described by the parity check
matrix H = ωI+A. From A we have the graph G = (VG, EG), where |VG| = n.
Let FG = (VFG, EFG) denote the factor graph of G, such that |VFG| = 2n

17



x0 f0

v0

f1 x1

v1

x2f2
v2

Figure 3.1: The graph G of C with the embedded factor graph FG.

and |EFG| = 2|EG|+ n.

For each vertex vi ∈ VG we associate two nodes in VFG: a variable node xi

and a factor node fi. We call them associates and say they are embedded
into v. The associates are given the same index as the vertex in which they
are embedded. In order to distinguish between structural levels, we refer to
the vertices of VG explicitly as meta nodes, and the nodes of VFG as variable
nodes and factor nodes.

Between each associate of a meta node we draw the edge, (xi, fi) ∈ EFG. The
rest of their respective neighborhoods are defined by the hermitian constraint
associated with their meta node. Meaning, for each edge (vi, vj) ∈ EG, we
have two undirected edges (xi, fj), (xj, fi) ∈ EFG.

Example 3.1.1. Here we have the parity check matrix, H, of the code C, in
graph form. From H we construct the graphs in Figure 3.1.

H =

 ω 1 1
1 ω 0
1 0 ω



As a consequence, we have that each fi is described by the same hermitian con-
straint as their meta node, i.e. the i-th row of H. Consider the example 3.1.1,
here we see that f1 is described by (1, w, 0). This means that f1(x0, x1) = 1
if and only if (x0, x1, 0) ? (1, w, 0) = 0, see figure 3.1.



x0 x1 f1

0 0 1
0 1 0
0 ω 1
0 ω2 0
1 0 1
1 1 0
1 ω 1
1 ω2 0
ω 0 0
ω 1 1
ω ω 0
ω ω2 1
ω2 0 0
ω2 1 1
ω2 ω 0
ω2 ω2 1

Table 3.1: The indicator values of f1 from Example 3.1.1.

3.1.1 Message Scheduling

The embedded decoding scheme involves performing the well known sum-
product algorithm on FG, where message scheduling is governed by the
edges of G. First, soft information is given to each xi ∈ VFG by the channel,
thereafter initial messages are passed between all neighbors. Once this setup
has been performed, we iterate over edges (vi, vj) ∈ EG until a given stop
criteria is met.

For each iteration we pass messages in both directions between meta nodes.
Passing a message from one meta node to another amounts to passing messages
on the embedded nodes of FG. This means that when vi sends a message
to vj, its associates xi and fi pass messages between each other and to their
neighbors fi, xj embedded in vj, respectively. This scheduling may not be
optimal, however, due to the discovery of essential flaws elsewhere in the
method we abandoned the scheme before addressing the issue.



3.2 Proof of Ambiguity

In this section we show that the embedded factor graph decoding scheme
presented in the previous section is unsound for any F4-additive code, self-
dual with respect to the hermitian inner product. We claim that the scheme
cannot compute the marginals of the code bits, as the messages passed by
factor nodes are consistently ambiguous. As a consequence, message-passing
decoding on embedded factor graphs produces a propagation of uncertainties,
rather than a propagation of beliefs.

We say that a message is ambiguous if all values are equal, or if there are two
values competing to be the strongest belief of the message and two values
competing to be the weakest belief of the message. This translates into either
total, or near total, uncertainty on behalf of the sender with regards to the
state of the recipient. It is our finding that all embedded factor nodes are
incapable of sending unambiguous messages. Proof of this is divided into two
sections.

First, we identify a universal structure found in factor nodes of F4-additive
codes. This structure manifests as a particular pattern of indicator values
in the truth tables of the factor nodes. It is here we find the corruption
of the decoding process, as the pattern forces the production of ambiguous
messages. Thereafter, we show how the truth table representation of our
indicator functions may be replaced by decision diagrams similar to those
introduced by Aker [3], which represent boolean functions, where edges are
labeled with the potential variable values. Their purpose is to provide a simple
procedure for determining the output of a boolean function by examining the
values of the of input.

Our diagrams differ in that their purpose is to compute a four-valued message
representing the belief a factor node with regards to a recipient. We refer
to the diagrams in this thesis as quaternary decision diagrams, since they
represent indicator functions of a quaternary domain. We end the chapter by
proving the ambiguity of all factor node messages.

3.2.1 Factor Node Structure

Consider the factor nodes of our embedded graphs, they are constrained by
their respective rows of the parity matrix H (n×n). In other words, the indi-
cator values of their truth tables are derived from their hermitian constraints.
The brute force method of determining these values involves a computation of



size O(4n), as one would have to go through each n-permutation of x ∈ F4 and
calculate the hermitian inner product of the permutation and the constraint.
The equation (3.2) of Lemma 3.2.1 was discovered in an effort to find a more
efficient method of determining indicator values.

f0 x0 x1

1 0 0
0 1 0
1 ω 0
0 ω2 0
.. .. ..
.. .. ..
0 ω ω2

1 ω2 ω2

Figure 3.2: Compressed truth table of f0(x0, x1).

The variables of equation 3.2 refer to the components of the double binary
equation (3.1), which expresses any element x ∈ F4, in terms of elements of
F2 and ω. In Fig.3.3 one may find a table of the double binary equation and
a truth table of f0 with two neighbors. Consider the third row of the truth
table, as an example of (3.2) we see that a0 = 0 and b1 = 0, thus the third
entry of the table is 1.

Lemma 3.2.1. Given the n×n parity check matrix H of any graph code, we
have that the hermitian constraint ri ?v = 0 for the i-th row of H, corresponds
to the following condition on the vector v = ((a0 ⊕ ωb0), ..., (an−1 ⊕ ωbn−1)).

fi = ai ⊕
∑
j∈Ni

bj = 0 (3.2)

x = a⊕ ωb (3.1)

x a b

0 0 0
1 1 0
ω 0 1
ω2 1 1

Figure 3.3: The double binary equation.



Proof. Assume a graph code described by an n× n parity check matrix H.
Let ri be the i-th row of H and v = ((a0⊕ωb0), ..., (an−1⊕ωbn−1)). We show
here that ri ? v = 0 if and only if fi = ai⊕

∑
j∈Ni

bj = 0. Recall the definition

of the Hermitian inner product u ? v =
∑n

i=0 uiv
2
i ⊕ u2

i vi.

v2i = (ai ⊕ ωbi)
2 = a2i ⊕ b2i (ω ⊕ 1) = ai ⊕ ωbi ⊕ bi = vi ⊕ bi (3.3)

ri ? v =
n∑

j=0

rjv
2
j ⊕ r2jvj (3.4)

= ωv2i ⊕ ω2vi ⊕
n∑

j∈Ni

1v2j ⊕ 12vj (3.5)

= ωv2i ⊕ ω2vi ⊕
n∑

j∈Ni

v2j vvj Eq.3.3 (3.6)

= ωv2i ⊕ ω2vi ⊕
n∑

j∈Ni

(vj ⊕ bj)⊕ vj (3.7)

= ωv2i ⊕ ω2vi ⊕
n∑

j∈Ni

2vj ⊕ bj (3.8)

= ωv2i ⊕ ω2vi ⊕
n∑

j∈Ni

bj (3.9)

= ω(vi ⊕ bi)⊕ (ω ⊕ 1)vi ⊕
n∑

j∈Ni

bj Eq.3.3 (3.10)

= ωbi ⊕ vi ⊕
n∑

j∈Ni

bj (3.11)

= ωbi ⊕ (ai ⊕ ωbi)⊕
n∑

j∈Ni

bj (3.12)

= ai ⊕
n∑

j∈Ni

bj (3.13)

(3.14)



Using the indicator value equation (3.2), we want to derive an expression of
the indicator vector of any fi in terms of the size of its neighborhood. Lemma
3.2.2 provides a recursion expressing just that.

Lemma 3.2.2. Let ivi(t) denote the indicator vector of the factor node
fi ∈ FG with |Ni| = t neighbors, then the values of ivi(t) are determined by
the following recursion.

ivi(1) = (1, 0, 1, 0)

ivi(t) = (ivi(t− 1), ivi(t− 1), ivi(t− 1), ivi(t− 1)).

Proof. We conduct proof by induction on the number of neighbors t. Assume
the embedded factor node fi, let its associate be denoted by xi.

In the base case, when t = 1, it is only possible for the associate of fi
to be a neighbor. Therefore, ivi(1) = (1, 0, 1, 0). Induction hypothesis
– assume it holds for all t = n that

ivi(n) = (ivi(n), ivi(n), ivi(n− 1), ivi(n− 1)).

Adding a neighbor to fi corresponds to extending the truth table of fi
by adding a column for the n+ 1 neighbor and repeating the old truth
table for each value of {0, 1, ω, ω2} associated with the new neighbor
n + 1. Let bz denote the b value when xn+1 = z, where z ∈ F4. Given
equation (3.2) we have that:

ivi(n + 1)
= (b0 + ivi(n), b1 + ivi(n), bω + ivi(n), bω2 + ivi(n))
= (0 + ivi(n), 0 + ivi(n), 1 + ivi(n), 1 + ivi(n))
= (ivi(n), ivi(n), ivi(n), ivi(n)

We observe from this pattern that for any neighbor xj of fi there are pairs of
values of xj that coincide with respect to fi’s indicator values. For example
consider the associate of f0 in Fig.3.3, in the first four rows the pairs (0, ω) and
(1, ω2) coincide. This holds true for all rows of the table, and would hold true
even if we gave f0 additional neighbors. The other neighbors of f0 coincide
with respect to the pairs (0, 1) and (ω, ω2). We now define the concept of
strands to denote the values which coincide for a given variable.



Definition 3.2.3. The strands of any variable xj with respect to fi are the two
possible pairs of values, sj,1 and sj,2, that coincide according to the indicator
values of fi. These may be either twisted or separated:

Twisted: s0j = {0, ω} and s1j = {1, ω2}

Separated: s0j = {0, 1} and s1j = {ω, ω2}

Lemma 3.2.4. For any fi, the strands of its associate, xi are twisted. The
strands of any other neighbor are separated.

Proof. Consider the equation (3.2). We see that for any associate xi the
value bi from its double binary are never present, therefore ai will dictate
correspondence with respect to the indicator vector of fi. By examining the
double binary table from figure 3.3 we see that ai = 0 ⇐⇒ (xi = 0∨ xi = ω)
and ai = 1 ⇐⇒ (xi = 1 ∨ xi = ω2).

As for any other variable, we see that only the bj ’s play a role in the equation.
By the same argument as for the associate we have that bj = 0 ⇐⇒ (xj =
1 ∨ xj = 0) and bj = 1 ⇐⇒ (xj = ω ∨ xj = ω2).

3.2.2 Quaternary Decision Diagrams

The quaternary decision diagram of an embedded factor node fi is a directed
acyclic graph representing the set of input that satisfy fi’s hermitian constraint,
upon which messages from fi to xj may be computed. Here we explain
the construction of quaternary decision diagrams and demonstrate their
relationship to the truth tables of embedded factor nodes. In the following
section, we describe how they can be used in message calculation and show
the ambiguity of all factor node messages.

Given an indicator function fi with a neighborhood of size n, we have its
quaternary decision diagram B(fi) = K1,2,2,...,2,1, a complete n + 1-partite
graph directed from right to left, see Figure 3.4. The sink, denoted 1,
represents the 1s from fi’s indicator vector. All other partitions represent
neighbors of fi. The source represents the neighbor of the last column in fi’s
truth table, and the partition to the right of 1 is reserved for the associate
xi.

We describe each partition, a part from the sink, and their outgoing edges in
terms of the indicator vector recursion of Lemma 3.2.2. For any xk positioned
at column t of fi’s truth table we have the following:



1

xi

xi

xj

xj

xk

aj + bj

cj + dj

ak + bk

ak + bk

ck
+
dk

ai + ci

bi + di

Figure 3.4: A generic quaternary decision diagram.

Case 1: If there is another xm at position t + 1, then we let xk’s
partition contain two nodes; xk and xk. The node xk represents the
portions of ivi(t + 1) equal to ivi(t). The node xk represents the
portions of ivi(t + 1) equal to ivi(t).

Let xj denote the neighbor associated with t− 1 partition containing
the nodes xj and xj. From xk we draw the direct weighted edges
(xk, xj, s

0
k) and (xk, xj, s

1
k). From xk we draw the edges (xk, xj, s

1
k) and

(xk, xj, s
0
k). Where, with a slight abuse of notation, we let s0k and s1k

refer to the sum of values from xk’s message pertaining to the elements
of xk’s strands.

The edges from xk and their weights are justified by the indicator vector
recursion ivi(t) = (ivi(t−1), ivi(t−1), ivi(t−1), ivi(t−1). We know for the sub-
portions, ivi(t), of fi’s indicator vector containing ivi(t−1) that fi = 1 implies
that xk ∈ {0, 1} = s0k, therefore we draw the edge (xk, xj, s

0
k). For the portions

of fi’s indicator vector containing ivi(t − 1) we know that fi = 1 implies
that xk ∈ {ω, ω2} = s1k, hence the edge (xk, xj, s

1
k). Conversely for xk, which

represents ivi(t) in ivi(t + 1). For the sub-portions, ivi(t), of fi’s indicator
vector containing ivi(t−1) we have that fi = 1 implies xk ∈ ω, ω2 = s1k, hence
the edge (xk, xj, s

1
k). Similarly for the edge (xk, xj, s

0
k).

Case 2: If there is no other xm at position t + 1, then xk is the source
and its partition contains only the node denoted xk. Let xj denote
the neighbor associated with the t− 1 partition containing the nodes
xj and xj. We draw the directed edges (xk, xj, s

0
k) and (xk, xj, s

1
k).

From Truth Table to QDD In order to demonstrate the relationship
between quaternary decision diagrams and the truth tables of embedded
factor nodes, we construct trees representing the truth tables and show how
editing them produces our decision diagrams. These trees follow the same



construction as binary decision diagrams [3], only with a branching of factor
four since our variables are quaternary.

There are 4n leaf nodes representing the indicator values of fi and
∑n−1

k=0 4k

nodes representing the neighbors of fi. Each level of the tree, except for
the leaves, corresponds to a neighbor of fi. In order to maintain the same
indicator values pattern as in the truth tables of our previous section we
enforce one restriction: let the level of nodes parent to the leaves correspond
to the associate of the factor node. Edges of the tree are directed and weighted
with values from the messages sent to fi by the parent of the edge. Each
path from the root to a leaf corresponds to a row in fi’s truth table.

x1 x0 f0

p0 p0 1
p0 p1 0
p0 pω 1
p0 pω2 0
p1 p0 1
p1 p1 0
p1 pω 1
p1 pω2 0
pω p0 0
pω p1 1
pω pω 0
pω pω2 1
pω2 p0 0
pω2 p1 1
pω2 pω 0
pω2 pω2 1

Table 3.2: Truth table of a factor node with two neighbors.

To obtain a quaternary decision diagram we prune our tree of unnecessary
structure. For our purposes, we only care about paths of the tree that end at
a 1, as the other leaves play no role in the message calculation – all leaf nodes
labeled 0 are removed. Furthermore, there are duplicate subtrees on each
level. The roots of these subtrees are merged together; weights on incoming
edges from the same parent are simply added together.
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x0 x0 x0 x0

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

p0 p 1
p
ω

pω2

p0 p1 pω pω2 p0 p1 pω pω2 p0 p1 pω pω2 p0 p1 pω pω2

1

x0

x0

x1

p0 + pω

p1 + pω 2

p0 + p1

pω + pω2

Figure 3.5: Decision tree of Table 3.2 (top) and its corresponding the QDD
B(f0) (bottom).

3.2.3 Mixed Messages

Here we describe message calculation on QDDs, and use them to show how
messages sent by embedded factor nodes are always ambiguous. Given a
factor node fi we calculate messages by traversing edited versions of B(fi).
Let B(fi)

z
j , where j is of the neighbor xj and z ∈ F4, denote the QDD where

the pz-edges of xj are weighted with 1 and all other edges of xj are weighted
with 0. We then define sp(fi, j, z) to be the sum of all paths from source to
sink on B(fi)

z
j , where paths are interpreted as products of the edge weights

along them. From this we have that any message from fi to xj is given
by:

m(fi,xj) =


sp(fi, j, 0)
sp(fi, j, 1)
sp(fi, j, ω)
sp(fi, j, ω

2)

 (3.15)

Definition 3.2.5. A message is ambiguous if all values are equal, or if there
are two values, a, b ∈ R, competing to be the strongest belief of the message
and two values competing to be the weakest belief of the message.



v0 v1
0 0
1 ω
ω 1
ω2 ω2

Table 3.3: Codespace from Example 3.3.1.

Let m(fi,xj) be an ambiguous message. We say that m(fi,xj) is twisted, if
there are two values a, b ∈ R such that a 6= b and m(fi,xj) = (a, b, a, b). If
m(fi,xj) = (a, a, b, b), then m(fi,xj) is instead called separated.

Theorem 3.2.6. Any message from fi to its associate xi is twisted. Messages
from fi to xj, where j 6= i, are separated.

Proof. For fi’s associate xi we know that sp(fi, i, 0) = sp(fi, i, ω), because the
0-edges and ω-edges of xi are the same. Similarly, sp(fi, i, 1) = sp(fi, i, ω

2),
because 1-edges and ω2-edges are the same.

For any other neighbor of xj 6=i, we have that sp(fi, j, 0) = sp(fi, j, 1), because
their strands are separated, i.e. their 0-edges are the same as their 1-edges.
Likewise, their ω-edges and ω2-edges are the same, therefore sp(fi, j, ω) =
sp(fi, j, ω

2).

3.3 Decoding Example

Here we provide an example of marginals calculated using the Embedded
decoding scheme. Using the code C of Example 3.3.1, we show that the
scheme does not compute the global marginal for v0.

Example 3.3.1. Here we have the parity check matrix, H, of the code C, in
graph form. From H we construct the graphs in Figure 3.6. Below we also
have a table of the entire code space of C.

H =

(
ω 1
1 ω

)

Let the vectors s0 = (a, b, c, d) and s1 = (e, f, g, h) be the soft information
the embedded nodes x0 and x1 receive from the channel, respectively. We



v0

v1

Figure 3.6: K2

know from the previous sections that two messages are sent to x0; m(f0,x0)

and m(f1,x0).

m(f0,x0) =


e + f
g + h
e + f
g + h

 m(f1,x0) =


e + g
e + g
f + h
f + h

 (3.16)

The results from decoding using the embedded scheme is given in (3.17)
by emb(x0). Next to it one may find the global marginals, g(x0), as given
by the table of Example 3.3.1. These two vectors are not equal; the Em-
bedded decoding scheme did not compute the marginals from the global
function.

emb(x0) =


a(e + f)(e + g)
b(g + h)(e + g)
c(e + f)(f + h)
d(g + h)(f + h)

 g(x0) =


ae
bg
cf
dh

 (3.17)

When simulations of the embedded decoding where executed using the simula-
tion tool of Chapter 5., we found similar results on star graphs with n nodes,
where n ∈ {3, ..., 7}. Justified by these simulations and the proof of ambiguity,
we discarded the Embedded approach and moved on to the decoding scheme
of Chapter 4 – Discriminative Decoding.





Chapter 4

Discriminative Decoding

This chapter introduces the Discriminative Decoding scheme, for which we
replaced the Embedded Factor Graph scheme. This scheme is also a message
passing procedure, however it differs in graph structure and with respect
to local operations. We begin with a motivation and a general description
of Discriminative Decoding and move on to describe the local operations
in detail. We end this Chapter by showing that Discriminative decoding is
computes the global marginals for any node on any tree, thus proving it to
be an instance of the sum-product algorithm described in Chapter 2.

4.1 Introduction

In Discriminative decoding, we move away from the embedded factor graph
structure and rely entirely upon the graph of the code as described directly
from the parity check matrix in graph form. Our nodes are simple, and their
relationships are defined by the matrix. However, during message passing
there is a differentiation between messages from leaf nodes and internal nodes,
hence the name Discriminative Decoding. This necessitates that nodes have
certain knowledge about their own neighborhoods. We argue that this does
not compromise the locality of our scheme, as the only knowledge necessary is
whether or not a neighbor is a leaf. An affirmation of whether or note a node
is itself a leaf may easily be reached by any node who has only one neighbor.
Passing along this positive information provides any internal node with a
confirmation of which neighbors are leaves. Any who have not given such a
confirmation message are treated as not-leaves, i.e. internal nodes.
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There are in total four vector products in use during message passing – three
of which we introduce in this work. These products are vital with respect
to the local operations performed by the nodes of our graph. We introduce
them in the next section, but first lets recapitulate the description of our
graph codes and scheduling of messages during message passing decoding on
them.

Graphs and Message Scheduling A graph code of length n is a self-dual
F4-additive code with an n× n parity check matrix of the form H = Γ + ωI,
where Γ is an adjacency matrix and I is the identity matrix [7]. The adjacency
matrix Γ represents a simple, undirected graph with all 0s along its diagonal
[7].

If Γ is the matrix of a graph with cycles, then we iterate over the edges of
the graph and pass messages in each direction. One iteration of the decoding
is complete once each edge has had messages passed in each direction. If Γ is
tree, then we pass messages in two phases. First we pass messages from the
leaves to the root, where each node sends a message to its parent based on the
messages it has received from its children. Thereafter, messages are passed
from the root down towards the leaves. In this phase nodes send messages to
all of their children.

4.2 Vector Products

We use four vector operations in Discriminative decoding. The first being the
pointwise product, denoted ‘·’, where the i-th entry of the product vector is the
product of the i-th entry of both factors, see Definition 4.2.1. The remaining
operations divided straight-straight (dSS), divided straight-cross (dSX), and
twisted straight-cross (tSX) are given in Definitions 4.2.2, 4.2.3, and 4.2.4,
respectively. Each operation takes two vectors of length four and produces a
vector of length 4 where each entry consists of a sum of two products.

Definition 4.2.1. The pointwise product, ·(u, v) : Rn × Rn → Rn, of the
vectors u = (u0, u1, ..., un) and v = (v0, v1, ..., vn) is given by:

·(u, v) =


u0v0
u1v1
...

unvn





Definition 4.2.2. The function divided straight-straight is defined by dSS :
R4 × R4 → R4 such that given the vectors u, v ∈ R4 we have:

dSS(u, v) =


v0u0 + v1u1

v2u2 + v3u3

v0u1 + v1u0

v2u3 + v3u2


Definition 4.2.3. The function divided straight-cross is defined by dSX :
R4 × R4 → R4 such that given the vectors u, v ∈ R4 we have:

dSX(u, v) =


v0u0 + v1u1

v0u1 + v1u0

v2u2 + v3u3

v2u3 + v3u2


Definition 4.2.4. The function twisted straight-cross is defined by tSX :
R4 × R4 → R4 such that given the vectors u, v ∈ R4 we have:

tSX(u, v) =


v0u0 + v2u1

v0u1 + v2u0

v1u2 + v3u3

v1u3 + v3u2


The terms divided, twisted, straight-straight, and straight-cross describe the
interaction between the two input vectors. Figures 4.2, 4.1, 4.3 provide some
illustration to these concepts. Divided and twisted describe which values
of the input vectors are multiplied and summed to form an entry in the
product vector. Straight-straight and straight-cross describe the ordering of
the entries.

v0

v1

v2

v3

u0

u1

u2

u3

v0u0 + v1u1

v2u2 + v3u3

v0u1 + v1u0

v2u3 + v3u2

Figure 4.1: Vector product dSS(u, v)



v0

v1

v2

v3

u0

u1

u2

u3

v0u0 + v1u1

v0u1 + v1u0

v2u2 + v3u3

v2u3 + v3u2

Figure 4.2: Vector product dSX(u, v)

v0

v1

v2

v3

u0

u1

u2

u3

v0u0 + v2u1

v0u1 + v2u0

v1u2 + v3u3

v1u3 + v3u2

Figure 4.3: Vector product tSX(u, v)

4.3 Local Operations

The key aspect of discriminative decoding is the difference in behavior among
leaves and internal nodes when passing a message or computing marginals.
Leaf nodes perform no computations when passing a message. Their only
neighbor is their parent, therefore they merely pass along their soft information.
Internal nodes, on the other hand, discriminate between neighbors who are
leaves and neighbors who are internal nodes. This discrimination effects
the computation of both their marginals and messages. In this section we
focus mainly on the details of message and marginal computations of internal
nodes. The following paragraph is devoted to explaining the corresponding
operations for leaves.

Leaves Whenever a leaf is elicited to pass a message, it passes along its soft
information to its parent. This is the only neighbor it can send a message to
and the soft information is the only belief it has to send. When determining
their own marginals, they take the pointwise product of their soft information
and the belief they have received from their parent.



4.3.1 Internal nodes

The foundation of message and marginal computation for internal nodes lies
in the procedure of computing two products. The product of beliefs sent
by leaves, and the product of beliefs sent by internal nodes, the leaf-product
and the internal-product, respectively. Computing these products for the
sake of a message or a marginal is fundamentally the same, except for the
fact that when computing a message we disregard any beliefs sent by the
recipient. This is so one avoids false amplification of a preexisting belief
belonging to the recipient. The Algorithms 3, 4, 5, and 6 show how the
leaf-product and internal-product are computed by recursive application of
vectors products defined above. We move on to the computation of messages
and marginals.

Passing a Message The computation of a message to a neighbor can be
divided into two stages. First the node in question computes the leaf-product
and the internal-product, while in the process disregarding any messages sent
by the recipient. Thereafter there are two options; if the node in question does
not have any internal neighbors, or if the recipient is its only internal-neighbor,
then it passes along the dSS-product of its own soft information and the
leaf-product. Otherwise, the message is calculated in two steps. First, take
the dSX-product the soft information and the leaf-product. Afterwards, take
the dSS-product of the previous result and the internal-product. Pseudocode
for this procedure may be found in Algorithm 1.

Computing Marginals When computing its own marginals, an internal
node will first produce the leaf-product and the internal-product using all
the messages it has received. Once that is completed, there are three options
with respect to completing the computation of the marginals. The choice of
which depends upon the state of the node’s neighborhood. For, if the node
in question is in the middle of a star graph, i.e. it has no internal neighbors,
then its estimated marginal are given by the pointwise product of its soft
information and the leaf-product. Similarly, if the node in question is not
parent to any leaves, then its estimated marginals are given by the pointwise
product of its soft information and the internal-product. Otherwise, if the
node’s neighborhood consists of both leaves and internal nodes, then its
estimated marginals are given by the pointwise product of its soft information
and the result of performing dSX(leaf-product, internal-product). Algorithm
2 provides pseudocode for this procedure.



Algorithm 1 Pass a message.

Let s be the soft information of the sender.

1: procedure passMessage(Node recipient)
2: leafProduct ← leafProduct(recipient)
3: internalProduct ← internalProduct(recipient)
4:

5: if internalProduct 6= null then
6: message ← dSX(leafProduct, s)
7: message ← dSS(internalProduct, message)
8: recipient.receiveMessage(message)
9: else

10: message ← dSS(leafProduct, s)
11: recipient.receiveMessage(message)

12:

Algorithm 2 Compute marginals.

Let s be the soft information from the channel.

1: procedure marginalize
2: leafProduct ← leafProduct()
3: internalProduct ← internalProduct()
4:

5: if internalProduct == null then
6: marginals ← ·(leafProduct, s)
7: else if (internalProduct 6= null) ∧ (|leaves| == 0) then
8: marginals ← ·(internalProduct, s)
9: else

10: marginals ← dSX(internalProduct, leafProduct)
11: marginals ← ·(marginals, s)

12:



Algorithm 3 Compute the leaf-product of all leaves, except for Node recipi-
ent.

M is the set of all messages from leaf neighbors.

1: function leafProduct(Node recipient)
2: product ← [1, 0, 1, 0]
3: for all mi ∈M do
4: if sender(mi) 6= recipient then
5: product ← tSX(mi, product)

6:

return product

Algorithm 4 Compute the internal-product of all internal nodes, except for
Node recipient.

M is the set of all messages from internal neighbors. R ⊆M is the set of
messages from the recipient. If the recipient is a leaf, then R = ∅.

1: function internalProduct(Node recipient)
2: M ′ ← M \R
3: product ← m′0
4: for all m′i ∈M ′, where i > 0 do
5: product ← dSX(m′i, product)

6:

return product

Algorithm 5 Compute the leaf-product of all leaves.

M is the set of all messages from leaf neighbors.

1: function leafProduct
2: product ← [1, 0, 1, 0]
3: for all mi ∈M do
4: product ← tSX(mi, product)

5:

return product



Algorithm 6 Compute the internal-product of all internal nodes.

M is the set of all messages from internal neighbors.

1: function internalProduct
2: product ← m0

3: for all mi ∈M, where i > 0 do
4: product ← dSX(mi, product)

5:

return product

4.4 Global Marginals for Trees

In this section we show that Discriminative decoding computes the global
marginals for trees exactly. First we examine the leaf-product and the internal-
product produced by Algorithms 5 and 6 to show their sums of products take
on a particular form. Thereafter, we show by induction on the height of the
tree that all internal nodes send messages that satisfy their own constraints.
We use this induction in a final proof concluding that for any tree the global
marginals of the internal nodes and the leaf nodes are computed. By this our
procedure is an instance of the sum-product algorithm for the special case of
graph codes.

4.4.1 Leaf-product and Internal-product

In this section we show that the leaf-product and the internal product maintain
a certain pattern of entries. For the sake of convenience, we name two varieties
of sums of products, the even type and the odd type. A sum of products A is
said to be even with respect to a type of factor, y, if all products of A contain
an even amount of y factors. If it is the case that all products of A contain
an odd amount of y factors, then A is odd with respect to y.

Lemma 4.4.1. Let A be a sum of products containing factors of type x and
y.

1. If A is even wrt. y, then xA is even.

2. If A is even wrt. y, then yA is odd.

3. If A is odd wrt. y, then xA is odd.

4. If A is odd wrt. y, then yA is even.



Proof. Proof of this is trivial.

Lemma 4.4.2. Let A1 and A2 be two sums of products containing factors of
type x and y.

1. If A1 is even and A2 is odd wrt. y, then A1A2 is odd.

2. If A1 and A2 are both either odd or even wrt. y, then A1A2 is even.

Proof. Proof of this is trivial.

We say that a length four vector takes on the even-odd form, if the first and
the third entries are even with respect to a factor of type y and the second and
fourth entries are odd with respect to y. We denote the channel information
of any node vk by the vector sk = (ek, fk, gk, hk). Entries of messages may
be referred to as p0, p1, pω, pω2 values under circumstances when we are not
concerned with where the message comes from.

Leaf-product Here we show that the leaf-product of any node v0 always
takes on the form of even-odd with respect to factors of type p, where
p ∈ {pω, pω2}. Let L0 denote the set of leaves, neighbor to v0. From the base
case |L0| = 1 we have the leaf product, leaves1.

leaves1 =


e1
g1
f1
h1

 =


E1

F1

G1

H1

 (4.1)

Assume for |L0| = n that the leaf product, leavesn, is even-odd with respect
to p. We now add a leaf node, vn+1, to the neighborhood of v0 and show that
the operation tSX(sn+1, leavesn) produces a leaf product, leavesn+1 also is
of even-odd form.

leavesn =


E
F
G
H

 leavesn+1 =


Een+1 + Ffn+1

Fen+1 + Efn+1

Ggn+1 + Hhn+1

Hgn+1 + Ghn+1

 (4.2)

By Lemma 4.4.1 and the induction hypothesis, we have that leavesn+1 is of
even-odd form. The entries l0 and l1 are even and odd with regards to pω
values, respectively. Similarly for l2 and l3 with respect to pω2 values.



Internal-product Let I0 denote the set of internal nodes neighboring v0.
Here we show that the internal-product of any node v0 always takes on the
form of even-odd with respect to factors of type p, where p relates to the
internal neighbors of v0 and p ∈ {pω, pω2}. From the base case |I0| = 1
we have the internal-product, internal1 (4.3), which is the single message
received from vi. We see here that internal1 is trivially even-odd with respect
to p factors of vi.

internal1 =


eiE + fiF
giG + hiH
eiF + fiE
giH + hiG

 =


A1

B1

C1

D1

 (4.3)

Let internaln denote the internal-product that is the result of n messages
from internal nodes. Assume internaln (4.4) takes on the form of even-odd
with respect to p. Let v0 gain an internal neighbor vn+1 and receive the
message m(vn+1,v0) (4.4). From the base case, we know this message to also
be even-odd with respect to p factors.

internaln =


An

Bn

Cn

Dn

 m(vn+1,v0) =


M0

M1

M2

M3

 (4.4)

From Lemma 4.4.2, the base case, and the induction hypothesis, we know that
the product internaln+1 (4.5), is even-odd with respect to p factors.

internaln+1 = dSX(m(vn+,v0), internaln) =


M0An + M1Bn

M0Bn + M1An

M2Cn + M3Dn

M2Dn + M3Cn

 (4.5)

4.4.2 Message Satisfaction for Internal Nodes

Here we prove by induction on the height of the tree d that internal nodes
send messages that satisfy their own constraints. Let vd be the root of a tree
of height d.



Base Case

When d = 1, we have that the neighborhood of v1 consists entirely of leaves.
Any message calculated by v1 follows the steps from Algorithm 1 lines 9.-11.
From Chapter 3, we know the constraints on v1 to be the following:

f1 = a1 +
∑
k∈N1

bk = 0 (4.6)

We see here that if v1 ∈ {0, ω}, then
∑

k∈N1
bk = 0, which is to say that any

sum of products multiplied by e1 or g1 should be even with respect to pω
and p2ω values. Similarly, if v1 ∈ {1, ω2}, then

∑
k∈N1

bk = 1, and any sum
of products multiplied by f1 or h1 should be odd with respect to pω and p2ω
values. When considering the constraints on v1 in relation to the recipient of
a message, vi, we can state (4.6) as the following:

f1 = a1 + bi +
∑

k∈N1\i

bk = 0 (4.7)

Analyzing this equation tells us that when v1 ∈ {0, ω}, then bi =
∑

k∈N1\i bk.

This indicates that if vi ∈ {0, 1}, then
∑

k∈N1\i bk requires an even number

of bk values. For vi ∈ {ω, ω2}, we have that
∑

k∈N1\i bk requires an odd

number of bk values. When v1 ∈ {1, ω2} we know that bi 6=
∑

k∈N1\i bk. This

inequality leads to the conclusion that when vi ∈ {0, 1}, then
∑

k∈N1\i bk
requires an odd number of bk values. Conversely, when vi ∈ {ω, ω2}, an even
number of bk values are required.

These conditions reveal the belief v1 has about vi under its own constraints.
In terms of message calculation, this means that v1’s message should reflect,
for the p0 or p1 entries of the message, any sum of products multiplied by e1
or g1 should be even. Conversely, for sums of products multiplied by e1 or g1
in the pω and pω2 entries of the message. Similar behavior is implied when
we consider the case where bi 6=

∑
k∈N1\i bk

The message (4.8) is the result of executing the Algorithm 1 lines 9.-11., where
leavesv1(i) = (Ei, Fi, Gi, Hi) is the leaf-product not containing information
from vi. By the proof in the previous section, we know leavesvi(i) to be
even-odd with respect to p ∈ {pω, pω2}.



m(v1,vi) =


e1Ei + f1Fi

g1Gi + h1Hi

e1Fi + f1Ei

g1Hi + h1Gi

 (4.8)

We see here that the message reflects v1’s beliefs, as it satisfies v1’s own
constraints in relation to vi. Any product in the message represents a vector
that satisfies the Hermitian constraint. Products in the first entry represent
vectors where vi = 0. In accordance with the aforementioned constraints, and
by the leaf-product proof, we know that sums of products multiplied by e1
are all even, and sums of products multiplied by f1 are all odd. Similarly, the
constraints of v1 are satisfied by the rest of the entries in m(v1,vi).

Induction

Assume for height d = n, that messages sent by vn that satisfy its own
constraint. We now show for height d = n + 1 that vn+1 sends messages that
satisfy its own constraints. We let the set In+1 denote the set of internal
neighbors to vn+1, and the set Ln+1 denote the set of leafs neighbor to vn+1.
We handle two cases here. One where Ln+1 is empty (4.12), and the other
where Ln+1 is non-empty (4.13).

fn+1 = an+1 + bn +
∑

k∈In+1\n

bk = 0 (4.9)

fn+1 = an+1 + bn +
∑

k∈Ln+1\i

bk +
∑

k∈In+1\i

bk = 0 (4.10)

Let the internal-product internaln+1 and the leaf-product leavesn+1 be as
in (4.11). From the leaf-product and the internal-product proofs, we know
both of these vectors to be even-odd with respect to p factors, where p ∈
{pω, pω2}.

leavesn+1 =


E
F
G
H

 leavesn+1 =


Q
R
S
T

 (4.11)



Without Leaves The message from vn+1 to vn as a result of the Algorithm 1
when vn+1 has no leaves is as given in (4.12). The constraint in (4.9) implies
the same even-odd behavior of products as in the base case constraint (4.7),
except we are now dealing with ‘sums of products’ sent by internal nodes.

When vn+1 ∈ {0, ω}, then bn =
∑

k∈Nn+1\n bk. This indicates that if vn ∈
{0, 1}, then

∑
k∈Nn+1\n bk requires an even number of bk values. For vn ∈

{ω, ω2}, we have that
∑

k∈Nn+1\n bk requires an odd number of bk values.

When vn+1 ∈ {1, ω2} we know that bn 6=
∑

k∈Nn+1\n bk. This inequality leads

to the conclusion that when vn ∈ {0, 1}, then
∑

k∈Nn+1\n bk requires an odd

number of bk values. Conversely, when vn ∈ {ω, ω2}, an even number of bk
values are required.

m(vn+1,vn) =


Qen+1 + Rfn+1

Sgn+1 + Thn+1

Ren+1 + Qfn+1

Tgn+1 + Shn+1

 (4.12)

We know from the internal-product proof that internaln+1 is even-odd with
respect to p ∈ {pω, pω2}. We see from (4.12) that vn+1 satisfies its own
constraints when passing a message to vn.

With Leaves The message from vn+1 to vi as a result of the Algorithm 1
when Ln+1 is non-empty is as given in (4.13).

m(vn+1,vn) =


Q(en+1E + fn+1F ) + R(en+1F + fn+1E)
S(gn+1G + hn+1H) + T (gn+1H + hn+1G)
Q(en+1F + fn+1E) + R(en+1E + fn+1F )
S(gn+1H + hn+1G) + T (gn+1G + hn+1H)

 (4.13)

=


en+1(QE + RF ) + fn+1(QF + RE)
gn+1(SG + TH) + hn+1(SH + TG)
en+1(QF + RE) + fn+1(QE + RF )
gn+1(SH + TG) + hn+1(SG + TH)

 (4.14)

Analyzing the constraint (4.10) in the same manner as before gives us the
following.

Lemma 4.4.3. 1. If vn+1 ∈ {0, ω} and vn ∈ {0, 1}, then
∑

k∈Ln+1\i bk =∑
k∈In+1\i bk



2. If vn+1 ∈ {0, ω} and vn ∈ {ω, ω2}, then
∑

k∈Ln+1\i bk 6=
∑

k∈In+1\i bk

3. If vn+1 ∈ {1, ω2} and vn ∈ {0, 1}, then
∑

k∈Ln+1\i bk 6=
∑

k∈In+1\i bk

4. If vn+1 ∈ {1, ω2} and vn ∈ {ω, ω2}, then
∑

k∈Ln+1\i bk =
∑

k∈In+1\i bk

We show entry by entry how the message in (4.13) satisfies the constraints of
vn+1.

Entry 1

i. The product en+1(QE + RF ) represents when vn+1 = 0 and vn = 0.

We know from the internal-product proof that both QE and RF are
products of ‘sums of products’ of the same type with respect to being
even or odd.

ii. The product fn+1(QF + RE) represents when vn+1 = 1 and vn = 0.

We also know that QF and RE are products of ‘sums of products’ that
differ with respect to being even or odd.

iii. Item Entry 1.i. satisfies the 4.4.3.1 and item Entry 1.ii. satisfies the
4.4.3.3

Entry 2

i. The product gn+1(SG + TH) represents when vn+1 = ω and vn = 1.

The internal-product proof gives us that both SG and TH are products
of ‘sums of products’ of the same type with respect to being even or
odd.

ii. The product hn+1(SH + TG) represents when vn+1 = ω2 and vn = 1.

We also know that SH and TG are products of ‘sums of products’ that
differ with respect to being even or odd.

iii. Item Entry 2.i. satisfies the 4.4.3.1 and item Entry 2.ii. satisfies the
4.4.3.3

Entry 3

i. The product en+1(QF + RE) represents when vn+1 = 0 and vn = ω.



We know that QF and RE are products of ‘sums of products’ that
differ with respect to being even or odd.

ii. The product fn+1(QE + RF ) represents when vn+1 = 1 and vn = ω.

The internal-product proof gives us that both QE and RF are products
of ‘sums of products’ of the same type with respect to being even or
odd.

iii. Item Entry 3.i. satisfies the 4.4.3.2 and item Entry 3.ii. satisfies the
4.4.3.4

Entry 4

i. The product gn+1(SH + TG) represents when vn+1 = ω and vn = ω2.

We know that SH and TG are products of ‘sums of products’ that
differ with respect to being even or odd.

ii. The product hn+1(SG + TH) represents when vn+1 = ω2 and vn = ω2.

The internal-product proof gives us that both SG and TH are products
of ‘sums of products’ of the same type with respect to being even or
odd.

iii. Item Entry 3.i. satisfies the 4.4.3.2 and item Entry 3.ii. satisfies the
4.4.3.4

4.4.3 Proof of Global Marginal Computation

We now move on to showing how any node on any tree computes its own
global marginals. We do this by showing that the Algorithm 2 for computing
the marginals satisfies the constraints of the computing node. The complete
argument is as follows; Given that all messages satisfy the constraints of the
sender. If a node satisfies its own constraints while computing the marginals
based on information that satisfies its neighborhood and the rest of the graph,
then its computed marginals will satisfy the global function and will be equal
to the global marginals.



Leaves

For any leaf node vi neighbor to vn, we have the constraint fi = ai + bn = 0.
It follows from the base case of the previous induction that the pointwise
product of vi’s channel information and the message from vn satisfies vi’s
constraint.

Internal Nodes

To show that an internal node satisfies its own constraints when computing
its marginals we consider three types of neighborhoods. The first consists
entirely of leaf nodes, the second consists of internal nodes, and the third is a
combination of both.

Neighborhood of Leaves

Lemma 4.4.4. For any leaf node vi on any graph code, where vn denotes its
parent, we have the following.

vi ∈ {0, ω} ⇐⇒ vn ∈ {0, 1}

vi ∈ {1, ω2} ⇐⇒ vn ∈ {ω, ω2}

Proof. The constraint on any leaf vi, connected to an internal node vn, is given
by the equation fi = ai + bn = 0. If vi ∈ {0, ω}, then ai = 0. The equation fi
is only satisfied if bn = 0, i.e. if vn ∈ {0, 1}. Similarly, if vi ∈ {1, ω2}, then
ai = 1, which means that fi is only satisfied if bn = 1, i.e. if vn ∈ {ω, ω2}.

Lemma 4.4.5. vn is a node with a neighborhood, Nn, consisting entirely of
leaves. Nz denotes the set of neighbors of v0 bearing the value z ∈ F4. We
have the following for all vi ∈ N0.

1. v0 = 0 =⇒ vi ∈ {0, ω} and |Nω| = 2k, where 0 ≤ k ≤ n− 1.

2. v0 = 1 =⇒ vi ∈ {0, ω} and |Nω| = 2k + 1, where 0 < k ≤ n− 1.

3. v0 = ω =⇒ vi ∈ {1, ω2} and |Nω2| = 2k, where 0 ≤ k ≤ n− 1.

4. v0 = ω2 =⇒ vi ∈ {1, ω2} and |Nω2| = 2k + 1, where 0 < k ≤ n− 1.

Proof. Here we demonstrate the lemma for each of the possible values of v0.



Let vn = 0, then an = 0 and bn = 0. For all leaves vi, we have that
ai = 0, since bn = 0. This restricts the possible values of our leaves to
either {0, ω}. Furthermore, since an = 0, we know that

∑
u∈Nn

bu = 0,
which can only happen if there is an even amount of bu = 0. This
corresponds to the requirement that for any codeword where vn = 0,
there is an even amount of ωs, among the remaining vi. It follows
that if vn = 1, i.e. an = 1 and

∑
u∈Nn

bu = 1, that the constraint is
only satisfied if there is an odd amount of ωs.

Let vn = ω, then an = 1 and bn = 1. For all leaves vi, we have that
ai = 0, since bn = 1. This restricts the possible values of our leaves to
either {1, ω2}. We also have that

∑
u∈Nn

bu = 0, which entails that for
any codeword where vn = ω there is an even amount of ω2s. Similarly
for when vn = ω2, i.e. an = 1 and bn = 1, we have that the constraint
is satisfied if there is an odd amount of ω2s.

When vn’s neighborhood consists of only leaves, then vn computes its marginals
by taking the pointwise product of the leaf-product produced by Algorithm 5.
From the leaf-product proof, we know the leaf-product to be even-odd with
respect to factors of type p, where p ∈ {ω, ω2}. It follows from this that the
marginal computation of vn is equal to the global marginals.

Neighborhood of Internal Nodes

Lemma 4.4.6. For any node vn , where Nn consists entirely of internal
nodes and Nz denotes the set of neighbors of vn bearing the value z ∈ F4, the
following holds true.

1. vn ∈ {0, ω} =⇒ |Nω ∪Nω2| = 2k, where k ≥ 0.

2. vn ∈ {1, ω2} =⇒ |Nω ∪Nω2| = 2k + 1, where k ≥ 0.

Proof. The constraint of vn is given by fn = an +
∑

j∈Nn
bj = 0.

If an = 0, then
∑

j∈Nn
bj = 0, which can only be true if there is an

even number of ωs and ω2s. Therefore, if vn ∈ {0, ω}, then the number
of ωs and ω2s must be equal to 2k, where k ≥ 0. If an = 1, then∑

j∈Nn
bj = 1, which can only be true if there is an odd number of ωs

and ω2s. Therefore, if vn ∈ {1, ω2}, then the number of ωs and ω2s
must be equal to 2k + 1, where k ≥ 0.



When vn’s neighborhood consists of only internal nodes, it computes its
marginals by taking the pointwise product of the internal-product produced
by Algorithm 6. From the internal-product proof, we know the internal-
product to be even-odd with respect to factors of type p, where p ∈ {pω, pω2}.
By proof of Lemma 4.4.6, it follows from this that the marginal computation
of vn is equal to the global marginals.

Combined Neighborhood

Lemma 4.4.7. For any node vn on a tree, with the set of leaf neighbors Ln

and the set of internal neighbors In, the following holds true.

fn = an +
∑
k∈Ln

bk +
∑
j∈In

bj = 0 (4.15)

1. vn ∈ {0, ω} =⇒
∑

k∈Ln
bk =

∑
j∈In bj

2. vn ∈ {1, ω2} =⇒
∑

k∈Ln
bk 6=

∑
j∈In bj

Proof. Follows from the double binary vi = ai + ωbi, where ai, bi ∈ F2, and
the constraint (4.15).

In this scenario vn computes its global marginals by taking the pointwise
product of its channel information and the result of dSX(internaln, leavesn).
The operation of taking the pointwise product satisfies vn’s constraints triv-
ially. What is left to show is that dSX produces a vector that satisfies the
implications of Lemma 4.4.7.

leavesv0 =


E
F
G
H

 internalv0 =


Q
R
S
T

 (4.16)

dSX(internaln, leavesn) =


EQ + FR
ER + FQ
GS + HT
GT + HS

 (4.17)



Lemma 4.4.7 is satisfied for the first and third entry, if they consist of products
of ‘sums of products’ like those from Lemma 4.4.2.2, where they are of the
same type. Lemma 4.4.7 is satisfied for the second and fourth entry, if they
consist of products of ‘sums of products’ like those from Lemma 4.4.2.1, where
they differ in type. By Lemma 4.4.2, we have that dSX in (4.16) and (4.18)
satisfy Lemma 4.4.7.

g(v0) =


e0(EQ + FR)
f0(ER + FQ)
g0(GS + HT )
h0(GT + HS)

 (4.18)

We have now shown that Discriminative decoding computes the global
marginals for any node on any tree. By showing Discriminative to com-
pute the global marginals for trees, we show that it is an instance of the
sum-product algorithm described in Chapter 2.





Chapter 5

Simulation Tool

In this chapter we present the simulation tool designed to simulate the
embedded factor graph decoding from Chapter 3. and the discriminative
decoding scheme from Chapter 4.

5.1 Message Passing on Graph Codes

The application implemented in association with the work of this thesis
can simulate two types of message passing decoding on F4-additive codes in
graph form – Embedded Decoding and Discriminative Decoding, as described
in Chapter 3 and Chapter 4, respectively. Its initial design was aimed
towards a pure simulation tool for embedded decoding on the quaternary
symmetric channel. However, after the discoveries in Chapter 3 were made,
the application gained functionality capable of validation, or repudiation of
results. This aided the search for a message passing algorithm which could
compute, as accurately as possible, the marginals from the global function.
The application is written in Java and has no specific requirements other than
Java 7 JRE.

Input and Output Upon running the software, the user is prompted
to provide two values; path to a code specification file and the number of
simulations she wishes to run, k. The message for each simulated transmission
is the all-zero codeword. Results from each decoding appear in the terminal,
displaying the received transmission, decoded vector, and a statement of
whether or not the decoded vector is a member of the code.
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1. double p transition probability of the QSC
2. int d ∈ {1, 2} type of decoding
3. String g ∈ {t, c} type of graph
4. int n number of nodes
5. ... the next n lines of the file are rows of H1

Figure 5.1: The format of the code specification file

Code Specification File This file provides necessary information regarding
the simulated channel and the code on which we intend to decode. It should
be a plain text file (.txt). The first two lines specify the transition probabilities
of the channel, and which decoding method to be used. The remaining lines
describe the code in terms of its graph. Figure 5.1 describes the required
format of the code specification file. The transition probability p is the
probability a bit is not flipped. Decoding methods are chosen by specifying
1 for embedded decoding, and 2 for discriminative decoding. If the graph
is a tree, then the value of line 3. is t, otherwise c indicates the graph is
cyclic.

5.2 Application Structure

Simulating message passing decoding, as a software implementation problem,
requires a fulfillment of more details than compared to theoretical work on
the same subject. The channel implementation represents a real world, prob-
abilistic object that applies noise to transmissions according to some model.
Accurately representing this model requires a random number generator. The
field F4 and its operations addition and multiplication must be available to
several components of the system. The code and the decoding algorithm
must also be realized in a sensible manner. There are several approaches
to finding a solution to this implementation problem. Here we give a brief
account of the object-oriented solution to our simulation application in terms
of its structure. We consider only the conceptual structure realized through
package structure, the base framework, and the decoder package. A complete
class digram may be found in Figure 5.5.



Figure 5.2: Package diagram



Conceptual Entities The packages of the implementation express the
mathematical and logical entities of our domain. The field F4, the channel, the
code, and the decoder are kept separated – these represent our communication
system. Furthermore, we have a simulator package and a message package.
In Figure 5.2 one may find a diagram depicting the dependency relationships
between our packages and sub-packages. An arrow from one package to
another indicates that the one package depends on a class in the other. If
there are sub-packages, then the arrow indicates that the one package depends
on at least one class from each sub-package.

Base Framework The base framework is the foundation of the simulation
tool. It is the code that is independent of any specific channel model or
message calculation algorithm. This includes a Simulator class, a Channel
interface, a GlobalFunction class, a representation of F4, and a Graph class
with its subcomponents; Node, Edge, and GNode. Figure 5.3 depicts the rela-
tionship between the components of the base framework. The Simulator sends
transmissions through the Channel, provides the Graph with the output of the
Channel to decode, and validates the decoding by asking the GlobalFunction.
Two requirements must be met in order for the Simulator to be able to run
simulations. Firstly, a channel model must be realized by implementing the
Channel interface. Our answer to this is the QuaternarySymmetricChannel
class, which may be found in the Figure 5.5. Secondly, the abstract class Node
needs to be extended with a class that can perform the message calculation
– the essential computation during message passing. We have realized this
through the two classes, Point and MetaNode, in the decoder package. Point
is the node associated with discriminative decoding and MetaNode is the
node associated with embedded decoding.

Decoder Package There are two sub-packages in the decoder package, discr
and embedded. These are not decoders themselves, but rather packages of
classes necessary to realize different decoding schemes with the base framework
introduced in the previous paragraph. The discriminative package contains
two classes, Point and Calculator. Point is an extension of Node which uses a
Calculator object to calculate messages to its neighbors. This package makes it
possible to realize the scheme presented in Chapter 4. The embedded package
contains an additional pair of sub-packages, factor graph and metanode. The
latter contains the class MetaNode, which is an extension of Node that realizes
the meta nodes from the embedded decoding scheme of Chapter 3. The
factor graph package contains the abstract class FactorGraphNode and two



Figure 5.3: Base framework – class diagram.



Figure 5.4: Node strategy.



classes extending it; Factor and Variable. The contents of the embedded
package together with the base framework realize the embedded decoding of
Chapter 3.

5.3 Behavior and Key Features

Our application was built to perform message passing decoding on graph codes
using two types of message passing schemes. In this section we consider the
behavior of our implementation which allows for this functionality. We begin
by presenting essential behavior invariant with respect to message calculation,
i.e. the behavior of the central objects in the base framework. This includes
simulation and decoding methods found in Simulator and Graph, respectively.
Thereafter, we look at the message passing behavior of Point and MetaNode,
the two extensions of Node.

5.3.1 The Simulator

We begin by describing the Simulator as its behavior is invariant with respect
to decoding scheme.

A Simulation The sequence diagram in Figure 5.6 illustrates the sequence
of collaboration with other classes required for a single simulation caused
by calling runSimulation() on a Simulator object. The Simulator begins
by sending the all-zero codeword through the Channel – sendThroughChan-
nel(codeWord). Once it has received output from the Channel it passes it
along to the Graph for decoding – decode(received). After decoding, the
Simulator checks with the GlobalFunction of the code to verify whether or
not the decoded vector is a codeword.

5.3.2 A Decoding

The first thing Graph does when it is called upon to decode a received
transmission is to pair the i-th entry in the received transmission with the
i-th GNode and prompt each GNode to pass along soft information to the
i-th Node. In order for belief propagation to occur, the Graph calls upon each
Node to pass identity messages to their respective neighborhoods. Depending



Figure 5.5: Complete class diagram



on whether or not Graph is a tree, beliefs are propagated through calling
traverseTree() or iterateOverEdges(). Finally, before returning the decoded
codeword to the Simulator, Graph asks each Node for its state.

Belief propagation by iterateOverEdges() involves message passing by iterating
over all edges of the graph until messages have been passed in both directions
on each edge a predetermined number of times. This is initialized by passing
identity messages along each edge.

The method traverseTree() involves passing messages in two stages, first from
the leaves to the root2, then from the root to the leaves. The former stage is
implemented with a recursive method passMessagesFromLeaves(bn

2
c), which

elicits message passing from a child node to a parent node in post-order.
The latter, passMessagesToLeaves(bn

2
c), elicits message passing from a parent

node to all of its children in pre-order. The message passing is done after the
stages are complete.

5.3.3 Passing a Message

Embedded Decoding

Nodes that belong to the class MetaNode pass messages between each other
by means of their embedded factor graph nodes, Factor f and Variable v.
Consider the scenario where the MetaNode Mi is elicited to pass a message to
Mj . First fi and xi pass messages to each other, thereafter they pass to their
respective neighbors embedded in Mj, i.e. fi passes to xj and xi to fj. The
embedded Factor f calculates its messages by performing the sum-product
computation on its truth table, as described in Chapter 3. The Variable v
computes its messages by multiplying the beliefs of its neighbors, as described
in Chapter 2.

Discriminative Decoding

Describing the message passing procedure of a Point node is a little more
involved than describing that of the MetaNode. The Point node differentiates
between passing a message to a leaf and passing a message to an internal
node, and treats messages from these types of differently as well. Furthermore,
the Point requires the use of four types of vector multiplication in order to

2The root is chosen to be the bn2 c-th node



calculate messages – for this it uses a Calculator object. The Calculator
provides functionality for performing four binary vector operations; the point
product, and three others which we have named dSS(u,v), dSX(u,v), and
tSX(u,v) – as described in Chapter 4.

If the transmitting node is itself a leaf, then it merely passes along its own
soft information as a message. We will not consider this case here. On the
other hand, if the sender is an internal node, then it must consider whether
or not its recipient is a leaf. This is because Point handles messages from leaf
nodes and internal nodes separately. Therefore, in order to pass a message it
must compute two products; the product of leaf-messages and the product of
internal-messages.

Products of Messages The product of the leaf-messages is computed by
calling either combineAllLeaves() or combineAllLeaves(Node theOther). If
the recipient is a leaf node, then the leaf-product is computed by calling
the latter method. This method excludes the beliefs of the recipient so as
to avoid echoing back its own information. The computations performed
in both methods are the same, the only difference being the exclusion of a
belief.

Similarly for internal nodes, if the recipient is an internal node, then the
internal-product is computed by calling combineAllInternals(Node theOther).
Otherwise, we use the method combineAllInternal(). Both of these return
null if there are no internal-messages to consider.

If the internal-product is returned null, then Point transmits the result
of calling calculator.dSS(leaves, softInfo) on its Calculator. Otherwise, it
combines the soft information with the two products in two steps. First, it
computes m = calculator.dSX(leaves, softInfo, thereafter it transmits the
output of calculator.dSS(m, internals)



Figure 5.6: Sequence diagram of runSimulation() in Simulator.class.



Figure 5.7: Sequence diagram of decode(transmission) in Graph.class.



Chapter 6

Analysis

Figure 6.1: Tree.

From Chapter 4, we know our algorithm to be an instance of the sum-product
algorithm on self-dual F4-additive codes in graph form. The sum-product
algorithm is known to be an exact method for computing marginals on trees.
Marginal computation on graphs containing cycles, however, is not guaranteed
to be exact, nor to converge towards particular approximations [16, 23].
Here we provide a brief report of data produced by running simulations
of discriminative decoding on trees and graphs with cycles. Each node was
provided with a noisy vector taken from a uniformed distribution. Results from
the simulation were compared with the global marginals. Note, simulations
were executed with the quaternary symmetric channel with similarly successful
results, however, due to time constraints we do not present those result.

6.1 Marginals of Trees

We simulated message-passing decoding on the tree in Figure 6.1. A compari-
son of the computed marginals and the marginals collected from the global
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function may be found in Table 6.1. These values are as to be expected from
Chapter 4, some values may differ in the last couple of decimal points. We
attribute these differences to the occasional inaccuracies that might arise dur-
ing floating-point multiplication and addition with Java, as these operations
are not associative [2, 1].

- Global Marginals Decoded Marginals

v0


0.3043016475642586
0.3692815693246852
0.09690964937579223
0.22950713373526396




0.3043016475642584
0.36928156932468525
0.09690964937579225
0.22950713373526402


v1


0.5206226697492123
0.06492453379902476
0.23176947430133385
0.18268332215042904




0.5206226697492125
0.06492453379902477
0.2317694743013339
0.18268332215042904


v2


0.41469390782761706
0.3093493097822275
0.17085329572062002
0.10510348666953549




0.4146939078276171
0.3093493097822274
0.1708532957206199
0.10510348666953546


v3


0.46592311660130026
0.17752884243021078
0.11962408694693685
0.23692395402155209




0.46592311660130026
0.17752884243021078
0.11962408694693684
0.2369239540215521


v4


0.17925281525999412
0.1487609303962149
0.44457502293200774
0.22741123141178324




0.17925281525999406
0.1487609303962149
0.44457502293200785
0.22741123141178327


v5


0.13739489147236222
0.27822138880036196
0.19061885418384675
0.39376486554342915




0.13739489147236217
0.27822138880036196
0.19061885418384666
0.39376486554342904


v6


0.06562772233681938
0.4195028782331188
0.2623860233193896
0.2524833761106722




0.06562772233681935
0.41950287823311894
0.2623860233193896
0.25248337611067223


Table 6.1: Marginals of Tree in Figure 6.1.



6.2 Marginals of Graphs with Cycles

For graphs with cycles we ran simulations and compared the decoding decisions
of the simulation to that of the global function. We measured the decoding
accuracy in terms of bit-errors and word-errors, where any difference between
the global decision and the decoded decision was counted as an error. For
example, assume the global decision determines that a transmitted codeword
was (0, 0, ω, ω), while the decoded decision determines the codeword to be
(1, 0, ω2, ω). In this case we would count the word error-rate to be 1 and the
bit error-rate to be 2.

Decoding accuracy was measured on two graphs with cycles simulation sce-
narios. In the first situation, we measured decoding performance on the graph
in Figure 6.2 under the variation of the number of decoding iterations. In
the second, we varied of the number of short cycles in the graph by running
simulations on the graphs in Figure 6.3.

Variable: Decoding Iteration. In Figures 6.4 and 6.5 one may find plots
of error-rates from simulations of message-passing decoding on the 10-node
cycle graph in Figure 6.2. The x-axes represents the number of iterations
we allowed each individual decoding to have. The y-axes represent the total
number of errors from 10.000 decodings. The y-axis in Figure 6.4 represents
bit error-rates, and in Figure 6.5 it represents the word error-rate. We see
from both plots that the error-rate decreases when the number of decoding
iterations increases.

Figure 6.2: Circle graph with 10 nodes.

Variable: Cycles. In Figures 6.6 and 6.7 one may find plots of error-rates
from simulations run on the codes represented by the graphs in Figure 6.3.
Each data-point corresponds to a graph in Figure 6.3. The x-axes represent
the number of 3-node cycles present in the graph, while the y-axes represent



Figure 6.3: Codes of length 5 with increase of triangles.

the total error-rates from 100.000 decodings. Each of the 100.000 simulations
were performed with 100 decoding iterations.

In these simulations we see a significant increase in error-rate as the number
of short cycles increases. Particularly, from the third graph to the fourth,
this extra leap is to be expected due to the difference in minimum distance of
the codes these graphs represent. The top three graphs in Figure 6.3 have
minimum distance d = 3, while the bottom three have a minimum distance
d = 2.



Figure 6.4: Bit error-rate. 8-circle

Figure 6.5: Word error-rate. 8-circle



Figure 6.6: Bit error-rate.

Figure 6.7: Word error-rate.



Chapter 7

Summary

7.1 Conclusions

The original purpose of this master thesis was to verify, by means of software
implementation and empirical analysis, a dynamic message-passing decoding
scheme on F4-additive codes, self-dual with respect to the Hermitian inner
product, described by Parker et al. [17] in an unpublished manuscript. These
codes have been shown to be useful for representing quantum error-correcting
codes [5].

The dynamic decoding scheme [17] for these codes was based on performing
the sum-product algorithm on factor graphs implicitly represented by the
graph form (referred to in this thesis as embedded factor graphs). Additionally,
the manuscript proposed the use of local complementation as a means for
dynamically circumventing problems when message-passing on graphs with
cycles. Local complementation (LC) on a node v ∈ G = (V,E), gives us the
graph G ∗ v = (V,E ′) such that for all x and y in the neighborhood of v:
(x, y) ∈ E ⇐⇒ (x, y) /∈ E ′ — edges not incident on v in E are the same
in E ′ [6, 10]. However, as we show in Chapter 3, we found the method of
decoding on embedded factor graphs to be unsound. The proceeding work
was aimed at finding a replacement method for the embedded factor graph
decoding.

We developed in Chapter 4 the Discriminative decoding procedure, which
performs message-passing decoding on graphs constructed from the adjacency
matrix of self-dual F4-additive codes in graph form. Its local operations
may collectively be described as various recursive applications of the vector
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products introduced in this thesis — dSS(u, v), dSX(u, v), tSX(u, v) — and
the pointwise product. We saw that messages sent by leaves and internal nodes
required the use of different vector products, hence the name Discriminative
decoding. Furthermore, we showed that the method computes the global
marginals for any self-dual F4-additive code represented by a tree in graph
form. This also implies that Discriminative decoding is an instance of the
sum-product algorithm for the special case of self-dual F4-additive codes in
graph form.

In Chapter 5, we described a decoding simulation tool developed for empirical
analysis and hypothesis testing during the development of our decoding pro-
cedure. This tool can simulate both Embedded decoding and Discriminative
decoding over the Quaternary Symmetric Channel. Its modular design makes
it easy to extend with another channel model or graph representation, and it
may serve as aid to future development of the dynamic decoding scheme.

The development of the Discriminative decoding procedure is the main con-
tribution of this thesis. We argue that it serves as a good foundation for
dynamic decoding [17] on self-dual F4-additive codes represented by graphs.
An especially interesting class of graphs are “nested cliques” [6], which we
discuss in Section 7.2.

7.2 Future Work

7.2.1 Dynamic Decoding with Local Complementation

Several self-dual F4-additive codes with high minimum distance have been
shown [8] to be represented by graphs with highly regular “nested clique”
structures [6, Definition 4.1], where length n ≤ 12. It would be very interesting
to perform simulations of Discriminative decoding on them. These codes are
desirable not only because they are significantly stronger than the ones we
decoded on in this thesis, but also because nodes of their graph representations
have the smallest neighborhoods possible without compromising the high
minimum distance [7, page 17]. Unfortunately, the computation of marginals
on “nested clique” graphs may be disturbed by the many short cycles they
contain.

It is known that two codes are equivalent, up to re-labeling, if their graphs are
equivalent with respect to local complementation [9, Definition 4, Theorem 11].
For future work, we propose that the dynamic component of the Embedded



decoding scheme described by Parker et al. be coupled with the Discriminative
decoding scheme for empirical analysis by means of the simulation tool from
Chapter 5. This involves conceiving a local heuristic such that nodes may
decide based upon messages from their neighbors when it is necessary to
initiate local complementation on themselves.

7.2.2 Decoding with the General Procedure

Although, it can be beneficial to distinguish between leaf messages and internal
messages due to the context in which Discriminative decoding may be used, it
is possible to decode without this distinction. We propose Algorithms 7, 8, 9,
and 10, as description of a potential general algorithm for decoding on self-dual
F4-additive codes, where discrimination between messages from leaves and
internal nodes is absent. We conjecture it may be proven that message-passing
decoding using these algorithms also exactly computes the global marginals
for trees. Extending the simulation tool from Chapter 5. with a graph that
uses these procedures for message-passing would be interesting. Furthermore,
coupling it with a dynamic LC component from the previous section could
be fruitful enquiry.

Algorithm 7 Pass a message.

Let s = (e, f, g, h) be the soft information of the sender.

1: procedure passMessage(Node recipient)
2: if Neighborhood.size() == 1 then
3: message ← (e, g, f, h)
4: recipient.receiveMessage(message)
5: else
6: inboxProduct ← inboxProduct(recipient)
7: message ← dSS(inboxProduct, s)
8: recipient.receiveMessage(message)

9:



Algorithm 8 Compute marginals.

Let s = (e, f, g, h) be the soft information from the channel.

1: procedure marginalize
2: inboxProduct ← inboxProduct()
3: marginals ← ·(inboxProduct, s)
4:

Algorithm 9 Compute the inbox-product of all messages, except for Node
recipient.

M is the set of all received messages. R ⊆M is the set of messages from
the recipient.

1: function inboxProduct(Node recipient)
2: M ′ ← M \R
3: product ← m′0
4: for all m′i ∈M ′, where i > 0 do
5: product ← dSX(m′i, product)

6:

return product

Algorithm 10 Compute the inbox-product of all messages.

M is the set of all messages from neighbors.

1: function internalProduct
2: product ← m0

3: for all mi ∈M, where i > 0 do
4: product ← dSX(mi, product)

5:

return product
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