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Abstract

Trace representations are presented for all binary Legendre sequences and

Twin-Prime sequences, and an alternative multi-rate construction is given

for the Twin-Prime sequence.
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1 Introduction

Binary sequences with good periodic autocorrelation function (ACF) proper-

ties are of theoretical and practical interest, and have application to spread-

spectrum communications systems [3]. It is often convenient to find trace

representations for these sequences [1], and trace representations have been

found for various length 2n − 1 sequence families with ideal two-level ACF

properties, such as for m-sequences, GMW sequences, Legendre sequences,

and Twin-Prime sequences [3]. Results emphasise those sequences of period

2n − 1 as these sequences are of maximal length for a given linear feedback

shift-register size and are therefore usually preferred for hardware imple-

mentations. However, Legendre and Twin-Prime sequences with two-level

or three-level ACF also occur for lengths other than 2n − 1 and it is of

interest to know the trace representations of these sequences aswell. This

paper presents such representations, using the trace of non-primitive ele-

ments, and can be seen as an extension of the results of [2]. To begin with,

the trace representation of all Legendre sequences is derived. This result

naturally leads to a trace representation of the Twin-Prime sequence. A

final section shows how to alternatively represent the Twin-Prime sequence

as a combination of two lower rate Legendre sequences, thereby eliminating

conditional construction.
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2 A Trace Representation for All Legendre Se-

quences

Definition 1 Let QRp be the set of Quadratic Residues, mod p, i.e. those

elements of Z∗

p which have square-roots in Z∗

p .

Let QNRp be the set of Quadratic NonResidues, mod p, i.e. those elements

of Z∗

p which do not have square-roots in Z∗

p .

Definition 2 The Legendre sequence, sp(t), of period p, p prime, is defined

as follows,

sp(0) = 1, sp(t) = 1, t ∈ QNRp, sp(t) = 0, t ∈ QRp

The bipolar form of sp(t) has an ideal two-valued ACF when it is of

prime length 4k + 3, and a three-valued ACF when it is of prime length

4k + 1. Moreover, for the three-valued case, the ACF is closely related to

the Legendre sequence itself.

Definition 3 The Trace Function, a′ = Trn
j (a), maps a to a′, where a ∈

F2n , a′ ∈ F2j , and is defined as follows

Trn
j (a) =

n−1
∑

i=0

a2i

The following theorem was derived in [2].
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Theorem 1 [2] Let p = 2n − 1 be a prime for some integer n ≥ 3 and u be

a primitive element of Zp, the set of integers mod p. Let α be a primitive

element of F2n such that,

p−1

2n
−1

∑

i=0

Trn
1 (αu2i

) = 0

Then the Legendre Sequence, sp(t), of period p is given by,

sp(t) =

p−1

2n
−1

∑

i=0

Trn
1 (αu2it)

Theorem 1 is restricted to prime periods of length 2n − 1. In this section

we extend the theorem to all prime periods. The arguments are identical to

those given in [2] when the trace is defined over an odd extension of GF(2),

but when the trace is defined over an even extension of GF(2) one must

generalise the representation to a trace function which maps to an extended

field, not the base field. Before we state this generalised theorem we define

the Witness Set.

Definition 4 The Witness Set WS(q, n) is the set of all factors of qn − 1

which do not occur as factors of qt − 1, t|n, t 6= n.

The main theorem of this paper is as follows.

Theorem 2 The Legendre sequence, sp(t), of prime period, p, has a mini-

mal trace representation defined by,

sp(0) = 1, sp(t) =

p−1

2v
−1

∑

i=0

Trn
2a(αu2it + αu2ik), k ∈ QR, t > 0
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where α is a pthroot of 1, p ∈ WS(2, n), α ∈ GF(2n), n = 2av, v odd, and

u is a primitive element of Zp. Without loss of generality k can be chosen

as 1.

It is evident that Theorem 1 is a special case of Theorem 2 when a = 0,

p = 2n − 1 prime, and α is chosen appropriately.

2.1 Proof of Theorem 2

We first present a series of self-evident lemmas.

Lemma 1 For p prime, QRp + QNRp = Z∗

p

Lemma 2 Let x0, x1 ∈ QRp, y0, y1 ∈ QNRp. Then x0y0 ∈ QNRp,

x0x1, y0y1 ∈ QRp.

Let p be an odd prime ∈ WS(2, n). Then 2 has order n mod p. Let

n = 2av, where v is odd. Let A = 2a+1. Then A has order v, mod p. Let u

be a primitive element, mod p, of order p− 1.

Lemma 3 There is a unique representation for every element of Z ∗

p as,

Z∗

p = {ujAk | 0 ≤ j <
p− 1

v
, 0 ≤ k < v}

u has even order so the following Lemma is self-evident.

Lemma 4 The even powers of u, mod p, form the set QRp. The odd powers

of u, mod p, form the set QNRp.
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A has odd order so we have the following.

Lemma 5 All powers of A, mod p, are in the set QRp, mod p.

It follows from Lemmas 1-5 that,

QRp = {u2iAk|0 ≤ i < p−1

2v
, 0 ≤ k < v}

QNRp = {u2i+1Ak|0 ≤ i < p−1

2v
, 0 ≤ k < v}

(1)

and therefore that,

QNRp = {u2iAkt|0 ≤ i < p−1

2v
, 0 ≤ k < v, t ∈ QNRp}

QRp = {u2iAkt|0 ≤ i < p−1

2v
, 0 ≤ k < v, t ∈ QRp}

(2)

Let p ∈ WS(2, n). Then from Definition 4 there is an element α of

order p in GF(2n). Let fQRp =
∑

r∈QRp
αr and fQNRp =

∑

r∈QNRp
αr. It

immediately follows from Lemma 1 that,

fQRp + fQNRp =

p−1
∑

r=1

αr = 1 (3)

Moreover, from (2),

fQRp =
∑

p−1

2v
−1

i=0

∑v−1

k=0
αu2iAkt, t ∈ QRp

fQNRp =
∑

p−1

2v
−1

i=0

∑v−1

k=0
αu2iAkt, t ∈ QNRp

(4)

Rewriting in terms of the Trace representation gives,

fQRp =
∑

p−1

2v
−1

i=0
Trn

2a(αu2it), t ∈ QRp

fQNRp =
∑

p−1

2v
−1

i=0
Trn

2a(αu2it), t ∈ QNRp

(5)

fQRp and fQNRp will be elements of GF(22a

). Define the sequence s′(t) of

period p by,

s′(t) =

p−1

2v
−1

∑

i=0

Trn2a(αu2it)
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Then s′(t) takes on the values fQRp and fQNRp for t in QRp and QNRp

respectively. Define the sequence s(t) by,

s(t) = s′(t) + fQRp (6)

Then s(t) takes on the values 0 and fQRp + fQNRp = 1 for t in QRp and

QNRp respectively. By definition this is the last p − 1 elements of the

Legendre sequence of period p. Setting s(0) = 1 and expanding (6) for t > 0

leads to Theorem 2.

For p = 4k + 3 (6) defines a sequence with two-valued periodic ACF.

However, this two-valued property holds for s(0) equal to any value when

p = 4k + 3. Theorem 2 fixes s(0) = 1 to maintain the binary nature of

the sequences. But the above discussion implies that s(t), s(t)+ δ, s(t), and

s(t)+δ, all have identical ideal two-valued ACF, where δ = (1, 0, 0, . . . , 0, 0).

Moreover, for p = 4k + 1, the sequences s(t), s(t) + δ, s(t), and s(t) + δ,

all have identical three-valued ACF to within a sign change of the ACF.

It therefore seems reasonable to refer to all four sequences as the Legendre

sequence (this equivalence can alternatively be established by considering

sequence decimation). However for the construction of a Twin-Prime se-

quence, w(t) using two Legendre sequences, the two-valued ACF property

is only maintained if s(t) or s(t) + δ are used. Of course, the two-valued

property is then further maintained for w(t).
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3 A Trace Representation for the Twin-Prime Se-

quences

The twin-prime sequence is constructed from the modified mod 2 sum of

two Legendre sequences, and is defined as follows.

Definition 5 The period pp′ Twin-Prime sequence, w(t), where p and p′ =

p + 2 are prime is defined by,

w(t) =

sp(t) + sp′(t), gcd(t, pp′) = 1














1, t ∈ {0, p′, 2p′, . . . , (p− 1)p′}

0, t ∈ {p, 2p, . . . , (p′ − 1)p}

or















0, t ∈ {0, p′, 2p′, . . . , (p− 1)p′}

1, t ∈ {p, 2p, . . . , (p′ − 1)p}

Theorem 2 naturally leads to a trace expression for Definition 5, as shown

in the following Corollary.

Corollary 1 The period pp′ Twin-Prime sequence, w(t), where p and p′ =

p+2 are prime, has a minimal trace representation defined as in Definition

5 where

sp(t) =

p−1

2vp
−1

∑

i=0

Tr
np

2ap (α
u2i

p t
p + α

u2i
p kp

p )

sp′(t) =

p′−1
2v

p′
−1

∑

i=0

Tr
np′

2
a

p′
(α

u2i
p′

t

p′ + α
u2i

p′
kp′

p′ )

where kp ∈ QRp, kp′ ∈ QRp′ , and where αp, αp′ are p and p′throots of

1, respectively, p ∈ WS(2, np), p′ ∈ WS(2, np′), αp ∈ GF(2np), αp′ ∈
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GF(2np′ ), np = 2apvp, np′ = 2ap′vp′, vp, vp′ odd, and up, up′ are primitive

roots, mod p and mod p′, respectively. Without loss of generality kp and kp′

can be chosen as 1.

4 A Multi-Rate Representation for the Twin-Prime

Sequence

One can trivially re-specify Corollary 1 to use traces from the extension field

GF(2n), where n = lcm(np, np′), and where β is a pp′throot of 1 in GF(2n),

αp = βp′ , and αp′ = βp. But perhaps a more useful form uses a combination

of ’multi-rate’ Legendre sequences, as follows. Firstly we extend Definition

2.

Definition 6 The Legendre sequence, sp(t), is as defined in Definition 2

but with the added conditions,

sp(t) = sp(t) = 0, t non-integer

Then,

Theorem 3 w(t) is a length pp′ twin-prime sequence, given by,

w(t) = sp(t) + sp′(t) + sp(
t

p′
) + sp′(

t

p
) + hδ(t), h ∈ {0, 1}

where h = 0 if 2 ∈ QNRp, h = 1 if 2 ∈ QRp, and δ(t) = 1 for t = 0, 0

otherwise.

w(t) = sp(t) + sp′(t) + sp(
t

p′
) + sp′(

t

p
) + hδ(t), h ∈ {0, 1}
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is also a length pp′ twin-prime sequence.

4.1 Proof of Theorem 3

We prove only the first of the two constructions in Theorem 3. The second

construction follows a similar proof. It is easy to see that Theorem 3 is sat-

isfied for positions t where gcd(t, pp′) = 1. Now consider non-zero positions

t = kp′, k integer, of w(t). At such positions Theorem 3 states that,

w(kp′) = sp(kp′) + sp′(kp′) + sp(k) + sp′(
kp′

p
) (7)

From Definitions 2 and 6 sp′(
kp′

p
) = 0 and sp′(kp′) = 1. Substituting into

(7) implies that Theorem 3 is correct iff,

w(kp′) = sp(kp′) + sp(k) + 1

From Lemma 2 if p′ ∈ QRp then sp(kp′) = sp(k) ∀k. In this case w(kp′) = 0.

Conversely, if p′ ∈ QNRp then sp(kp′) = sp(k) ∀k. In this case w(kp′) = 1.

Now consider non-zero positions t = jp, j integer, of w(t). At such

positions Theorem 3 states that,

w(jp) = sp(jp) + sp′(jp) + sp(
jp

p′
) + sp′(j) (8)

From Definition 6 sp(
jp
p′

) = 0 and sp(jp) = 1. Substituting into (8) implies

that Theorem 3 is correct iff,

w(jp) = sp′(jp) + sp′(j) + 1

If p ∈ QRp′ then sp′(jp) = sp′(j) ∀k. In this case w(jp) = 1. Conversely, if

p ∈ QNRp′ then sp′(jp) = sp′(j) ∀k. In this case w(jp) = 0.
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Now consider position t = 0. In this case Theorem 3 simplifies to,

w(0) = h + 1

From the definition of the Twin-Prime sequence, as described in Definition 5,

if w(kp′) = 1 then w(jp) = 0 and w(0) = 1. From the above considerations

this is only possible when

p′ ∈ QNRp, p ∈ QNRp′ , h = 0

Similarly, from Definition 5, if w(kp′) = 0 then w(jp) = 1 and w(0) = 0.

From the above considerations this is only possible when

p′ ∈ QRp, p ∈ QRp′ , h = 1

Theorem 3 follows by observing that p′ mod p = 2.

(As a side observation, we note from the above proof that when p ∈

QNRp′ , then p′ ∈ QNRp. Similarly, when p ∈ QRp′ , then p′ ∈ QRp.)

The following Lemma shows the symmetry operation which maps be-

tween the two constructions of Theorem 3.

Lemma 6 For p, p′ prime, define a length pp′ sequence r(t) such that r(t) =

0 for t satisfying gcd(t, pp′) = 1, and r(t) = 1 otherwise. Then, if w(t) is a

length pp′ Twin-Prime sequence, then w(t) + r(t) is also a length pp′ Twin-

Prime sequence.
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5 Conclusion

This paper has derived a Trace representation for all Legendre sequences,

thereby generalising the result of [2]. This representation naturally leads

to a Trace representation for the Twin-Prime sequence. Finally a multi-

rate construction for the Twin-Prime sequence has been presented. This

construction eliminates the need for ’mid-sequence’ conditional instructions

and may lead to simpler hardware using a combination of multi-rate lin-

ear feedback shift registers. The multi-rate idea also suggests that other

sequences with optimal ACF properties may be constructed similarly, and

this should be an area for further research.
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