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Generalised Bent Criteria for Boolean Functions (II)

Constanza Riera, George Petrides and Matthew G. Parker

Abstract

In the first part of this paper [16], some results on how to compute the flat spectra of Boolean constructions w.r.t.

the transforms {I,H}n, {H,N}n and {I,H, N}n were presented, and the relevance of Local Complementation to the

quadratic case was indicated. In this second part, the results are applied to develop recursive formulae for the numbers

of flat spectra of some structural quadratics. Observations are made as to the generalised Bent properties of boolean

functions of algebraic degree greater than two, and the number of flat spectra w.r.t. {I,H, N}n are computed for some

of them.

I. Introduction

In this work, we apply the techniques that we presented in Part I [16], to prove that, for certain

recursive quadratic boolean constructions, one can establish simple recursive relationships for the

number of flat spectra w.r.t. the {I,H, N}n transform set. For those boolean constructions, we prove

simple recursions for the number of flat spectra w.r.t. the {I, H, N}n transform set or subsets thereof.

We also observe that optimal Quantum Error-correcting Codes (QECCs), interpreted as quadratic

boolean functions, appear to maximise the number of flat spectra w.r.t. {I,H, N}n. Very loosely,

for boolean functions of fixed degree, the more flat (or near-flat) spectra w.r.t. {I, H, N}n we obtain

for the function, the stronger it is cryptographically, and the more entangled it is when interpreted as

a quantum state [14], [13] - these measures of cryptographic strength and/or entanglement are only

partial.

Before presenting our results, we will recapitulate the sections of Part I which are helpful to the

understanding of Part II.

Let H = 1√
2

(
1 1

1 −1

)
be the Walsh-Hadamard kernel, N = 1√

2

(
1 i

1 −i

)
, where i2 = −1, the Nega-

hadamard kernel, and I the 2 × 2 identity matrix. We say that a Boolean function

p(x) : GF(2)n → GF(2) is Bent [17] if P = 2−n/2(
⊗n−1

i=0 H)(−1)p(x) has a flat spectrum, or, in

other words, if P = (Pk) ∈ C2n
is such that |Pk| = 1 ∀ k ∈ GF(2)n. Bent boolean functions are

desirable cryptographic primitives as they optimise resistance to linear cryptanalysis. If the function

is quadratic, we can associate to it a simple non-directed graph, and in this case a flat spectrum is

obtained iff Γ, the adjacency matrix of the graph, has maximum rank mod 2. In Part I, we generalised
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this concept, considering not only the Walsh-Hadamard transform
⊗n−1

i=0 H, but the complete set of

unitary transforms

{I,H, N}n =
⊗
j∈RI

Ij

⊗
j∈RH

Hj

⊗
j∈RN

Nj ,

where the sets RI,RH and RN form a partition of the set of vertices {0, . . . , n − 1}. With this

generalised criterion, we study the number of flat spectra of a function w.r.t. {I,H, N}n. We also

consider the number of flat spectra w.r.t. some subsets of {I, H, N}n, namely {H, N}n (when RI = ∅)
and {I, H}n (when RN = ∅). Note that the Walsh-Hadamard transform, {H}n, is the intersection of

these subsets. We prove that a function will have a flat spectrum w.r.t. a transform in {I, H, N}n iff a

certain modification of its adjacency matrix, concretely the matrix resultant of the following actions,

has maximum rank mod 2:

• for i ∈ RI, we erase the ith row and column

• for i ∈ RN, we subsitute 0 for 1 in position [i, i]

• for i ∈ RH, we leave the ith row and column unchanged.

In sections II, III and IV, we compute, by means of this modified matrix and using the result

exposed above, the number of flat spectra for some Boolean functions w.r.t {H, N}n, {I, H}n and

{I, H, N}n respectively. It is desirable to identify boolean functions which maximise the number of

flat spectra w.r.t. {I, H, N}n, as this is an indicator of high entanglement for the corresponding pure

multipartite quantum states which are represented by the boolean functions [14], [13] (see Part I [16]).

We will see that the quadratic line and clique functions appear to maximise the number of flat spectra

w.r.t. {H, N}n and {I, H}n, respectively, and that the quadratic functions representing high-distance

QECCs appear to maximise the number of flat spectra w.r.t. {I, H, N}n. Recent graphical descriptions

for these optimal QECCs [9] suggest that nested-clique structures may maximise the number of flat

spectra w.r.t. {I, H, N}n. As an initial step towards the analysis of such functions we provide recursive

formulae for the number of flat spectra for the ’clique-line-clique’ structure.

Some recent papers [2], [1], [3], [4] have proposed interlace polynomials to describe interlace/circle

graphs. In particular, polynomials q(x) and Q(x) are defined, and proved to be certain Martin poly-

nomials, as proposed by Bouchet [5]. It can be shown that q(x) and Q(x) summarise certain aspects

of the spectra of a graph w.r.t. {I,H}n and {I,H, N}n, respectively. In particular, q(1) and Q(2)

evaluate the number of flat spectra w.r.t. {I, H}n and {I, H, N}n, respectively. In this paper we will

point out links with this work but defer a thorough investigation to a future paper.

Section V contains a few concluding remarks; finally, we give tables summarising our results in the

appendix (section VI).
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II. On the Number of Flat Spectra of Quadratic Boolean Functions with respect

to {H, N}n

We wish to construct boolean functions that have flat spectra w.r.t. the largest possible subset

of {H, N}n transforms. The multivariate complementary set constructions of [15] provide candidate

functions. The simplest and strongest of these is the line function (or path graph) [18], [11], [10].

A. Line

The line function, pl(x) is defined as

pl(x) =
n−2∑
j=0

xjxj+1 + c · x + d , (1)

where x, c ∈ GF(2)n, x = (x0, . . . , xn−1), and d ∈ GF(2). Its number of flat spectra with respect to

{H, N}n is as follows:

Lemma 1: Kn = # flat spectra(pl(x)) w.r.t. {H, N}n = 2n −Kn−1, with K1 = 1; in closed form,

Kn =
1

3

(
2n+1 + (−1)n

)
.

Proof: The generic modified matrix of the line for {H, N}n is as follows:

Γv =



v0 1 0 0 . . . 0 0

1 v1 1 0 . . . 0 0

0 1 v2 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 vn−1


,

where v = (v0, . . . , vn−1) ∈ GF(2)n.

Computing the determinant, we get the recursion formula

Dn = v0Dn−1 + Dn−2 mod 2 ,

where Dn−j is the determinant of the generic modified matrix of the line in the variables xj, . . . , xn−1.

The spectra will be flat iff Dn = 1. In order to get this, we consider the following cases:

1. Dn−1 = 0, Dn−2 = 1. In this case, v0 can be 0 or 1.

2. Dn−1 = 1, Dn−2 = 1. In this case, v0 = 0.

3. Dn−1 = 1, Dn−2 = 0. In this case, v0 = 1.

We then have Kn = 2N1 + N2 + N3, where Ni is the number of times the ith case is true. Note

that {v1, . . . , vn−1|Dn−1 = Dn−2 = 1} ∪ {v1, . . . , vn−1|Dn−1 = 1, Dn−2 = 0} = {v1, . . . , vn−1|Dn−1 = 1},
and therefore N2 + N3 = Kn−1.

We see now that {v1, . . . , vn−1|Dn−1 = 0, Dn−2 = 1} = {v1, . . . , vn−1|Dn−1 = 0}, and so

N1 = 2n−1 − Kn−1. Suppose Dn−1 = Dn−2 = 0. As Dn−1 = v1Dn−2 + Dn−3, this implies Dn−3 = 0.
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By the same argument, we must have Di = 0, 1 ≤ i ≤ n − 1. However, if D1 = vn−1 = 0 then

D2 = vn−2vn−1 + 1 = 1, and this leads to a contradiction.

Finally, Kn = 2(2n−1 −Kn−1) + Kn−1 = 2n −Kn−1. Expanding this recurrence relation, and using

N0 = 1, we get Kn =
n∑

k=0

(−1)n+k2k =
1

3

(
2n+1 + (−1)n

)
.

B. Clique

We define the clique function (that is, the complete graph) as,

pc(x) =
∑

0≤i<j≤n−1

xixj , (2)

where x = (x0, . . . , xn−1) ∈ GF(2)n. For this function, the number of flat spectra with respect to

{H, N}n is given as follows:

Lemma 2: Kn = # flat spectra(pc(x)) w.r.t. {H, N}n = Kn−1 + 1 + (−1)n; in closed form,

Kn = n +
1 + (−1)n

2
.

Proof: The generic modified adjacency matrix of the clique is as follows:

Γv =



v0 1 1 1 . . . 1

1 v1 1 1 . . . 1

1 1 v2 1 . . . 1
...

...
...

...
. . .

...

1 1 1 1 . . . vn−1


.

Applying N to the bipolar vector of the clique function, (−1)pc(x), in the position i is equivalent to

making vi = 1. If two or more of the vi’s are 1, then the matrix will not have full rank, so |RN| ≤ 1.

First, suppose |RN| = 1. Computing the determinant, we get D = det(Γv) = det(Γ) + m, where m

is the minor corresponding to vi. Obviously, m is the determinant of the adjacency matrix of a clique

in n− 1 variables. It is easy to show that the clique in n variables is bent iff n is even. So, if n is even,

we have det(Γ) = 1, m = 0, and so D = 1. On the other hand, if n is odd, we have det(Γ) = 0, m = 1,

and so D = 1. This means that for every position in which we choose to apply N , we have a flat

spectrum, and therefore we get n flat spectra for this case.

Now, suppose |RN| = 0. Since the clique is bent in an even number of variables, we have flat spectra

iff n is even.

From the preceding argument, we see that Kn = n+ 1+(−1)n

2
. The recurrence formula follows trivially.

C. Clique-Line-Clique

By combining the clique and line graphs in certain ways we can get an improvement in the number

of flat spectra of a clique in the same number of variables, though we are still far from the number of
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flat spectra of a line in the same number of variables.

Specifically, if we define the n clique-line-m clique as

pn,m(x) =
∑

0≤i<j≤n−1

xixj + xn−1xn +
∑

n≤i<j≤n+m−1

xixj , (3)

where x = (x0, . . . , xn+m−1) ∈ GF(2)n+m, the number of flat spectra w.r.t. {H, N}n+m is as given as

follows:

Lemma 3: For n, m ≥ 1, we have

KHN
n,m = # flat spectra(pn,m(x)) w.r.t. {H, N}n+m

= 3nm− n(1+(−1)m

2
)−m(1+(−1)n

2
) + 3(1+(−1)n

2
)(1+(−1)m

2
) .

Proof: The generic modified adjacency matrix of the graph is as follows:

Γv =



v0 1 1 . . . 1 0 0 0 . . . 0

1 v1 1 . . . 1 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

1 1 1 . . . vn−1 1 0 0 . . . 0

0 0 0 . . . 1 vn 1 1 . . . 1

0 0 0
. . . 0 1 vn+1 1 . . . 1

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 1 1 1 . . . vn+m−1



.

Calculating the determinant, we see that |Γv| = |Gc|+C, where Gc is the generic modified adjacency

matrix of the two independent cliques:

Gc =



v0 1 1 . . . 1 0 0 0 . . . 0

1 v1 1 . . . 1 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

1 1 1 . . . vn−1 0 0 0 . . . 0

0 0 0 . . . 0 vn 1 1 . . . 1

0 0 0
. . . 0 1 vn+1 1 . . . 1

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 1 1 1 . . . vn+m−1


and C is the product of the first (n− 1)× (n− 1) minor and the last (m− 1)× (m− 1) minor:

C =

∣∣∣∣∣∣∣∣∣∣∣

v0 1 1 . . . 1

1 v1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . vn−2

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

vn+1 1 1 . . . 1

1 vn+2 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . vn+m−1

∣∣∣∣∣∣∣∣∣∣∣
.
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The first minor corresponds to the determinant of a clique in n−1 variables, say C1, and the second

to that of a clique in m− 1 variables, say C2.

As seen in the proof of lemma 2, we have to look separately at the different cases that arise from

the parities of n and m. We will denote by Kc
n the number of flat spectra of the clique in n variables

w.r.t. {H, N}n.

• Case n, m odd: Here, C = 0 iff two or more of the v0, v1, . . . , vn−2 and/or two or more of

vn+1, vn+2, . . . , vn+m−1 are equal to 1. In that case |Gc| = 0 as well, since there will be linear de-

pendence in the rows of Gc. Therefore the only case in which we obtain |Γv| = 1 is when C = 1 and

|Gc| = 0.

The number of times |C1| = 1 is Kc
n−1, and the number of times |C2| = 1 is Kc

m−1. Hence, we can

have C = 1 in Kc
n−1K

c
m−1 ways, and the rank of Γv will depend on its rows containing the variables

vn−1 and vn. The way to get |Gc| = 0 is to make the choice of vn−1 and vn such that it makes the first

and/or second cliques within Gc not flat. Therefore,

KHN
n,m = Kc

n−1(2K
c
m−1) + Kc

m−1(2K
c
n−1 −Kc

n−1) = 3(n− 1 + 1+(−1)n−1

2
)(m− 1 + 1+(−1)m−1

2
) .

• Case n even, m odd: Here, C = 0 as above and also iff v0 = v1 = . . . = vn−2 = 0. In the last case it

is possible to have |Gc| = 1 iff both cliques within Gc are flat. This happens 2Kc
m times: for the first

clique we have v0 = v1 = . . . = vn−2 = 0 and so vn−1 can be 0 or 1. Adding this to the number we

found above, we get 3(n− 1 + 1+(−1)n−1

2
)(m− 1 + 1+(−1)m−1

2
) + 2m + 1 + (−1)m .

• Case n odd, m even: As in the previous case, we get

3(n− 1 + 1+(−1)n−1

2
)(m− 1 + 1+(−1)m−1

2
) + 2n + 1 + (−1)n .

• Case n,m even: In this case we have all the flat spectra of the second case, plus the number of flat

spectra coming from vn+1 = vn+2 = . . . = vn+m−1 = 0 which are not already counted. This number is

2(Kc
n−1 − 2). Adding it to the rest we get

3(n− 1 + 1+(−1)n−1

2
)(m− 1 + 1+(−1)m−1

2
) + 2(m + n− 1) + (−1)m + (−1)n .

Summing up and simplifying, we get the desired formula.

Note: The formula is still valid for n or m equal to 1, if we consider Kc
0 = 1.

D. Comparison

Table I summarises our results for the {H, N}n transform set. Further computational results show

that, for n ≤ 8 and n ≤ 5, the line has the maximum number of flat spectra w.r.t. {H, N}n over the

set of quadratics and over the set of all boolean functions, respectively. We can therefore conjecture

the following:

Conjecture 1: Over the set of all boolean functions, the line function, as defined in (1), maximizes

the number of flat spectra w.r.t. {H, N}n.
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III. On the Number of Flat Spectra of Quadratic Boolean Functions with respect

to {I, H}n

As in the previous section, it would also be interesting to construct boolean functions with the

largest possible number of flat spectra w.r.t. {I, H}n. Note that for the interlace polynomial, q(x), of

a graph, as defined in [3], one can show that q(1) is the number of flat spectra w.r.t. {I,H}n.

A. Line

The number of flat spectra of the line function, as defined by (1), with respect to {I, H}n, is the

Fibonacci recurrence:

Lemma 4: KIH
n = # flat spectra(pl(x)) w.r.t. {I, H}n = KIH

n−1 + KIH
n−2, with KIH

0 = KIH
1 = 1; in

closed form,
(1 +

√
5)n+1 + (1−

√
5)n+1

2n+1
√

5
.

Proof: We are first going to see that

K(k) =
∑

∑k
λ=0 tλ=n−k

k∏
j=0

KH
tj

,

where K(k) is the number of flat spectra when |RI | = k, and KH
i is the number of flat spectra in i

variables w.r.t. {H}i. It is easy to see that KH
i = 1+(−1)i

2
, with KH

0 = 1.

Let RI = {i0, . . . , ik−1}. Then,

D(k) = det(ΓI) = D0,...,i0−1Di0+1,...,i1−1 · · ·Dik+1,...,n−1 , (4)

where Dk0,...,kt is the determinant of the generic modified matrix of the line, ΓI , in the variables

xk0 , . . . , xkt . With a slight abuse of notation, when i0 = 0, ij+1 = ij + 1 or ik = n− 1, we will consider

the corresponding determinant of the empty matrix to be equal to 1. To prove this formula we use

induction on k:

Case k = 0 (RI = ∅). Evidently, D(0) = D0,...,n−1.

Case k = 1. In this case RI = {i0}. When we ’cross out’ the ith0 row and column from the matrix,

we get a block matrix of four blocks in which both anti-diagonal blocks are zero. D(1) = 1 if and only

if the rows of the matrix are linearly independent. But because of the anti-diagonal blocks being zero,

that happens if and only if in each of the other two blocks the rows are linearly independent, that is

if the determinants of both blocks are equal to 1. In other words, D(1) = D0,...,i0−1Di0+1,...,n−1.

Suppose the statement holds for |RI | = m: if RI = {j0, . . . , jm−1}, D(m) = D0,...,j0−1 · · ·Djm−1+1,...,n−1.

We will see that it is true for |RI | = m + 1:

Let RI = {i0, . . . , im} = {j0, . . . , jl, λ, jl+1, . . . , jm−1}. Then, by induction hypothesis

D(m+1) = D0,...,j0−1 · · ·Djl+1,...,jl+1−1
λ · · ·Djm−1+1,...,n−1, where D

jl+1,...,jl+1−1
λ represents the determinant
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Djl+1,...,jl+1−1 with the λth row and column crossed out. From the case k = 1, we see that

D
jl+1,...,jl+1−1
λ = Djl+1,...,λ−1Dλ+1,...,jl+1−1 ,

and that concludes the proof of equation (4).

The determinant on the left hand side of equation (4) is equal to 1 iff each one of the determinants

on the right hand side is equal to 1. But each determinant Dk0,...,kt will be equal to 1 exactly KH
kt−k0+1

times. So for RI = {i0, . . . , ik−1}, the number of flat spectra is KH
i0

KH
i1−i0−1 · · ·KH

n−1−ik−1
and so

K(k) =
∑
|RI |=k

KH
i0

KH
i1−i0−1 · · ·KH

n−1−ik−1
.

The summands that appear in K(k) are all possible products
∏

KH
i such that the sum of the indices

is n− k, so we have

K(k) =
∑

∑k
λ=0 tλ=n−k

k∏
j=0

KH
tj

.

If we write the indices as a vector, (t0, . . . , tn−1), where
∑n−1

l=0 tl = n−k, then for (t1, . . . , tn−1) we have

that
∑n−1

l=1 tl = n − k − t0. Hence, for all possible vectors in KIH
n =

∑n−1
k=0 K(k), we have all possible

vectors in the lesser indices, as follows:

KIH
n = KH

n + KH
n−1K

IH
0 + KH

n−2K
IH
1 + . . . + KH

0 KIH
n−1 = KH

n +
n−1∑
i=0

KH
n−1−iK

IH
i . (5)

For the rest of the proof, we are going to omit the superscript H and use that Kn + Kn+1 = 1.

Using (5), we get

KIH
n+2 = Kn+2 +

n+1∑
i=0

Kn+1−iK
IH
i

= Kn+2 +
n∑

i=0

Kn+1−iK
IH
i + K0K

IH
n+1

= Kn+2 +
n∑

i=0

Kn+1−iK
IH
i + Kn+1 +

n∑
i=0

Kn−iK
IH
i

= Kn+1 + Kn+2 +
n∑

i=0

KIH
i (Kn−i + Kn+1−i)

= 1 +
n∑

i=0

KIH
i = 1 +

n−1∑
i=0

KIH
i + KIH

n

= 1 +
n−1∑
i=0

KIH
i (Kn−1−i + Kn−i) + KIH

n K0

= Kn + Kn+1 +
n−1∑
i=0

Kn−1−iK
IH
i +

n∑
i=0

Kn−iK
IH
i

= KIH
n + KIH

n+1
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This gives us the recurrence relation, and from there we get the closed formula.

Remark: This result appears in [3] as the evaluation of the interlace polynomial q(x) for the path

graph at x = 1.

B. Clique

The clique function, as defined in (2) satisfies the following lemma:

Lemma 5: KIH
n = # flat spectra(pc(x)) w.r.t. {I, H}n = 2n−1 .

Proof: It is easy to show from its adjacency matrix that the clique function of n variables is bent

for n even. Consider the sub-functions of the n-variable clique function, obtained by fixing a subset of

the input variables, RI. These sub-functions will also be cliques and will be Bent iff n− |RI| is even.

The lemma follows by straightforward counting arguments.

Remark: This result appears in [3] as the evaluation of the interlace polynomial q(x) for the

complete graph at x = 1.

C. Clique-Line-Clique

For the n clique-line-m clique, as defined in (3), we get:

Lemma 6: For n, m ≥ 1 such that n + m ≥ 4,

KIH
n,m = # flat spectra(pn,m(x)) w.r.t. {I, H}n+m = 2KIH

n−1,m = 2KIH
n,m−1; in closed form,

KIH
n,m = 5 · 2n+m−4 .

Proof: We begin the proof with some observations. Firstly, note that by fixing one of the connect-

ing variables, xn−1 or xn, we get two independent cliques, either in n− 1 and m variables respectively

or in n and m− 1 variables respectively. Secondly, if we fix any of the other variables instead, we get

the same kind of clique-line-clique graph. Thirdly, from the proof of lemma 3, we can deduce that pn,m

is bent iff n + m is even.

By the first and second observations, and considering that the order in which we fix doesn’t matter,

we get three separate cases:

• Case 1: We fix any variables but the connecting ones. Then, by the second and third observations,

we have flat spectra by fixing t variables iff n+m−2− t is even; that is, if n+m− t is even. Therefore

the number of flat spectra for this case is:

N1 =


(n+m)/2∑

k=0

(
n + m− 2

2k

)
if n + m even

(n+m−1)/2∑
k=0

(
n + m− 2

2k + 1

)
if n + m odd

• Case 2: We fix xn−1. We thus have two independent cliques, one of n−1 and the other of m variables.

We can then fix any of the remaining variables; when we fix t1 variables in the first clique and t2 in
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the second, we obtain a flat spectrum iff n− 1− t1 and m− t2 are both even. Thus,

N2 = 2n−22m−1 .

• Case 3: We fix xn. We then get two independent cliques, one of n and the other of m− 1 variables.

We can now fix any of the remaining variables but xn−1; when we fix t1 variables in the first clique

and t2 in the second, we obtain a flat spectrum iff n− t1 and m− 1− t2 are both even. Thus,

N3 = 2m−2 ·


(n−1)/2∑

k=0

(
n− 1

2k

)
if n odd

(n−2)/2∑
k=0

(
n− 1

2k + 1

)
if n even

Clearly, KIH
n,m = N1 + N2 + N3; in principle, the result depends on the parity of n and m. However

s/2∑
k=0

(
s

2k

)
= 1 +

s/2∑
k=1

[(
s− 1

2k

)
+

(
s− 1

2k − 1

)]
= 1 +

s−1∑
i=1

(
s− 1

i

)
= 2s−1 ,

and in the same way

(s−1)/2∑
k=0

(
s

2k + 1

)
=

(s−1)/2∑
k=1

[(
s− 1

2k + 1

)
+

(
s− 1

2k

)]
=

s−1∑
i=0

(
s− 1

i

)
= 2s−1 .

Therefore, in all cases, we get KIH
n,m = N1 + N2 + N3 = 5 · 2n+m−4, and from here, trivially, the

recurrence relation.

D. Comparison

Table I summarises our results for the {I, H}n transform set. As seen from both our theoretical

and computational results, the clique function has the maximum number of flat spectra w.r.t. {I, H}n

over the set of quadratics for n ≤ 8, and over the set of all boolean functions for n ≤ 5. We arrive at

the following:

Theorem 1: Over the set of all boolean functions, the clique function, as defined in (2), maximises

the number of flat spectra w.r.t. {I,H}n.

Proof: From the proof of Lemma 5, the spectrum is only and always flat if n′ = n− |RI| is even,

in which case the constituent 2n−n′ sub-functions over n′ variables, obtained from the clique function

by considering all possible fixings of the variables in RI, are all Bent. But it is well-known that no

boolean function over n′ variables is Bent if n′ is odd. So the clique function obtains the maximum

possible number of flat spectra w.r.t. {I, H}n.

Remark: Note that we have not proved that no other boolean function exists with the same number

of flat spectra w.r.t. {I, H}n as the clique function, but the existence of such a function seems unlikely.
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IV. On the Number of Flat Spectra of Boolean Functions with respect to

{I, H, N}n

As deduced from computational results, high-distance stabilizer quantum codes (optimal additive

codes over GF(4)) are associated to quadratic boolean functions with large numbers of flat spectra

w.r.t. {I, H, N}n. In fact Hein et al [13] have already argued that high-distance QECCs will represent

highly-entangled pure multipartite quantum states, and one indication of this entanglement strength

will be an ’evenly-spread’ power spectrum w.r.t. all Local Unitary Transforms [14], of which {I, H, N}n

is a strategic subset. Therefore, the problem of maximising the number of flat spectra w.r.t. {I, H, N}n

is of significant importance. As a means of comparison, we first consider the number of flat spectra

for the near-worst and worst-case functions, namely the constant function and the monomial function

of degree n, respectively.

A. Constant function

Lemma 7: The constant function in n variables, p(x) = 0 or 1, where x = (x0, . . . , xn−1) ∈ GF(2)n,

has 2n flat spectra with respect to {I,H, N}n.

Proof: Any {I, N}n transform of the constant function is flat, and none of the others: as seen

in [16], we get flat spectra iff pI(x) + pI(x + k) +
∑n−1

i=1 χ
RN

(i)kixi is balanced for all k 6= 0, where

k = (k0, . . . , kn−1) ∈ GF(2)n, χ
RN

is the characteristic function of the set RN and pI is the restriction

of the function when fixing the variables whose indices are in RI. In our case, for any choice of RI,

we get pI(x) + pI(x + k) = 0. Thus, we get flat spectra iff
∑n−1

i=0 χ
RN

(i)kixi is balanced for all k 6= 0.

Clearly, if χ
RN

(i) = 1 for all i ∈ {0, . . . , n− 1} \RI, we get a balanced function for all k 6= 0. But if

i ∈ RH for some i, χ
RN

(i) = 0, and by taking k = (0, . . . , 1, . . . , 0), where the 1 is in the ith position,

we get an unbalanced function.

B. Monomial function

Lemma 8: The monomial function of degree n in n variables, p(x) = x0x1x2 . . . xn−1, where

x = (x0, . . . , xn−1) ∈ GF(2)n, has n + 1 flat spectra w.r.t. {I, H, N}n, except for the case n = 2.

Proof: Throughout this proof, we will use the same notation as in the previous one.

We first let n = 1. Then, the monomial function becomes the linear function x0 in one variable.

This will have the same flat spectra as the constant function in one variable, that is 21 = n + 1.

Next, we let n = 2. Then the monomial is the same as the line in two variables, and will be

considered in lemma 9.

Now, we let n > 2 and R = {i0, . . . , il} = {0, . . . , n − 1} \ RI. Suppose that we fix xi = 1 for all

i ∈ RI, and that |R| > 2. If we take k = (1, 0, . . . , 0), the function pI(x)+pI(x+k)+
∑n−1

i=0 χ
RN

(i)kixi

becomes xi1 · · ·xil +χ
RN

(i0)xi0 , which is balanced iff χ
RN

(i0) = 1. Similarly, we see that we must have
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χ
RN

(i) = 1 for all i ∈ R (that is, R = RN). Consider now k = (1, 1, 0 . . . , 0). The function we will

get is xi1 · · ·xil + xi0xi2 · · ·xil + xi2 · · ·xl + xi0 + xi1 , which is not balanced.

Therefore, for n > 2, we need to fix at least n− 2 variables in order to obtain flat spectra; that is,

we need |RI| ≥ n− 2. Suppose now |RI| = n− 2: By symmetry, we can suppose, w.l.o.g., that we fix

x2, . . . , xn−1. If any of the xi = 0, then our new function is a constant, pI = 0. As we have just seen,

the only possibility for pI(x) + pI(x + k) + χ
RN

(0)k0x0 + χ
RN

(1)k1x1 to be balanced for all k 6= (0, 0)

is that χ
RN

(0) = χ
RN

(1) = 1. On the other hand, if xi = 1 for all i ≥ 2, pI = x0x1, the line in two

variables; as we can easily deduce from the generic modified adjacency matrix, it has a flat spectrum

iff χ
RN

(i) = 0 for at least one of the i’s. Thus we get a contradiction, and so in fact |RI| ≥ n − 1.

When |RI| = n − 1, by fixing we now get either pI = 0 or pI = xi. Both have a flat spectrum iff

χ
RN

(i) = 1, and from here we get n flat spectra. Finally, for |RI| = n, we get another flat spectrum.

Remark: It can be shown that n + 1 is the minimal number of flat spectra possible for a boolean

function w.r.t. {I, H, N}n.

C. Line

As opposed to the case of {H, N}n, the number of flat spectra of the line w.r.t. {I, H, N}n does not

seem to be maximal:

Lemma 9: KIHN
n = # flat spectra(pl(x)) w.r.t. {I, H, N}n = 2(KIHN

n−1 + KIHN
n−2 ), with KIHN

0 = 1

and KIHN
1 = 2; in closed form,

KIHN
n =

(1 +
√

3)n+1 − (1−
√

3)n+1

2
√

3
.

Proof: Following the same arguments as in the proof of Lemma 4, we arrive at the formula:

KIHN
n = Kn +

n−1∑
i=0

Kn−1−iK
IHN
i , (6)

where here, Ki will represent the number of flat spectra in i variables w.r.t. {H, N}n.

In the sequel we are going to use that Kn = 2n − Kn−1 (see Lemma 1), or more accurately its

consequence Kn+1 + Kn+2 = 2n+2 = 2(Kn + Kn+1). We will also use that K0 = K1 = 1.
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Using (6) we get

2KIHN
n + 2KIHN

n+1 = 2Kn + 2Kn+1 + 2
n−1∑
i=0

Kn−1−iK
IHN
i + 2

n∑
i=0

Kn−iK
IHN
i

= Kn+2 + Kn+1 +
n−1∑
i=0

KIHN
i 2(Kn−1−i + Kn−i) + 2KIHN

n K0

= Kn+2 +
n−1∑
i=0

KIHN
i (Kn−i + Kn−i+1) + KIHN

n (K0 + K1) + Kn+1

= Kn+2 +
n∑

i=0

KIHN
i (Kn−i + Kn−i+1) + Kn+1

= Kn+2 +
n∑

i=0

KIHN
i Kn−i+1 + Kn+1 +

n∑
i=0

KIHN
i Kn−i

= Kn+2 +
n∑

i=0

KIHN
i Kn−i+1 + KIHN

n+1

= Kn+2 +
n+1∑
i=0

KIHN
i Kn−i+1 = KIHN

n+2

From here, we arrive to the closed formula.

Remark: This result can be gleaned, indirectly, from page 23 of [1] as the evaluation of the interlace

polynomial Q(x) for the path graph at x = 2.

D. Clique

Although the clique function as defined in (2) appears to be maximal w.r.t. {I, H}n, it does not do

so well w.r.t. {I, H, N}n:

Lemma 10: KIHN
n = # flat spectra(pc(x)) w.r.t. {I, H, N}n = 2KIHN

n−1 + 2n; in closed form,

KIHN
n = (n + 1)2n−1 .

Proof: As stated before, if we have a clique in n variables and we fix a subset in the set of

variables (that is, we choose RI), we get a clique in n − |RI| variables. Thereby, for each selection

of RI we have as many flat spectra as the number of flat spectra w.r.t. {H, N}n−|RI|, in n − |RI|
variables. Therefore,

# flat spectra(pc(x)) w.r.t. {I,H, N}n =
n∑

i=0

(
n

i

)
Kn−i ,
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where Kn−i is the number of flat spectra of the clique in n− i variables w.r.t. {H, N}n−i. Now,

n∑
i=0

(
n

i

)
Kn−i =

n∑
i=0

(
n

n− i

)
Ki =

n∑
i=0

(
n

i

)
Ki

=
n∑

i=0

(
n

i

)(
i +

1 + (−1)i

2

)

=
n∑

i=0

(
n

i

)
i +

n∑
i=0

(
n

i

)
1
2

+
n∑

i=0

(
n

i

)
(−1)i

2

=
n∑

i=0

(
n

i

)
i + 2n−1 + 0

Expanding the first term,

n∑
i=0

(
n

i

)
i =

(
n

0

)
0 +

(
n

n

)
n +

n−1∑
i=1

(
n

i

)
i

= n +
n−1∑
i=1

[(
n− 1

i

)
+

(
n− 1

i− 1

)]
i

= n +
n−1∑
i=0

(
n− 1

i

)
i +

n−1∑
i=0

(
n− 1

i− 1

)
i

= n + 2
n−1∑
i=0

(
n− 1

i

)
i−

(
n− 1

n− 1

)
(n− 1) +

n−2∑
i=0

(
n− 1

i

)

= 2
n−1∑
i=0

(
n− 1

i

)
+ 1 + 2n−1 −

(
n− 1

n− 1

)

Hence, we get that KIHN
n = 2KIHN

n−1 + 2n. From the recurrence relation we get the desired formula.

Remark: For the cases n = 2, 3, and 4, KIHN
n of the clique function can be found by evaluating

the interlace polynomial Q(x) for the complete graph at x = 2 ([1], p.21).

E. Clique-Line-Clique

For the n clique-line-m clique structure, as defined in (3), the number of flat spectra is as follows:

Lemma 11: KIHN
n,m = # flat spectra(pn,m(x)) w.r.t. {I,H, N}n+m = 2n+m−3(3nm + 2n + 2m + 2) .

Proof: Suppose that one or both of the connecting variables are in RI: when we fix one of the

connecting variables, we get two independent cliques, so from this case we get

KIHN
n−1,CKIHN

m,C + KIHN
n,C KIHN

m−1,C −KIHN
n−1,CKIHN

m−1,C = 2m+n−4(3nm + 2n + 2m) ,

where KIHN
k,C is the number of flat spectra of the clique in k variables w.r.t. {I,H, N}k.

On the other hand, when none of the connecting variables are in RI, we get another clique-line-clique:

suppose that we fix i variables in the first clique and j in the second one. In that case, we will have as

many flat spectra as the number of flat spectra w.r.t. {H, N}n+m−i−j of an (n− i) clique-line-(m− j)

clique. Considering all possible fixings in this case, we get:
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n−1∑
i=0

m−1∑
j=0

(
n− 1

i

)(
m− 1

j

)
KHN

n−i,m−j = 2m+n−4(3nm + 2n + 2m + 4) .

F. Comparison

It is well-known that optimal GF(4)-additive codes make optimal QECCs [6]. The mapping from

a quadratic boolean function to a GF(4)-additive code is as follows. Let p(x) be a quadratic function

over n variables with associated adjacency matrix, Γ. Then the generator matrix for a [n, 2n, d] GF(4)-

additive code is given by Γ + ωIn, where ω2 + ω + 1 = 0 over GF(4) and In is the n × n identity

matrix. This GF(4)-additive code can be interpreted as a [[n, 0, d]] QECC of the stabilizer type.

Using the database at [7], an exhaustive computer search for n variable quadratic boolean functions,

4 ≤ n ≤ 9, finds one unique Local complementation (LC) orbit of functions for each n, whose number

of flat spectra with respect to {I,H, N}n is optimal. A representative for each of these orbits is listed

in Table II. All of these functions map to additive zero-dimension QECCs with optimal distances (see

[12] and [7]).

It remains open as to whether the quadratic function with the optimal number of flat spectra

w.r.t. {I, H, N}n will always have optimal distance when viewed as a QECC, and vice versa. In

any case, the approximate correspondence is to be expected as the QECC distance is equal to the

aperiodic propagation criteria (APC) distance of the quadratic boolean functions, as presented in [8].

Furthermore, optimal propagation (aperiodic autocorrelation) criteria will relate to very good spectral

properties via a generalised form of Fourier duality.

Tables III to V show an exhaustive computer search for boolean functions that achieve the optimal

number of flat spectra w.r.t. {I,H, N}n for cubics, quartics, and quintics respectively, where one

representative function is given per LC orbit. As expected, the maximum number of flat spectra

decreases as the algebraic degree of the boolean function rises. Also shown is the distance of the

boolean function when viewed as a zero-dimensional (non-stabilizer) QECC. As with the quadratics,

this distance parameter can be interpreted as the APC distance of a boolean function (see [8] for more

details). In all cases, the boolean functions shown in the tables achieve the maximum possible distance

for their given algebraic degree.

V. Conclusion

We derived simple recursions for the number of flat spectra with respect to {I, H, N}n for certain

recursive quadratic boolean constructions, and we demonstrated that Quantum Error Correcting Codes

with optimal distance appear to have the most flat spectra with respect to {I, H, N}n, at least for

small n. In subsequent work we hope to develop recursive formulae for nested-clique structures of the
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type highlighted in [9], as we expect that these will have many flat spectra w.r.t. {I, H, N}n.

We also showed computationally that, for small n, the number of flat spectra decreases when the

algebraic degree of the boolean function increases. Future work should seek to establish constructions

for boolean functions of degree greater than two that have as large a number of flat spectra as possible

w.r.t. {I, H, N}n. More generally, it would be of interest to relax the criteria somewhat, and look

for those functions which have many spectra with respect to {I, H, N}n with a worst-case spectral

power peak less than some low upper bound (see [9]). One would expect, in this case, that many

more boolean functions of degree > 2 would be found that do well for this relaxed criteria. One

promising line of inquiry in this context would be to apply and specialise the construction proposed

at the end of [9], which takes a global graph structure, where the graph ’nodes’ partition the set

of boolean variables, and where the nodes are ’linked’ by permutations over these variable subsets,

thereby obtaining higher-degree boolean functions with potentially favourable {I,H, N}n spectra.

Finally we have answered, indirectly, a question posed at the end of [3] as to a simple combinatorial

explanation of the interlace polynomial q. It is evident that q summarises some of the spectral prop-

erties of the graph w.r.t. {I, H}n. Similarly the interlace polynomial Q, as defined in [1], summarises

some of the spectral properties of the graph w.r.t. {I, H, N}n. Furthermore our work provides a natural

setting for future investigations into the generalisation of the interlace polynomial to hypergraphs.
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VI. Appendix

Function
Monomial

(n > 2)
Constant Line Clique n clique-Line-m clique

ANF x0 . . . xn−1 0
n−2∑
j=0

xjxj+1

∑
0≤i<j≤n−1

xixj

∑
0≤i<j≤n−1

xixj + xn−1xn +
∑

n≤i<j≤n+m−1

xixj

KHN
n (KHN

n,m) 0 2n 1
3

(
2n+1 + (−1)n

)
n + 1+(−1)n

2

3nm− n( 1+(−1)m

2 )−m( 1+(−1)n

2 )

+3( 1+(−1)n

2 )( 1+(−1)m

2 )

KIH
n (KIH

n,m) 1 1 (1+
√

5)n+1+(1−
√

5)n+1

2n+1
√

5
2n−1 5 · 2n+m−4

KIHN
n (KIHN

n,m ) n + 1 2n (1+
√

3)n+1−(1−
√

3)n+1

2
√

3
(n + 1)2n−1 2n+m−3(3nm + 2n + 2m + 2)

TABLE I

The Number of Flat Spectra w.r.t. {H,N}n, {I,H}n, and {I,H, N}n for some Quadratic Boolean

Functions

n distance Quadratics Optimal for KIHN
n KIHN

n KIHN
n for the line

4 2 02,13,23 44 44

5 3 01,02,13,24,34 132 120

6 4 01,02,05,13,15,24,25,34,35,45 396 328

7 3 03,06,14,16,25,26,34,35,45 1096 896

8 4 02,03,04,12,13,15,26,37,46,47,56,57,67 3256 2448

9 4 04,07,08,14,16,18,25,26,28,34,35,37,57,58,67,68 9432 6688

TABLE II

The Maximum Number of Flat Spectra w.r.t. {I, H, N}n for Quadratic Boolean Functions
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n distance Cubics Optimal for KIHN
n KIHN

n

3 1 012 4

4 2 012,03,13,23 20

5 2 012,03,14,23,24 72

6 3 012,03,04,13,15,24,25 248

TABLE III

The Maximum Number of Flat Spectra w.r.t. {I,H, N}n for Cubic Boolean Functions

n distance Quartics Optimal for KIHN
n KIHN

n

4 1 All Quartics 5

5 2 0123,01,04,14,23,24,34 30

0123,02,04,13,14,23,24,34

0123,04,14,23,24,34

TABLE IV

The Maximum Number of Flat Spectra w.r.t. {I,H, N}n for Quartic Boolean Functions

n distance Quintics Optimal for KIHN
n KIHN

n

5 1 All Quintics 6

TABLE V

The Maximum Number of Flat Spectra w.r.t. {I,H, N}n for Quintic Boolean Functions
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