Exclusivity graphs from quantum graph states - and mixed graph generalisations

Matthew G. Parker

joint work with A. Cabello, G. Scarpa, S. Severini, C. Riera, R. Rahaman

The Selmer Center, Department of Informatics, University of Bergen, Bergen, Norway,
matthew@ii.uib.no
June 26, 2014

A game

- Referee sends instructions to Alice and Bob.
- Alice and Bob obey instructions and return results to referee.
- Referee computes function of instructions and results. Returns 0 or 1 . Win if result is 1 .

A NONLOCAL game
Alice and Bob are nonlocal to each other ... ie. cannot communicate instruction or result to each other.
Can Alice and Bob always win? ...depends on game.

Nonlocality and pseudo-telepathy games
Referee sends input $x \in \mathcal{X}$ to Alice, $y \in \mathcal{Y}$ to Bob using prob. distr. $\pi(x, y)$.
Alice outputs $a \in A$, Bob outputs $b \in B$.
Referee computes $V(a, b, x, y) \in\{0,1\}$. Declares 'win' if result is 1.

Classical version
Alice computes a from x using function $s_{A}: \mathcal{X} \rightarrow A$.
Bob computes b from y using function $s_{B}: \mathcal{Y} \rightarrow B$.

Quantum version
Alice/Bob share quantum state $|\psi\rangle$
Given x, Alice measures $\left\{P_{a}^{x}\right\}_{a \in A}$, outputs an $a \in A$.
Given y, Bob measures $\left\{P_{b}^{y}\right\}_{b \in B}$, outputs a $b \in B$.

Classical vs quantum

Classical game: referee distributes function inputs to players.
Quantum game: referee distributes measurement instructions to players.

Classical vs. Quantum winning probs.

max. classical winning prob. is:

$$
w_{c}=\max _{s_{A}, s_{B}} \sum_{x, y} \pi(x, y) V\left(x, y, s_{A}(x), s_{B}(y)\right)
$$

max. quantum winning prob. is:

$$
\begin{aligned}
w_{q} & =\max _{|\psi\rangle,\left\{P_{x}^{x}\right\},\left\{P_{b}^{y}\right\}} \sum_{x, y} \pi(x, y) V(x, y, a, b) \operatorname{Pr}(a, b \mid x, y) \\
& =\max _{|\psi\rangle,\left\{P_{a}^{x}\right\},\left\{P_{b}^{y}\right\}} \sum_{x, y} \pi(x, y) V(x, y, a, b)\langle\psi| P_{a}^{x} \otimes P_{b}^{y}|\psi\rangle .
\end{aligned}
$$

Bell inequality for nonlocal game

max. classical winning prob. is:
$w_{c}=\max _{s_{A}, s_{B}} \sum_{x, y} \pi(x, y) V\left(x, y, s_{A}(x), s_{B}(y)\right)$.
max. quantum winning prob. is:
$w_{q}=\max _{|\psi\rangle,\left\{P_{a}\right\},\left\{P_{b}^{y}\right\}} \sum_{x, y} \pi(x, y) V(x, y, a, b)\langle\psi| P_{a}^{x} \otimes P_{b}^{y}|\psi\rangle$.

Bell inequality: $w_{c} \leq t, t \in[0,1]$.
Violated by quantum mechanics if: $w_{q}>t$.
Pseudo-telepathy game if: $w_{c}<w_{q}=1$.

A 3-player Game

A 3-player Game

Choose $V=1-\log _{-1}\left(s_{A}(x) s_{B}(y) s_{C}(z) Q(x, y, z)\right)$, where $s_{A}, s_{B}, s_{C}, Q \in\{1,-1\}$.
Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure). Referee instruction set, each with prob. $\frac{1}{7}$: \{XZZ, ZXI, YYZ, ZIX, YZY, IXX, XYY\} Choose Q so that $Q(X Z Z)=Q(Z X I)=$ $Q(Y Y Z)=Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$.
Classical challenge: How do Alice, Bob, Charlie choose s_{A}, s_{B}, s_{C} so that $V=1$ always? Answer: Impossible

A 3-player Game

Choose $V=1-\log _{-1}\left(s_{A}(x) s_{B}(y) s_{C}(z) Q(x, y, z)\right)$, where $s_{A}, s_{B}, s_{C}, Q \in\{1,-1\}$.
Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure).

Classical challenge: How do Alice, Bob, Charlie choose s_{A}, s_{B}, s_{C} so that $V=1$ always? Answer: Impossible

A 3-player Game

Choose $V=1-\log _{-1}\left(s_{A}(x) s_{B}(y) s_{C}(z) Q(x, y, z)\right)$, where $s_{A}, s_{B}, s_{C}, Q \in\{1,-1\}$.
Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure).
Referee instruction set, each with prob. $\frac{1}{7}$: $\{X Z Z, Z X I, Y Y Z, Z I X, Y Z Y, I X X, X Y Y\}$.

Classical challenge: How do Alice, Bob, Charlie choose s_{A}, s_{B}, s_{C} so that $V=1$ always? Answer: Impossible

A 3-player Game

Choose $V=1-\log _{-1}\left(s_{A}(x) s_{B}(y) s_{C}(z) Q(x, y, z)\right)$, where $s_{A}, s_{B}, s_{C}, Q \in\{1,-1\}$.
Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure).
Referee instruction set, each with prob. $\frac{1}{7}$: $\{X Z Z, Z X I, Y Y Z, Z I X, Y Z Y, I X X, X Y Y\}$.
Choose Q so that $Q(X Z Z)=Q(Z X I)=$ $Q(Y Y Z)=Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$.
Classical challenge: How do Alice, Bob, Charlie choose s_{A}, s_{B}, s_{C} so that $V=1$ always?
Answer: Impossible

A 3-player Game

Choose $V=1-\log _{-1}\left(s_{A}(x) s_{B}(y) s_{C}(z) Q(x, y, z)\right)$, where $s_{A}, s_{B}, s_{C}, Q \in\{1,-1\}$.
Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure).
Referee instruction set, each with prob. $\frac{1}{7}$: $\{X Z Z, Z X I, Y Y Z, Z I X, Y Z Y, I X X, X Y Y\}$.
Choose Q so that $Q(X Z Z)=Q(Z X I)=$ $Q(Y Y Z)=Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$.
Classical challenge: How do Alice, Bob, Charlie choose s_{A}, s_{B}, s_{C} so that $V=1$ always?

A 3-player Game

Choose $V=1-\log _{-1}\left(s_{A}(x) s_{B}(y) s_{C}(z) Q(x, y, z)\right)$, where $s_{A}, s_{B}, s_{C}, Q \in\{1,-1\}$.
Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure).
Referee instruction set, each with prob. $\frac{1}{7}$: $\{X Z Z, Z X I, Y Y Z, Z I X, Y Z Y, I X X, X Y Y\}$.
Choose Q so that $Q(X Z Z)=Q(Z X I)=$ $Q(Y Y Z)=Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$.
Classical challenge: How do Alice, Bob, Charlie choose s_{A}, s_{B}, s_{C} so that $V=1$ always?
Answer: Impossible

Try some examples

We have: $Q(X Z Z)=Q(Z X I)=Q(Y Y Z)=$
$Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$.

So how to choose

	X	Y	Z
s_{A}	$?$	$?$	$?$
s_{B}	$?$	$?$	$?$
s_{C}	$?$	$?$	$?$

so that $s_{A} s_{B} s_{C} Q=1$ always? . .. impossible. But

Try some examples

We have: $Q(X Z Z)=Q(Z X I)=Q(Y Y Z)=$
$Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$.

So how to choose

	X	Y	Z
s_{A}	$?$	$?$	$?$
s_{B}	$?$	$?$	$?$
s_{C}	$?$	$?$	$?$

so that $s_{A} s_{B} s_{C} Q=1$ always? . . impossible.

Try some examples

We have: $Q(X Z Z)=Q(Z X I)=Q(Y Y Z)=$
$Q(Z I X)=Q(Y Z Y)=Q(I X X)=1$, and
$Q(X Y Y)=-1$.
So how to choose

	X	Y	Z
s_{A}	$?$	$?$	$?$
s_{B}	$?$	$?$	$?$
s_{C}	$?$	$?$	$?$

so that $s_{A} s_{B} s_{C} Q=1$ always? . . impossible. But quantum game always wins.

Game uses a 3-qubit quantum graph state

Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z, i=\sqrt{-1} . \ldots$ (Pauli matrices)

Let the graph state $|G\rangle$ be the unique joint

eigenvector of operators $X \otimes Z \otimes Z, Z \otimes X \otimes I$,
and $Z \otimes I \otimes X$.
Represent $|G\rangle$ by a 3-vertex graph, G, with adjacency matrix $\Gamma=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ $\left(\begin{array}{lll}x & z & z \\ z & x & 1 \\ z & 1 & x\end{array}\right)$

Game uses a 3-qubit quantum graph state

$$
\begin{aligned}
& \text { Let } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \\
& Y=i X Z, i=\sqrt{-1} . \ldots \text { (Pauli matrices) }
\end{aligned}
$$

Let the graph state G be the unique joint

eigenvector of operators $X \otimes Z \otimes Z, Z$

Represent $|G\rangle$ by a 3-vertex graph, G, with adjacency matrix $\Gamma=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$ $\left(\begin{array}{lll}x & Z & Z \\ Z & X & 1 \\ Z & 1 & x\end{array}\right)$

Game uses a 3-qubit quantum graph state

Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$,
$Y=i X Z, i=\sqrt{-1} \ldots$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint eigenvector of operators $X \otimes Z \otimes Z, Z \otimes X \otimes I$, and $Z \otimes I \otimes X$.

Represent $|G\rangle$ by a 3 -vertex graph, G, with adjacency matrix $\Gamma=\left(\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$:

Game uses a 3-qubit quantum graph state

Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$,
$Y=i X Z, i=\sqrt{-1} \ldots$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint eigenvector of operators $X \otimes Z \otimes Z, Z \otimes X \otimes I$, and $Z \otimes I \otimes X$.

Represent $|G\rangle$ by a 3 -vertex graph, G, with adjacency matrix $\Gamma=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right):\left(\begin{array}{lll}X & Z & Z \\ Z & X & 1 \\ Z & 1 & X\end{array}\right)$

Game uses a 3-qubit quantum graph state

Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$,
$Y=i X Z, i=\sqrt{-1} \ldots$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint eigenvector of operators $X \otimes Z \otimes Z, Z \otimes X \otimes I$, and $Z \otimes I \otimes X$.

Represent $|G\rangle$ by a 3 -vertex graph, G, with adjacency matrix $\Gamma=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right):\left(\begin{array}{lll}X & Z & Z \\ Z & X & 1 \\ Z & 1 & X\end{array}\right)$

$|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{0} x_{2}}$

Game uses a 3-qubit quantum graph state

Let $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$,
$Y=i X Z, i=\sqrt{-1} \ldots$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint eigenvector of operators $X \otimes Z \otimes Z, Z \otimes X \otimes I$, and $Z \otimes I \otimes X$.

Represent $|G\rangle$ by a 3 -vertex graph, G, with adjacency matrix $\Gamma=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right):\left(\begin{array}{lll}X & Z & Z \\ Z & X & 1 \\ Z & 1 & X\end{array}\right)$

Operator code

$|G\rangle$ is unique joint eigenvector of operators $X \otimes Z \otimes Z, \quad Z \otimes X \otimes I, \quad$ and $Z \otimes I \otimes X$.

But also, for instance,

Operator code

$|G\rangle$ is unique joint eigenvector of operators $X \otimes Z \otimes Z, \quad Z \otimes X \otimes I, \quad$ and $Z \otimes I \otimes X$.
So,

$$
\begin{aligned}
& (X \otimes Z \otimes Z)|G\rangle=(Z \otimes X \otimes I)|G\rangle= \\
& (Z \otimes I \otimes X)|G\rangle=|G\rangle .
\end{aligned}
$$

But also, for instance,

Operator code

$|G\rangle$ is unique joint eigenvector of operators $X \otimes Z \otimes Z, \quad Z \otimes X \otimes I, \quad$ and $Z \otimes I \otimes X$.
So,

$$
\begin{gathered}
(X \otimes Z \otimes Z)|G\rangle=(Z \otimes X \otimes I)|G\rangle= \\
(Z \otimes I \otimes X)|G\rangle=|G\rangle .
\end{gathered}
$$

But also, for instance,
$(X \otimes Z \otimes Z)(Z \otimes X \otimes I)|G\rangle=(Y \otimes Y \otimes Z)|G\rangle=|G\rangle$, and

$$
\begin{gathered}
(Z \otimes I \otimes X)(Z \otimes X \otimes I)(X \otimes Z \otimes Z)|G\rangle= \\
-(X \otimes Y \otimes Y)|G\rangle=|G\rangle .
\end{gathered}
$$

Operator code $\leftrightarrow \mathbb{F}_{4}^{\prime}$-additive code

$|G\rangle$ is 'stabilized' by following 'code' of operators:

$$
I I I, X Z Z, Z X I, Z I X, Y Y Z, Y Z Y, I X X,-X Y Y .
$$

Remember for our game $Q(X Z Z)=Q(Z X I)=$
 and $Q(X Y Y)=-1$
Operator code can be represented by self-dual \mathbb{F}_{4}-additive code:

Operator code $\leftrightarrow \mathbb{F}_{4}$-additive code

$|G\rangle$ is 'stabilized' by following 'code' of operators:

$$
I I I, X Z Z, Z X I, Z I X, Y Y Z, Y Z Y, I X X,-X Y Y .
$$

Remember for our game $Q(X Z Z)=Q(Z X I)=$ $Q(Z I X)=Q(Y Y Z)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$
Operator code can be represented by self-dual \mathbb{F}_{4}-additive code:

Operator code $\leftrightarrow \mathbb{F}_{4}$-additive code

$|G\rangle$ is 'stabilized' by following 'code' of operators:

$$
I I I, X Z Z, Z X I, Z I X, Y Y Z, Y Z Y, I X X,-X Y Y .
$$

Remember for our game $Q(X Z Z)=Q(Z X I)=$ $Q(Z I X)=Q(Y Y Z)=Q(Y Z Y)=Q(I X X)=1$, and $Q(X Y Y)=-1$
Operator code can be represented by self-dual \mathbb{F}_{4}-additive code:

$$
\begin{aligned}
& \quad\left(\begin{array}{ccc}
x & z & z \\
z & x & 1 \\
z & 1 & x
\end{array}\right) \leftrightarrow\left(\begin{array}{lll}
w & 1 & 1 \\
1 & w & 0 \\
1 & 0 & w
\end{array}\right), \\
& w^{2}=w+1, w \in \mathbb{F}_{4} .
\end{aligned}
$$

Measuring graph states

Let $|+\rangle=\frac{1}{\sqrt{2}}(1,1),|-\rangle=\frac{1}{\sqrt{2}}(1,-1)$ be orthogonal eigenvectors of X with eigenvalues 1 and -1 , resp.

Let $|0\rangle=(1,0),|1\rangle=(0,1)$ be orthogonal eigenvectors of Z with eigenvalues 1 and -1 , resp.

Let $\left|y_{+}\right\rangle,\left|y_{-}\right\rangle$be orthogonal eigenvectors of Y with eigenvalues 1 and -1 , resp.

Measuring graph states

Let $|+\rangle=\frac{1}{\sqrt{2}}(1,1),|-\rangle=\frac{1}{\sqrt{2}}(1,-1)$ be orthogonal eigenvectors of X with eigenvalues 1 and -1 , resp.

Let $|0\rangle=(1,0),|1\rangle=(0,1)$ be orthogonal eigenvectors of Z with eigenvalues 1 and -1 , resp.

Let $\left|y_{+}\right\rangle,\left|y_{-}\right\rangle$be orthogonal eigenvectors of Y with eigenvalues 1 and -1 , resp.

So $X|+\rangle=Z|0\rangle=Y\left|y_{+}\right\rangle=1$, and
$X|-\rangle=Z|1\rangle=Y\left|y_{-}\right\rangle=-1$.

Measuring graph states

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{0} x_{2}}=$ and.
$|G\rangle$ is 'stabilized' by operator code:

$$
I I I, X Z Z, Z X I, Z I X, Y Y Z, Y Z Y, I X X,-X Y Y
$$

Measure $X Z Z$ on $|G\rangle$ means measure X on qubit 0 , Z on qubit $1, Z$ on qubit 2.
Collapses $|G\rangle$ to one of:

The four resultant vectors are pairwise orthogonal.

Measuring graph states

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{0} x_{2}}=$, worn.
$|G\rangle$ is 'stabilized' by operator code:

$$
I I I, X Z Z, Z X I, Z I X, Y Y Z, Y Z Y, I X X,-X Y Y
$$

Measure $X Z Z$ on $|G\rangle$ means measure X on qubit 0 , Z on qubit $1, Z$ on qubit 2 .
Collapses $|G\rangle$ to one of:

The four resultant vectors are pairwise orthogonal. In all four cases, product of qubit eigenvalues is 1.

Measuring $X Z Z$ on $|G\rangle$

If we measure $X Z Z$ on $|G\rangle$ and obtain $|+\rangle \otimes|0\rangle \otimes|0\rangle$, then eigenvalue is $1 \times 1 \times 1=1$.
The event is: xzz.

There are four exclusive events: $x z z, \underline{x z z}, \underline{x} z \underline{z}, x \underline{z z}$.

Measuring $X Z Z$ on $|G\rangle$

If we measure $X Z Z$ on $|G\rangle$ and obtain $|+\rangle \otimes|0\rangle \otimes|0\rangle$, then eigenvalue is $1 \times 1 \times 1=1$.
The event is: $x z z$.
If, instead, we obtain $|-\rangle \otimes|1\rangle \otimes|0\rangle$, then eigenvalue is $-1 \times-1 \times 1=1$.
The event is: $\underline{x z z}$.

There are four exclusive events: $x z Z, \underline{x} Z Z, \underline{x} z \underline{Z}, x \underline{Z} \boldsymbol{Z}$.

Measuring $X Z Z$ on $|G\rangle$

If we measure $X Z Z$ on $|G\rangle$ and obtain $|+\rangle \otimes|0\rangle \otimes|0\rangle$, then eigenvalue is $1 \times 1 \times 1=1$.
The event is: xzz.
If, instead, we obtain $|-\rangle \otimes|1\rangle \otimes|0\rangle$, then eigenvalue is $-1 \times-1 \times 1=1$.
The event is: $x z z$.
If, instead, we obtain $|-\rangle \otimes|0\rangle \otimes|1\rangle$, then eigenvalue is $-1 \times 1 \times-1=1$.
The event is: $\underline{x} z z$.

The event is: $x z z$.

There are four exclusive events: $x z z, x \geq z, x z \underline{z}, x \underline{z}$.

Measuring $X Z Z$ on $|G\rangle$

If we measure $X Z Z$ on $|G\rangle$ and obtain $|+\rangle \otimes|0\rangle \otimes|0\rangle$, then eigenvalue is $1 \times 1 \times 1=1$.
The event is: xzz.
If, instead, we obtain $|-\rangle \otimes|1\rangle \otimes|0\rangle$, then eigenvalue is $-1 \times-1 \times 1=1$. The event is: $\underline{x z z}$.

If, instead, we obtain $|-\rangle \otimes|0\rangle \otimes|1\rangle$, then eigenvalue is $-1 \times 1 \times-1=1$. The event is: $\underline{x} z \underline{z}$.
If, instead, we obtain $|+\rangle \otimes|1\rangle \otimes|1\rangle$, then eigenvalue is $1 \times-1 \times-1=1$. The event is: $x z z$.

Measuring $X Z Z$ on $|G\rangle$

If we measure $X Z Z$ on $|G\rangle$ and obtain $|+\rangle \otimes|0\rangle \otimes|0\rangle$, then eigenvalue is $1 \times 1 \times 1=1$.
The event is: xzz.
If, instead, we obtain $|-\rangle \otimes|1\rangle \otimes|0\rangle$, then eigenvalue is $-1 \times-1 \times 1=1$. The event is: $\underline{x z z}$.

If, instead, we obtain $|-\rangle \otimes|0\rangle \otimes|1\rangle$, then eigenvalue is $-1 \times 1 \times-1=1$. The event is: $\underline{x z z}$.
If, instead, we obtain $|+\rangle \otimes|1\rangle \otimes|1\rangle$, then eigenvalue is $1 \times-1 \times-1=1$. The event is: $x z z$.

There are four exclusive events: $x z z, \underline{x z z}, \underline{x} z \underline{z}, x \underline{z z}$.

Why four exclusive events??

For our example Alice, Bob, and Charlie measure $X Z Z$ and obtain one of: $x z z, \underline{x z z}, \underline{x} z \underline{z}, x \underline{z z}$.
e.g. $x z z$ means that Alice, Bob, and Charlie all measure 1. But if, say, $x z z$ is measured then Alice and Bob both measured -1 , and Charlie measured 1. Classically it is impossible for both scenarios to be true, but quantumly it is possible. We make a big graph whose vertices are all possible events and with edges between exclusive events, e.g. an edge between vertex $x z z$ and vertex $x \underline{z z}$.

Why four exclusive events??

For our example Alice, Bob, and Charlie measure $X Z Z$ and obtain one of:
$x z z, \underline{x z z}, \underline{x} z \underline{z}, x \underline{z z}$.
...e.g. xzz means that Alice, Bob, and Charlie all measure 1. But if, say, $\underline{x z z}$ is measured then Alice and Bob both measured -1 , and Charlie measured 1. Classically it is impossible for both scenarios to be true, but quantumly it is possible.

Why four exclusive events??

For our example Alice, Bob, and Charlie measure $X Z Z$ and obtain one of:
$x z z, \underline{x z z}, \underline{x} z \underline{z}, x \underline{z z}$.
...e.g. xzz means that Alice, Bob, and Charlie all measure 1. But if, say, $\underline{x z z}$ is measured then Alice and Bob both measured -1 , and Charlie measured 1. Classically it is impossible for both scenarios to be true, but quantumly it is possible.
We make a big graph whose vertices are all possible events and with edges between exclusive events, e.g. an edge between vertex xzz and vertex xzz.

A big graph H from a small graph G

Make a graph from all possible events resulting from measuring $|G\rangle$ with stabilizing operators.
Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{0} x_{2}}$. Operator code is: III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY.
Construct big graph $H(G)$ with 22 vertices:

$$
\begin{aligned}
& x z z, \underline{x z z}, \underline{x z} \underline{z}, x \underline{z z} \\
& z x I, \underline{z x}, \\
& z l x, \underline{z} \mid \underline{x} \\
& y y z, \underline{y y z}, \underline{y} y \underline{z}, y \underline{y} \underline{z} \\
& y z y, \underline{y z} y, \underline{y} z \underline{y}, y \underline{z} \underline{y} \\
& I x x, I \underline{x z} \\
& \underline{x y y}, x \underline{y} y, x y \underline{y}, \underline{x y y} .
\end{aligned}
$$

Edges between mutually exclusive events.
e.g. $x z z-\underline{x z z}$ and $x z z-\underline{y} \underline{z} y$.

Example big graph

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$.
Then $H(G)$ is:

Another drawing for same graph

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$.
Then $H(G)$ is:

Big graph H invariant over LC orbit of G

Local complementation (LC) at a vertex, v, of G complements the edges between the neighbours of G, e.g.

Both graphs generate the same big graph, H, (to
within re-labelling). In general, all members of the
LC orbit generate the same H.

Big graph H invariant over LC orbit of G

Local complementation (LC) at a vertex, v, of G complements the edges between the neighbours of G, e.g.

Both graphs generate the same big graph, H, (to within re-labelling). In general, all members of the LC orbit generate the same H.

Big graph H invariant over LC orbit of G

So the pseudo-telepathy game is a property of the LC orbit of G

- it can also be seen as a property of the \mathbb{F}_{4}-additive code associated with G.

Big graph H invariant over LC orbit of G

So the pseudo-telepathy game is a property of the LC orbit of G

- it can also be seen as a property of the \mathbb{F}_{4}-additive code associated with G.

Reminder: Nonlocality and pseudo-telepathy games
Referee sends input $x \in \mathcal{X}$ to Alice, $y \in \mathcal{Y}$ to Bob using prob. distr. $\pi(x, y)$.
Alice outputs $a \in A$, Bob outputs $b \in B$.
Referee computes $V(a, b, x, y) \in\{0,1\}$. Declares 'win' if result is 1.

Classical version
Alice computes a from x using function $s_{A}: \mathcal{X} \rightarrow A$.
Bob computes b from y using function $s_{B}: \mathcal{Y} \rightarrow B$.

Quantum version
Alice/Bob share state $|\psi\rangle$
Given x, Alice measures $\left\{P_{a}^{x}\right\}_{a \in A}$, outputs an $a \in A$.
Given y, Bob measures $\left\{P_{b}^{y}\right\}_{b \in B}$, outputs a $b \in B$.

Classical vs. Quantum winning probs.

max. classical winning prob. is:

$$
w_{c}=\max _{s_{A}, s_{B}} \sum_{x, y} \pi(x, y) V\left(x, y, s_{A}(x), s_{B}(y)\right)
$$

max. quantum winning prob. is:

$$
w_{q}=\max _{|\psi\rangle,\left\{P_{a}^{x}\right\},\left\{P_{b}^{y}\right\}} \sum_{x, y} \pi(x, y) V(x, y, a, b)\langle\psi| P_{a}^{x} \otimes P_{b}^{y}|\psi\rangle .
$$

Bell inequality for nonlocal game

max. classical winning prob. is:

$$
w_{c}=\max _{s_{A}, s_{B}} \sum_{x, y} \pi(x, y) V\left(x, y, s_{A}(x), s_{B}(y)\right)
$$

max. quantum winning prob. is:

$$
w_{q}=\max _{|\psi\rangle,\left\{P_{a}^{x}\right\},\left\{P_{b}^{V_{b}}\right\}} \sum_{x, y} \pi(x, y) V(x, y, a, b)\langle\psi| P_{a}^{x} \otimes P_{b}^{y}|\psi\rangle .
$$

Bell inequality: $w_{c} \leq t, t \in[0,1]$.
Violated by quantum mechanics if: $w_{q}>t$.
Pseudo-telepathy game if: $w_{c}<w_{q}=1$.

Pseudo-telepathy using big graph

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$. So $H(G)$ is:

$n=3$ players. Set of instructions is $\{I, X, Y, Z\}$ for each player. Ref sends one of
$X Z I, Z X Z, Y Y Z, I Z X, X I X, Z Y Y, Y X Y$ as defined by $\pi\left(\{I, X, Y, Z\}^{3}\right)$. $Q=1$ except $Q(Y X Y)=-1$.
V is product of 3 measurement results $\times Q$.
Win is 1 .

Pseudo-telepathy using big graph

Optimal classical strategy: choose max. size independent set in $H(G)$.
e.g. $z x z, y y z, y x y, x z l, x \mid x, I z x-$ size 6. Then:
$s_{A}: X \rightarrow 1, Y \rightarrow 1, Z \rightarrow 1$
$s_{B}: X \rightarrow 1, Y \rightarrow 1, Z \rightarrow 1$
$s_{C}: X \rightarrow 1, Y \rightarrow-1, Z \rightarrow 1$.
Product of function results $\times Q$ is 1 but if referee sends $Z Y Y$ then
$s_{A}(Z) s_{B}(Y) s_{C}(Y) Q(Z Y Y)=1 \times 1 \times-1 \times 1=-1$.

Pseudo-telepathy using big graph

Optimal classical strategy: choose max. size independent set in $H(G)$.
e.g. $z x z, y y z, y x y, x z l, x \mid x, I z x-$ size 6. Then:
$s_{A}: X \rightarrow 1, Y \rightarrow 1, Z \rightarrow 1$
$s_{B}: X \rightarrow 1, Y \rightarrow 1, Z \rightarrow 1$
$s_{C}: X \rightarrow 1, Y \rightarrow-1, Z \rightarrow 1$.
Product of function results $\times Q$ is 1 but if referee sends $Z Y Y$ then
$s_{A}(Z) s_{B}(Y) s_{C}(Y) Q(Z Y Y)=1 \times 1 \times-1 \times 1=-1$.
But joint quantum measurement gives either
$1 \times 1 \times 1 \times 1$ or $-1 \times-1 \times 1 \times 1$ or $-1 \times 1 \times-1 \times 1$ or $1 \times-1 \times-1 \times 1$, so result always 1 .

Pseudo-telepathy using big graph

Optimal classical strategy: choose max. size independent set in $H(G)$.
e.g. $z x z, y y z, y x y, x z l, x \mid x, I z x-$ size 6. Then:
$s_{A}: X \rightarrow 1, Y \rightarrow 1, Z \rightarrow 1$
$s_{B}: X \rightarrow 1, Y \rightarrow 1, Z \rightarrow 1$
$s_{C}: X \rightarrow 1, Y \rightarrow-1, Z \rightarrow 1$.
Product of function results $\times Q$ is 1 but if referee sends $Z Y Y$ then
$s_{A}(Z) s_{B}(Y) s_{C}(Y) Q(Z Y Y)=1 \times 1 \times-1 \times 1=-1$.
But joint quantum measurement gives either
$1 \times 1 \times 1 \times 1$ or $-1 \times-1 \times 1 \times 1$ or $-1 \times 1 \times-1 \times 1$ or $1 \times-1 \times-1 \times 1$, so result always 1 .
So $w_{c}=\frac{6}{2^{3}-1}=\frac{6}{7}, w_{q}=\frac{2^{3}-1}{2^{3}-1}=1$.

Important properties of big graph

$$
\text { Let }|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}} \text {. So } H(G) \text { is: }
$$

Max independent set size: $\quad \alpha(H(G))=6$.
Lovasz number: $\vartheta(H(G))=2^{n}-1=2^{3}-1$.

max taken over all unit vectors ψ and all orthogonal representations $\left\{v_{i}\right\}$ of $H(G)$ - orth. representation maps adjacent vertices in $H(G)$ to orth. vectors.

Important properties of big graph

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$. So $H(G)$ is:

Max independent set size: $\quad \alpha(H(G))=6$.
Lovasz number: $\quad \vartheta(H(G))=2^{n}-1=2^{3}-1$.

$$
\left.=\max \sum_{i=0}^{n-1}|\langle\psi|| v_{i}\right\rangle\left.\right|^{2},
$$

max taken over all unit vectors ψ and all orthogonal representations $\left\{v_{i}\right\}$ of $H(G)$

Important properties of big graph

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$. So $H(G)$ is:

Max independent set size: $\quad \alpha(H(G))=6$.
Lovasz number: $\quad \vartheta(H(G))=2^{n}-1=2^{3}-1$.

$$
\left.=\max \sum_{i=0}^{n-1}|\langle\psi|| v_{i}\right\rangle\left.\right|^{2},
$$

max taken over all unit vectors ψ and all orthogonal representations $\left\{v_{i}\right\}$ of $H(G)$ - orth. representation maps adjacent vertices in $H(G)$ to orth. vectors.

Proof that $\vartheta(H(G)) \geq 2^{n}-1$

Let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$.
Let $S=\{Z X Z, Y Y Z, Y X Y, X Z I, X I X, I Z X, Z Y Y\}$ and $s_{i} \in S$.
Eigendecomposition: $\left.s_{i}=\sum_{j} \lambda_{i j}| | s_{i, j}\right\rangle\left\langle s_{i, j}\right| \mid$.

$$
\begin{aligned}
2^{n}-1 & =\sum_{i=1}^{2^{n}-1}\langle G| s_{i}|G\rangle \\
& =\sum_{i=1}^{2^{n}-1} \sum_{j} \lambda_{i j}\left\langle G \mid s_{(i, j)}\right\rangle\left\langle\left\langle s_{(i, j)} \mid G\right\rangle\right. \\
& =\sum_{i=1}^{2^{n}-1} \sum_{j: i_{i j}=1}\left\langle G \mid s_{(i, j)}\right\rangle\left\langle s_{(i, j)} \mid G\right\rangle \\
& =\sum_{i=1}^{2^{n}-1} \sum_{j: \lambda i, i=1}\left|\left\langle G \mid s_{(i, j)}\right\rangle\right|^{2} \\
& \leq \vartheta(H),
\end{aligned}
$$

Fractional packing number of $H(G)$

Fractional packing number of H is given by:

$$
\alpha^{*}(H(G))=\max \sum_{i \in V(H)} w_{i},
$$

where max is over $0 \leq w_{i} \leq 1$ restricted by $\sum_{i \in C_{j}} w_{i} \leq 1$, for all cliques, $C_{j} \in H(G)$.

Fractional packing number of $H(G)$

Fractional packing number of H is given by:

$$
\alpha^{*}(H(G))=\max \sum_{i \in V(H)} w_{i},
$$

where max is over $0 \leq w_{i} \leq 1$ restricted by
$\sum_{i \in C_{j}} w_{i} \leq 1$, for all cliques, $C_{j} \in H(G)$.
If no of vertices of G is n then

$$
\alpha^{*}(H(G))=2^{n}-1
$$

Fractional packing number of $H(G)$

Fractional packing number of H is given by:

$$
\alpha^{*}(H(G))=\max \sum_{i \in V(H)} w_{i},
$$

where max is over $0 \leq w_{i} \leq 1$ restricted by
$\sum_{i \in C_{j}} w_{i} \leq 1$, for all cliques, $C_{j} \in H(G)$.
If no of vertices of G is n then

$$
\alpha^{*}(H(G))=2^{n}-1 .
$$

e.g. let $|G\rangle=\frac{1}{\sqrt{8}}(-1)^{x_{0} x_{1}+x_{1} x_{2}}$. So $H(G)$ is:

and $\alpha^{*}(H(G))=2^{3}-1=7$.

$\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1$

$$
\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1,
$$

because Lovasz showed that, for any graph g,

$$
\vartheta(g) \leq \alpha^{*}(H(G))
$$

The property $\alpha(H(G))<\vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$.
The property $\vartheta(H(G))=a^{2}(H(G))=2^{n}-1$ explains why we have a pseudo-telepathy game.

$\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1$

$$
\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1,
$$

because Lovasz showed that, for any graph g,

$$
\vartheta(g) \leq \alpha^{*}(H(G))
$$

\ldots and we know that $\vartheta(H(G)) \geq 2^{n}-1$ and $\alpha^{*}(H(G))=2^{n}-1$.

The property $\alpha(H(G))<\vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$.
The property $\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1$ explains why we have a pseudo-telepathy game.

$\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1$

$$
\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1,
$$

because Lovasz showed that, for any graph g,

$$
\vartheta(g) \leq \alpha^{*}(H(G))
$$

\ldots and we know that $\vartheta(H(G)) \geq 2^{n}-1$ and $\alpha^{*}(H(G))=2^{n}-1$.

The property $\alpha(H(G))<\vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$.

$\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1$

$$
\alpha(H(G))<\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1,
$$

because Lovasz showed that, for any graph g,

$$
\vartheta(g) \leq \alpha^{*}(H(G)),
$$

\ldots and we know that $\vartheta(H(G)) \geq 2^{n}-1$ and $\alpha^{*}(H(G))=2^{n}-1$.

The property $\alpha(H(G))<\vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$.
The property $\vartheta(H(G))=\alpha^{*}(H(G))=2^{n}-1$ explains why we have a pseudo-telepathy game.

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is stabilised by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\left(\begin{array}{ccc}x & z & z \\ Z & x & l \\ Z & 1 & x\end{array}\right)$

and the same for any pair of rows.
Always true when symmetric matrix with X on the diagonal and $\{I, Z\}$ off it.

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is stabilised by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\left(\begin{array}{lll}x & z & z \\ Z & x & 1 \\ Z & 1 & x\end{array}\right)$
$|G\rangle$ only exists because operators fully commute with each other. For instance,
$(X \otimes Z \otimes Z)(Z \otimes I \otimes X)=(Z \otimes I \otimes X)(X \otimes Z \otimes Z)$
... and the same for any pair of rows.
Always true when symmetric matrix with X on the diagonal and

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is stabilised by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\left(\begin{array}{lll}x & z & z \\ Z & x & 1 \\ Z & 1 & x\end{array}\right)$
$|G\rangle$ only exists because operators fully commute with each other. For instance, $(X \otimes Z \otimes Z)(Z \otimes I \otimes X)=(Z \otimes I \otimes X)(X \otimes Z \otimes Z)$... and the same for any pair of rows.
Always true when symmetric matrix with X on the diagonal and $\{I, Z\}$ off it.

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is stabilised by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\left(\begin{array}{lll}x & z & z \\ Z & x & 1 \\ Z & 1 & x\end{array}\right)$
$|G\rangle$ only exists because operators fully commute with each other. For instance,
$(X \otimes Z \otimes Z)(Z \otimes I \otimes X)=(Z \otimes I \otimes X)(X \otimes Z \otimes Z)$
... and the same for any pair of rows.
Always true when symmetric matrix with X on the diagonal and $\{I, Z\}$ off it.
... but what about when matrix is not symmetric??

Example mixed graph

Consider $\left(\begin{array}{lll}x & z & 1 \\ l & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

$(X \otimes Z \otimes I)(I \otimes X \otimes Z)=-(I \otimes X \otimes Z)(X \otimes Z \otimes I)$
so first two rows anti-commute.
So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example, embedd 3×3 in 4×4 :

Example mixed graph

Consider $\left(\begin{array}{lll}x & z & 1 \\ 1 & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

$(X \otimes Z \otimes I)(I \otimes X \otimes Z)=-(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows anti-commute.
So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example, embedd 3×3 in 4×4 :

Example mixed graph

Consider $\left(\begin{array}{lll}x & z & 1 \\ 1 & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

$(X \otimes Z \otimes I)(I \otimes X \otimes Z)=-(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows anti-commute.
So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example,

Example mixed graph

Consider $\left(\begin{array}{lll}x & z & 1 \\ 1 & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

$(X \otimes Z \otimes I)(I \otimes X \otimes Z)=-(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows anti-commute.
So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix.

Example mixed graph

Consider $\left(\begin{array}{lll}x & z & 1 \\ 1 & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

$(X \otimes Z \otimes I)(I \otimes X \otimes Z)=-(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows anti-commute.
So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example, embedd 3×3 in 4×4 :

$$
\left(\begin{array}{lll|l}
x & z & 1 & z \\
1 & x & z & x \\
1 & z & x & 1 \\
z & 1 & 1 & x
\end{array}\right) \rightarrow\left(\begin{array}{lll|l}
x & z & 1 & z \\
z & x & z & 1 \\
1 & z & x & 1 \\
z & 1 & 1 & x
\end{array}\right)
$$

mixed graph extended to graph

$\left(\begin{array}{lll}x & z & 1 \\ l & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

. . . extended to ...
$\left(\begin{array}{lll|l}X & Z & 1 & Z \\ 1 & X & Z & X \\ 1 & Z & X & 1 \\ Z & 1 & 1 & X\end{array}\right) \rightarrow\left(\begin{array}{lll|l}X & Z & I & Z \\ Z & X & Z & I \\ 1 & Z & X & 1 \\ Z & 1 & 1 & X\end{array}\right):$ graph:

mixed graph extended to graph

$\left(\begin{array}{lll}x & z & 1 \\ l & x & z \\ 1 & z & x\end{array}\right)$: mixed graph:

. . . extended to ...
$\left(\begin{array}{lll|l}X & Z & 1 & Z \\ 1 & X & Z & X \\ 1 & Z & X & 1 \\ Z & 1 & 1 & X\end{array}\right) \rightarrow\left(\begin{array}{lll|l}X & Z & I & Z \\ Z & X & Z & I \\ 1 & Z & X & 1 \\ Z & 1 & 1 & X\end{array}\right):$ graph:

The game?

Alice, Bob, Charlie receive instructions from the
non-commuting operator code: $\left(\begin{array}{lll|l}x & z & 1 & z \\ 1 & x & z & x \\ 1 & z & x & 1 \\ z & 1 & 1 & x\end{array}\right)$.
Instructions are
$X Z I, I X Z, X Y Z, I Z X, X I X, I Y Y, X X Y$ with $Q=1$ apart from $Q(X Y Z)=-1$.
...
... to be continued ...

