Exclusivity graphs from quantum graph states - and mixed graph generalisations

Matthew G. Parker joint work with A. Cabello, G. Scarpa, S. Severini, C. Riera, R. Rahaman

The Selmer Center, Department of Informatics, University of Bergen, Bergen, Norway, matthew@ii.uib.no

June 26, 2014

A game

- Referee sends instructions to Alice and Bob.
- Alice and Bob obey instructions and return results to referee.
- Referee **computes function** of instructions and results. Returns 0 or 1. Win if result is 1.

A NONLOCAL game

Alice and Bob are **nonlocal** to each other ... i.e. cannot communicate instruction or result to each other.

Can Alice and Bob always win? ... depends on game.

Nonlocality and pseudo-telepathy games

Referee sends input $x \in \mathcal{X}$ to Alice, $y \in \mathcal{Y}$ to Bob using prob. distr. $\pi(x, y)$. Alice outputs $a \in A$, Bob outputs $b \in B$. Referee computes $V(a, b, x, y) \in \{0, 1\}$. Declares 'win' if result is 1.

Classical version

Alice computes *a* from *x* using function $s_A : \mathcal{X} \to A$. Bob computes *b* from *y* using function $s_B : \mathcal{Y} \to B$.

Quantum version

Alice/Bob share quantum state $|\psi\rangle$ Given x, Alice measures $\{P_a^x\}_{a\in A}$, outputs an $a \in A$. Given y, Bob measures $\{P_b^y\}_{b\in B}$, outputs a $b\in B$.

Classical vs quantum

Classical game: referee distributes **function inputs** to players.

Quantum game: referee distributes **measurement instructions** to players.

Classical vs. Quantum winning probs.

max. classical winning prob. is: $w_c = \max_{s_A, s_B} \sum_{x,y} \pi(x, y) V(x, y, s_A(x), s_B(y)).$

max. quantum winning prob. is:
$$\begin{split}
w_q &= \max_{|\psi\rangle, \{P_a^x\}, \{P_b^y\}} \sum_{x,y} \pi(x,y) V(x,y,a,b) \Pr(a,b|x,y) \\
&= \max_{|\psi\rangle, \{P_a^x\}, \{P_b^y\}} \sum_{x,y} \pi(x,y) V(x,y,a,b) \langle \psi | P_a^x \otimes P_b^y | \psi \rangle \,. \end{split}$$

Bell inequality for nonlocal game

max. classical winning prob. is: $w_c = \max_{s_A, s_B} \sum_{x,y} \pi(x, y) V(x, y, s_A(x), s_B(y)).$

max. quantum winning prob. is: $w_q = \max_{|\psi\rangle, \{P_a^x\}, \{P_b^y\}} \sum_{x,y} \pi(x, y) V(x, y, a, b) \langle \psi | P_a^x \otimes P_b^y | \psi \rangle.$

Bell inequality: $w_c \leq t$, $t \in [0, 1]$.

Violated by quantum mechanics if: $w_q > t$. Pseudo-telepathy game if: $w_c < w_q = 1$.

Choose $V = 1 - \log_{-1}(s_A(x)s_B(y)s_C(z)Q(x, y, z))$, where $s_A, s_B, s_C, Q \in \{1, -1\}$.

Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. *I* returns 1 (don't measure). Referee instruction set, each with prob. $\frac{1}{7}$: $\{XZZ, ZXI, YYZ, ZIX, YZY, IXX, XYY\}$. Choose *Q* so that Q(XZZ) = Q(ZXI) =Q(YYZ) = Q(ZIX) = Q(YZY) = Q(IXX) = 1, and Q(XYY) = -1.

Classical challenge: How do Alice, Bob, Charlie choose s_A , s_B , s_C so that V = 1 always? Answer: **Impossible**

Choose $V = 1 - \log_{-1}(s_A(x)s_B(y)s_C(z)Q(x, y, z))$, where $s_A, s_B, s_C, Q \in \{1, -1\}$.

Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. *I* returns 1 (don't measure).

Referee instruction set, each with prob. $\frac{1}{7}$: {*XZZ*, *ZXI*, *YYZ*, *ZIX*, *YZY*, *IXX*, *XYY*}. Choose *Q* so that Q(XZZ) = Q(ZXI) =Q(YYZ) = Q(ZIX) = Q(YZY) = Q(IXX) = 1, and Q(XYY) = -1.

Classical challenge: How do Alice, Bob, Charlie choose s_A , s_B , s_C so that V = 1 always? Answer: **Impossible**

Choose $V = 1 - \log_{-1}(s_A(x)s_B(y)s_C(z)Q(x, y, z)),$ where $s_A, s_B, s_C, Q \in \{1, -1\}$. Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure). Referee instruction set, each with prob. $\frac{1}{7}$: $\{XZZ, ZXI, YYZ, ZIX, YZY, IXX, XYY\}.$ Q(YYZ) = Q(ZIX) = Q(YZY) = Q(IXX) = 1,

choose s_A , s_B , s_C so that V = 1 always? Answer: **Impossible**

Choose $V = 1 - \log_{-1}(s_A(x)s_B(y)s_C(z)Q(x, y, z)),$ where $s_A, s_B, s_C, Q \in \{1, -1\}$. Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure). Referee instruction set, each with prob. $\frac{1}{7}$: $\{XZZ, ZXI, YYZ, ZIX, YZY, IXX, XYY\}$. Choose Q so that Q(XZZ) = Q(ZXI) =Q(YYZ) = Q(ZIX) = Q(YZY) = Q(IXX) = 1,and Q(XYY) = -1.

choose s_A, s_B, s_C so that V = 1 always?

Answer: Impossible

Choose $V = 1 - \log_{-1}(s_A(x)s_B(y)s_C(z)Q(x, y, z)),$ where $s_A, s_B, s_C, Q \in \{1, -1\}$. Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure). Referee instruction set, each with prob. $\frac{1}{7}$: $\{XZZ, ZXI, YYZ, ZIX, YZY, IXX, XYY\}$. Choose Q so that Q(XZZ) = Q(ZXI) =Q(YYZ) = Q(ZIX) = Q(YZY) = Q(IXX) = 1,and Q(XYY) = -1. Classical challenge: How do Alice, Bob, Charlie choose s_A, s_B, s_C so that V = 1 always? Answer: **Impossible**

Choose $V = 1 - \log_{-1}(s_A(x)s_B(y)s_C(z)Q(x, y, z))$, where $s_A, s_B, s_C, Q \in \{1, -1\}$. Instructions/measurements for Alice, Bob, Charlie from $\{I, X, Y, Z\}$. I returns 1 (don't measure). Referee instruction set, each with prob. $\frac{1}{7}$: $\{XZZ, ZXI, YYZ, ZIX, YZY, IXX, XYY\}$. Choose Q so that Q(XZZ) = Q(ZXI) =Q(YYZ) = Q(ZIX) = Q(YZY) = Q(IXX) = 1,and Q(XYY) = -1. Classical challenge: How do Alice, Bob, Charlie choose s_A, s_B, s_C so that V = 1 always? Answer: **Impossible**

Try some examples

We have:
$$Q(XZZ) = Q(ZXI) = Q(YYZ) =$$

 $Q(ZIX) = Q(YZY) = Q(IXX) = 1$, and
 $Q(XYY) = -1$.

So how to choose

so that $s_A s_B s_C Q = 1$ always? ... impossible. But quantum game always wins.

Try some examples

We have:
$$Q(XZZ) = Q(ZXI) = Q(YYZ) =$$

 $Q(ZIX) = Q(YZY) = Q(IXX) = 1$, and
 $Q(XYY) = -1$.

So how to choose

so that $s_A s_B s_C Q = 1$ always? ... impossible. But quantum game always wins.

Try some examples

We have:
$$Q(XZZ) = Q(ZXI) = Q(YYZ) =$$

 $Q(ZIX) = Q(YZY) = Q(IXX) = 1$, and
 $Q(XYY) = -1$.

So how to choose

so that $s_A s_B s_C Q = 1$ always? ... impossible. But quantum game always wins.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $Y = iXZ$, $i = \sqrt{-1}$ (Pauli matrices)

Let the graph state $|G\rangle$ be the unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$, and $Z \otimes I \otimes X$.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $Y = iXZ$, $i = \sqrt{-1}$ (Pauli matrices)

Let the graph state $|G\rangle$ be the unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$, and $Z \otimes I \otimes X$.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,
 $Y = iXZ$, $i = \sqrt{-1}$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint
eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$,
and $Z \otimes I \otimes X$.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,
 $Y = iXZ$, $i = \sqrt{-1}$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint
eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$,
and $Z \otimes I \otimes X$.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,
 $Y = iXZ$, $i = \sqrt{-1}$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint
eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$,
and $Z \otimes I \otimes X$.

Let
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,
 $Y = iXZ$, $i = \sqrt{-1}$ (Pauli matrices)
Let the graph state $|G\rangle$ be the unique joint
eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$,
and $Z \otimes I \otimes X$.

Operator code

 $|G\rangle$ is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$, and $Z \otimes I \otimes X$. So,

$\begin{array}{l} (X \otimes Z \otimes Z) \left| G \right\rangle = (Z \otimes X \otimes I) \left| G \right\rangle = \\ (Z \otimes I \otimes X) \left| G \right\rangle = \left| G \right\rangle. \end{array}$

But also, for instance,

 $(X \otimes Z \otimes Z)(Z \otimes X \otimes I) |G\rangle = (Y \otimes Y \otimes Z) |G\rangle = |G\rangle,$

and

 $(Z \otimes I \otimes X)(Z \otimes X \otimes I)(X \otimes Z \otimes Z) |G\rangle = -(X \otimes Y \otimes Y) |G\rangle = |G\rangle.$

Operator code

 $|G\rangle$ is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$, and $Z \otimes I \otimes X$. So,

$\begin{array}{l} \left(X\otimes Z\otimes Z\right) \left| G\right\rangle =\left(Z\otimes X\otimes I\right) \left| G\right\rangle =\\ \left(Z\otimes I\otimes X\right) \left| G\right\rangle =\left| G\right\rangle . \end{array}$

But also, for instance,

 $(X \otimes Z \otimes Z)(Z \otimes X \otimes I) |G\rangle = (Y \otimes Y \otimes Z) |G\rangle = |G\rangle,$

and

 $(Z \otimes I \otimes X)(Z \otimes X \otimes I)(X \otimes Z \otimes Z) |G\rangle = -(X \otimes Y \otimes Y) |G\rangle = |G\rangle.$

Operator code

 $|G\rangle$ is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I$, and $Z \otimes I \otimes X$. So,

$$\begin{array}{l} \left(X\otimes Z\otimes Z\right) \left| G\right\rangle =\left(Z\otimes X\otimes I\right) \left| G\right\rangle =\\ \left(Z\otimes I\otimes X\right) \left| G\right\rangle =\left| G\right\rangle . \end{array}$$

But also, for instance,

 $(X \otimes Z \otimes Z)(Z \otimes X \otimes I) |G\rangle = (Y \otimes Y \otimes Z) |G\rangle = |G\rangle,$

and

 $\begin{array}{l} (Z \otimes I \otimes X)(Z \otimes X \otimes I)(X \otimes Z \otimes Z) \left| G \right\rangle = \\ -(X \otimes Y \otimes Y) \left| G \right\rangle = \left| G \right\rangle. \end{array}$

Operator code $\leftrightarrow \mathbb{F}_4$ -additive code

$|G\rangle$ is 'stabilized' by following 'code' of operators: III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY.

Remember for our game Q(XZZ) = Q(ZXI) =Q(ZIX) = Q(YYZ) = Q(YZY) = Q(IXX) = 1, and Q(XYY) = -1

Operator code can be represented by self-dual \mathbb{F}_4 -additive code:

$$\begin{pmatrix} X & Z & Z \\ Z & X & I \\ Z & I & X \end{pmatrix} \leftrightarrow \begin{pmatrix} w & 1 & 1 \\ 1 & w & 0 \\ 1 & 0 & w \end{pmatrix},$$
$$w^{2} = w + 1, w \in \mathbb{F}_{4}.$$

Operator code $\leftrightarrow \mathbb{F}_4$ -additive code

$|G\rangle$ is 'stabilized' by following 'code' of operators: III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY.

Remember for our game Q(XZZ) = Q(ZXI) =Q(ZIX) = Q(YYZ) = Q(YZY) = Q(IXX) = 1, and Q(XYY) = -1

Operator code can be represented by self-dual \mathbb{F}_4 -additive code:

$$\begin{pmatrix} X & Z & Z \\ Z & X & I \\ Z & I & X \end{pmatrix} \leftrightarrow \begin{pmatrix} w & 1 & 1 \\ 1 & w & 0 \\ 1 & 0 & w \end{pmatrix},$$
$$w^{2} = w + 1, w \in \mathbb{F}_{4}.$$

Operator code $\leftrightarrow \mathbb{F}_4$ -additive code

 $|G\rangle$ is 'stabilized' by following 'code' of operators: III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY.

Remember for our game Q(XZZ) = Q(ZXI) =Q(ZIX) = Q(YYZ) = Q(YZY) = Q(IXX) = 1, and Q(XYY) = -1

Operator code can be represented by self-dual \mathbb{F}_4 -additive code:

$$egin{pmatrix} X & Z & Z \ Z & X & I \ Z & I & X \end{pmatrix} \leftrightarrow egin{pmatrix} w & 1 & 1 \ 1 & w & 0 \ 1 & 0 & w \end{pmatrix},$$
 $w^2 = w + 1, w \in \mathbb{F}_4.$

Let $|+\rangle = \frac{1}{\sqrt{2}}(1,1)$, $|-\rangle = \frac{1}{\sqrt{2}}(1,-1)$ be orthogonal eigenvectors of X with eigenvalues 1 and -1, resp. Let $|0\rangle = (1,0)$, $|1\rangle = (0,1)$ be orthogonal eigenvectors of Z with eigenvalues 1 and -1, resp. Let $|y_+\rangle$, $|y_-\rangle$ be orthogonal eigenvectors of Y with

eigenvalues 1 and -1, resp.

So
$$X |+\rangle = Z |0\rangle = Y |y_+\rangle = 1$$
, and $X |-\rangle = Z |1\rangle = Y |y_-\rangle = -1$.

Let $|+\rangle = \frac{1}{\sqrt{2}}(1,1)$, $|-\rangle = \frac{1}{\sqrt{2}}(1,-1)$ be orthogonal eigenvectors of X with eigenvalues 1 and -1, resp. Let $|0\rangle = (1,0)$, $|1\rangle = (0,1)$ be orthogonal eigenvectors of Z with eigenvalues 1 and -1, resp.

Let $|y_+\rangle$, $|y_-\rangle$ be orthogonal eigenvectors of Y with eigenvalues 1 and -1, resp.

So
$$X \ket{+} = Z \ket{0} = Y \ket{y_+} = 1$$
, and $X \ket{-} = Z \ket{1} = Y \ket{y_-} = -1$.

Measuring graph states

Let
$$|G\rangle = \frac{1}{\sqrt{8}} (-1)^{x_0 x_1 + x_0 x_2} = \frac{1}{\sqrt{8}} (-1)^{x_0$$

 $|G\rangle$ is 'stabilized' by operator code:

III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY.

Measure XZZ on $|G\rangle$ means measure X on qubit 0, Z on qubit 1, Z on qubit 2. Collapses $|G\rangle$ to one of: $|+\rangle \otimes |0\rangle \otimes |0\rangle$, $|-\rangle \otimes |1\rangle \otimes |0\rangle$ $|-\rangle \otimes |0\rangle \otimes |1\rangle$, $|+\rangle \otimes |1\rangle \otimes |1\rangle$.

The four resultant vectors are pairwise orthogonal. In all four cases, product of qubit eigenvalues is 1.

Measuring graph states

Let
$$|G\rangle = \frac{1}{\sqrt{8}} (-1)^{x_0 x_1 + x_0 x_2} = \frac{1}{\sqrt{8}} (-1)^{x_0$$

 $|G\rangle$ is 'stabilized' by operator code:

III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY.

Measure XZZ on $|G\rangle$ means measure X on qubit 0, Z on qubit 1, Z on qubit 2. Collapses $|G\rangle$ to one of: $|+\rangle \otimes |0\rangle \otimes |0\rangle$, $|-\rangle \otimes |1\rangle \otimes |0\rangle$ $|-\rangle \otimes |0\rangle \otimes |1\rangle$, $|+\rangle \otimes |1\rangle \otimes |1\rangle$.

The four resultant vectors are pairwise orthogonal. In all four cases, product of qubit eigenvalues is 1.

Measuring XZZ on $|G\rangle$

If we measure XZZ on $|G\rangle$ and obtain $|+\rangle \otimes |0\rangle \otimes |0\rangle$, then eigenvalue is $1 \times 1 \times 1 = 1$. The event is: xzz.

If, instead, we obtain $|-\rangle \otimes |1\rangle \otimes |0\rangle$, then eigenvalue is $-1 \times -1 \times 1 = 1$. The event is: <u>xz</u>z.

If, instead, we obtain $|-\rangle \otimes |0\rangle \otimes |1\rangle$, then eigenvalue is $-1 \times 1 \times -1 = 1$. The event is: <u>xzz</u>.

If, instead, we obtain $|+\rangle \otimes |1\rangle \otimes |1\rangle$, then eigenvalue is $1 \times -1 \times -1 = 1$. The event is: $x\underline{z}\underline{z}$.

There are four *exclusive* events: *xzz*, *<u>xz</u><i>z*, <u>xzz</u>, <u>xzz</u>, <u>xzz</u>.
If we measure XZZ on $|G\rangle$ and obtain $|+\rangle \otimes |0\rangle \otimes |0\rangle$, then eigenvalue is $1 \times 1 \times 1 = 1$. The event is: xzz.

If, instead, we obtain $|-\rangle \otimes |1\rangle \otimes |0\rangle$, then eigenvalue is $-1 \times -1 \times 1 = 1$. The event is: <u>xz</u>.

If, instead, we obtain $|-\rangle \otimes |0\rangle \otimes |1\rangle$, then eigenvalue is $-1 \times 1 \times -1 = 1$. The event is: <u>x</u>zz.

If, instead, we obtain $|+\rangle \otimes |1\rangle \otimes |1\rangle$, then eigenvalue is $1 \times -1 \times -1 = 1$. The event is: $x\underline{z}$.

There are four *exclusive* events: *xzz*, *<u>xz</u><i>z*, <u>xzz</u>, <u>xzz</u>, <u>xzz</u>.

If we measure XZZ on $|G\rangle$ and obtain $|+\rangle \otimes |0\rangle \otimes |0\rangle$, then eigenvalue is $1 \times 1 \times 1 = 1$. The event is: xzz.

If, instead, we obtain $|-\rangle \otimes |1\rangle \otimes |0\rangle$, then eigenvalue is $-1 \times -1 \times 1 = 1$. The event is: <u>xz</u>.

If, instead, we obtain $|-\rangle \otimes |0\rangle \otimes |1\rangle$, then eigenvalue is $-1 \times 1 \times -1 = 1$. The event is: <u>xzz</u>.

If, instead, we obtain $|+\rangle \otimes |1\rangle \otimes |1\rangle$, then eigenvalue is $1 \times -1 \times -1 = 1$. The event is: $x\underline{z}\underline{z}$.

There are four *exclusive* events: *xzz*, *<u>xz</u><i>z*, <u>xzz</u>, <u>xzz</u>.

If we measure XZZ on $|G\rangle$ and obtain $|+\rangle \otimes |0\rangle \otimes |0\rangle$, then eigenvalue is $1 \times 1 \times 1 = 1$. The event is: xzz.

If, instead, we obtain $|-\rangle \otimes |1\rangle \otimes |0\rangle$, then eigenvalue is $-1 \times -1 \times 1 = 1$. The event is: <u>xz</u>.

If, instead, we obtain $|-\rangle \otimes |0\rangle \otimes |1\rangle$, then eigenvalue is $-1 \times 1 \times -1 = 1$. The event is: <u>xzz</u>.

If, instead, we obtain $|+\rangle \otimes |1\rangle \otimes |1\rangle$, then eigenvalue is $1 \times -1 \times -1 = 1$. The event is: $x\underline{z}\underline{z}$.

There are four *exclusive* events: *xzz*, <u>*xzz*</u>, <u>*xzz*</u>, *x<u>zz</u>.*

If we measure XZZ on $|G\rangle$ and obtain $|+\rangle \otimes |0\rangle \otimes |0\rangle$, then eigenvalue is $1 \times 1 \times 1 = 1$. The event is: xzz.

If, instead, we obtain $|-\rangle \otimes |1\rangle \otimes |0\rangle$, then eigenvalue is $-1 \times -1 \times 1 = 1$. The event is: <u>xz</u>.

If, instead, we obtain $|-\rangle \otimes |0\rangle \otimes |1\rangle$, then eigenvalue is $-1 \times 1 \times -1 = 1$. The event is: <u>xzz</u>.

If, instead, we obtain $|+\rangle \otimes |1\rangle \otimes |1\rangle$, then eigenvalue is $1 \times -1 \times -1 = 1$. The event is: $x\underline{z}\underline{z}$.

There are four *exclusive* events: *xzz*, *<u>xzz</u>, <u>xzz</u>, <u>xzz</u>, <u>xzz</u>.*

For our example Alice, Bob, and Charlie measure *XZZ* and obtain one of:

 $XZZ, \underline{XZ}Z, \underline{X}Z\underline{Z}, X\underline{Z}Z.$

...e.g. xzz means that Alice, Bob, and Charlie all measure 1. But if, say, <u>xz</u>z is measured then Alice and Bob both measured -1, and Charlie measured 1. Classically it is **impossible** for both scenarios to be true, but quantumly it is possible.

We make a big graph whose vertices are all possible events and with edges between exclusive events, e.g. an edge between vertex *xzz* and vertex <u>*xzz*</u>. For our example Alice, Bob, and Charlie measure *XZZ* and obtain one of:

 $xzz, \underline{xz}z, \underline{x}zz, \underline{x}z\underline{z}, \underline{x}\underline{z}z$.

...e.g. *xzz* means that Alice, Bob, and Charlie all measure 1. But if, say, \underline{xz} is measured then Alice and Bob both measured -1, and Charlie measured 1. Classically it is **impossible** for both scenarios to be true, but quantumly it is possible.

We make a big graph whose vertices are all possible events and with edges between exclusive events, e.g. an edge between vertex *xzz* and vertex <u>*xzz*</u>. For our example Alice, Bob, and Charlie measure *XZZ* and obtain one of:

 $xzz, \underline{xz}z, \underline{x}zz, \underline{x}z\underline{z}, \underline{x}\underline{z}z$.

...e.g. *xzz* means that Alice, Bob, and Charlie all measure 1. But if, say, \underline{xz} is measured then Alice and Bob both measured -1, and Charlie measured 1. Classically it is **impossible** for both scenarios to be true, but quantumly it is possible.

We make a big graph whose vertices are all possible events and with edges between exclusive events, e.g. an edge between vertex *xzz* and vertex <u>*xzz*</u>.

A big graph H from a small graph G

Make a graph from all possible events resulting from measuring $|G\rangle$ with stabilizing operators. Let $|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_0x_2}$. Operator code is: III, XZZ, ZXI, ZIX, YYZ, YZY, IXX, -XYY. Construct big graph H(G) with 22 vertices:

> xzz, <u>xz</u>z, <u>xzz</u>, <u>xzz</u>, zxl, <u>zx</u>l, zlx, <u>zlx</u>, yyz, <u>yyz</u>, <u>yyz</u>, <u>yyz</u>, yzy, <u>yzy</u>, <u>yzy</u>, <u>yzy</u>, lxx, <u>lxz</u>, <u>xyy</u>, xyy, xyy, <u>xyy</u>.

Edges between *mutually exclusive* events. e.g. $xzz - \underline{xz}z$ and $xzz - \underline{yz}y$.

Example big graph

 $y\underline{x}y \quad \underline{y}xy$

Another drawing for same graph

Big graph H invariant over LC orbit of G

Local complementation (LC) at a vertex, v, of G complements the edges between the neighbours of G, e.g.

Both graphs generate the same big graph, *H*, (to within re-labelling). In general, **all** members of the LC orbit generate the same *H*.

Big graph H invariant over LC orbit of G

Local complementation (LC) at a vertex, v, of G complements the edges between the neighbours of G, e.g.

Both graphs generate the same big graph, H, (to within re-labelling). In general, **all** members of the LC orbit generate the same H.

So the pseudo-telepathy game is a property of the **LC orbit** of G

- it can also be seen as a property of the \mathbb{F}_4 -additive **code** associated with *G*.

So the pseudo-telepathy game is a property of the **LC orbit** of G

- it can also be seen as a property of the \mathbb{F}_4 -additive **code** associated with *G*.

Reminder: Nonlocality and pseudo-telepathy games

Referee sends input $x \in \mathcal{X}$ to Alice, $y \in \mathcal{Y}$ to Bob using prob. distr. $\pi(x, y)$. Alice outputs $a \in A$, Bob outputs $b \in B$. Referee computes $V(a, b, x, y) \in \{0, 1\}$. Declares 'win' if result is 1.

Classical version

Alice computes *a* from *x* using function $s_A : \mathcal{X} \to A$. Bob computes *b* from *y* using function $s_B : \mathcal{Y} \to B$.

Quantum version

Alice/Bob share state $|\psi\rangle$ Given x, Alice measures $\{P_a^x\}_{a\in A}$, outputs an $a \in A$. Given y, Bob measures $\{P_b^y\}_{b\in B}$, outputs a $b\in B$.

Classical vs. Quantum winning probs.

max. classical winning prob. is: $w_c = \max_{s_A, s_B} \sum_{x,y} \pi(x, y) V(x, y, s_A(x), s_B(y)).$

max. quantum winning prob. is: $w_q = \max_{|\psi\rangle, \{P_a^x\}, \{P_b^y\}} \sum_{x,y} \pi(x, y) V(x, y, a, b) \langle \psi | P_a^x \otimes P_b^y | \psi \rangle.$

max. classical winning prob. is:

$$w_c = \max_{s_A, s_B} \sum_{x,y} \pi(x, y) V(x, y, s_A(x), s_B(y)).$$

max. quantum winning prob. is:

$$w_q = \max_{|\psi\rangle, \{P_a^x\}, \{P_b^y\}} \sum_{x,y} \pi(x, y) V(x, y, a, b) \langle \psi | P_a^x \otimes P_b^y | \psi \rangle.$$

Bell inequality: $w_c \le t$, $t \in [0, 1]$. Violated by quantum mechanics if: $w_q > t$. Pseudo-telepathy game if: $w_c < w_q = 1$.

Let
$$|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$$
. So $H(G)$ is:

n = 3 players. Set of instructions is $\{I, X, Y, Z\}$ for each player. Ref sends one of XZI, ZXZ, YYZ, IZX, XIX, ZYY, YXY as defined by $\pi(\{I, X, Y, Z\}^3)$. Q = 1 except Q(YXY) = -1. V is product of 3 measurement results $\times Q$. Win is 1.

Optimal classical strategy: choose max. size independent set in H(G).

e.g. zxz, yyz, yxy, xzl, xlx, lzx - size 6. Then: $s_A: X \to 1, Y \to 1, Z \to 1$ $s_B: X \to 1, Y \to 1, Z \to 1$

$$s_C: X \to 1, Y \to -1, Z \to 1$$

Product of function results $\times Q$ is 1 but if referee sends ZYY then

 $s_A(Z)s_B(Y)s_C(Y)Q(ZYY) = 1 \times 1 \times -1 \times 1 = -1.$ But joint quantum measurement gives either $1 \times 1 \times 1 \times 1$ or $-1 \times -1 \times 1 \times 1$ or $-1 \times 1 \times -1 \times 1$ or $1 \times -1 \times -1 \times 1$, so result **always** 1. So $w_c = \frac{6}{2^3-1} = \frac{6}{7}$, $w_q = \frac{2^3-1}{2^3-1} = 1$.

Optimal classical strategy: choose max. size independent set in H(G).

e.g. zxz, yyz, yxy, xzl, xlx, lzx - size 6. Then: $s_A: X \to 1, Y \to 1, Z \to 1$ $s_B: X \to 1, Y \to 1, Z \to 1$

$$s_C: X \to 1, Y \to -1, Z \to 1.$$

Product of function results $\times Q$ is 1 but if referee sends ZYY then

 $s_A(Z)s_B(Y)s_C(Y)Q(ZYY) = 1 \times 1 \times -1 \times 1 = -1.$ But joint quantum measurement gives either $1 \times 1 \times 1 \times 1$ or $-1 \times -1 \times 1 \times 1$ or $-1 \times 1 \times -1 \times 1$ or $1 \times -1 \times -1 \times 1$, so result **always** 1. So $w_c = \frac{6}{10} = \frac{6}{10} = \frac{6}{10} = \frac{2^3 - 1}{10} = 1$

Optimal classical strategy: choose max. size independent set in H(G).

e.g. zxz, yyz, yxy, xzl, xlx, lzx - size 6. Then: $s_A: X \to 1, Y \to 1, Z \to 1$ $s_B: X \to 1, Y \to 1, Z \to 1$

$$s_C: X \to 1, Y \to -1, Z \to 1.$$

Product of function results $\times Q$ is 1 but if referee sends ZYY then

 $s_A(Z)s_B(Y)s_C(Y)Q(ZYY) = 1 \times 1 \times -1 \times 1 = -1.$ But joint quantum measurement gives either $1 \times 1 \times 1 \times 1$ or $-1 \times -1 \times 1 \times 1$ or $-1 \times 1 \times -1 \times 1$ or $1 \times -1 \times -1 \times 1$, so result **always** 1. So $w_c = \frac{6}{2^3-1} = \frac{6}{7}$, $w_q = \frac{2^3-1}{2^3-1} = 1$.

Important properties of big graph

Let
$$|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$$
. So $H(G)$ is:

Max independent set size: $\alpha(H(G)) = 6$. Lovasz number: $\vartheta(H(G)) = 2^n - 1 = 2^3 - 1$.

$$= \max \sum_{i=0}^{n-1} |\langle \psi | | v_i \rangle |^2,$$

max taken over all unit vectors ψ and all orthogonal representations $\{v_i\}$ of H(G) - orth. representation maps adjacent vertices in H(G) to orth. vectors.

Important properties of big graph

Let
$$|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$$
. So $H(G)$ is:

Max independent set size: $\alpha(H(G)) = 6$. Lovasz number: $\vartheta(H(G)) = 2^n - 1 = 2^3 - 1$.

$$= \max \sum_{i=0}^{n-1} |\langle \psi | | \mathbf{v}_i \rangle |^2,$$

max taken over all unit vectors ψ and all orthogonal representations $\{v_i\}$ of H(G) - orth. representation maps adjacent vertices in H(G) to orth. vectors.

Important properties of big graph

Let
$$|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$$
. So $H(G)$ is:

Max independent set size: $\alpha(H(G)) = 6$. Lovasz number: $\vartheta(H(G)) = 2^n - 1 = 2^3 - 1$.

$$= \max \sum_{i=0}^{n-1} |\langle \psi | | \mathbf{v}_i \rangle |^2,$$

max taken over all unit vectors ψ and all orthogonal representations $\{v_i\}$ of H(G) - orth. representation maps adjacent vertices in H(G) to orth. vectors.

Proof that $\vartheta(H(G)) \ge 2^n - 1$

Let
$$|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$$
.
Let $S = \{ZXZ, YYZ, YXY, XZI, XIX, IZX, ZYY\}$
and $s_i \in S$.

Eigendecomposition: $s_i = \sum_j \lambda_{ij} ||s_{i,j}\rangle \langle s_{i,j}||$.

$$2^{n} - 1 = \sum_{i=1}^{2^{n}-1} \langle G|s_{i}|G \rangle$$

$$= \sum_{i=1}^{2^{n}-1} \sum_{j} \lambda_{ij} \langle G|s_{(i,j)} \rangle \langle s_{(i,j)}|G \rangle$$

$$= \sum_{i=1}^{2^{n}-1} \sum_{j:\lambda_{ij}=1} \langle G|s_{(i,j)} \rangle \langle s_{(i,j)}|G \rangle$$

$$= \sum_{i=1}^{2^{n}-1} \sum_{j:\lambda_{ij}=1} |\langle G|s_{(i,j)} \rangle|^{2}$$

$$\leq \vartheta(H),$$

Fractional packing number of H(G)

Fractional packing number of H is given by:

$$lpha^*(H(G)) = \max \sum_{i \in V(H)} w_i,$$

where max is over $0 \le w_i \le 1$ restricted by $\sum_{i \in C_j} w_i \le 1$, for all cliques, $C_j \in H(G)$. If no of vertices of G is n then

$$\alpha^*(H(G)) = 2^n - 1.$$
e.g. let $|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1 + x_1x_2}$. So $H(G)$ is:

Fractional packing number of H(G)

Fractional packing number of H is given by:

$$lpha^*(H(G)) = \max \sum_{i \in V(H)} w_i,$$

where max is over $0 \le w_i \le 1$ restricted by $\sum_{i \in C_j} w_i \le 1$, for all cliques, $C_j \in H(G)$. If no of vertices of G is n then

$$\alpha^*(H(G))=2^n-1$$

e.g. let $|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$. So H(G) is:

Fractional packing number of H(G)

Fractional packing number of H is given by:

$$lpha^*(H(G)) = \max \sum_{i \in V(H)} w_i,$$

where max is over $0 \le w_i \le 1$ restricted by $\sum_{i \in C_j} w_i \le 1$, for all cliques, $C_j \in H(G)$. If no of vertices of G is n then

$$\alpha^*(H(G))=2^n-1.$$

e.g. let $|G\rangle = \frac{1}{\sqrt{8}}(-1)^{x_0x_1+x_1x_2}$. So H(G) is:

$$\alpha(H(G)) < \vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1,$$

because Lovasz showed that, for any graph g,

$\vartheta(g) \leq \alpha^*(H(G)),$

...and we know that $\vartheta(H(G)) \ge 2^n - 1$ and $\alpha^*(H(G)) = 2^n - 1$.

The property $\alpha(H(G)) < \vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$. The property $\vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1$ explains why we have a pseudo-telepathy game.

$$\alpha(H(G)) < \vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1,$$

because Lovasz showed that, for any graph g,

$$\vartheta(g) \leq \alpha^*(H(G)),$$

...and we know that $\vartheta(H(G)) \ge 2^n - 1$ and $\alpha^*(H(G)) = 2^n - 1$.

The property $\alpha(H(G)) < \vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$. The property $\vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1$ explains why we have a pseudo-telepathy game.

$$\alpha(H(G)) < \vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1,$$

because Lovasz showed that, for any graph g,

$$\vartheta(g) \leq \alpha^*(H(G)),$$

...and we know that $\vartheta(H(G)) \ge 2^n - 1$ and $\alpha^*(H(G)) = 2^n - 1$.

The property $\alpha(H(G)) < \vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$. The property $\vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1$ explains why we have a pseudo-telepathy game.

$$\alpha(H(G)) < \vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1,$$

because Lovasz showed that, for any graph g,

$$\vartheta(g) \leq \alpha^*(H(G)),$$

...and we know that $\vartheta(H(G)) \ge 2^n - 1$ and $\alpha^*(H(G)) = 2^n - 1$.

The property $\alpha(H(G)) < \vartheta(H(G))$ explains why we have a nonlocality game for $|G\rangle$. The property $\vartheta(H(G)) = \alpha^*(H(G)) = 2^n - 1$ explains why we have a pseudo-telepathy game.

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is **stabilised** by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\begin{pmatrix} X & Z & Z \\ Z & X & I \\ Z & I & X \end{pmatrix}$

 $|G\rangle$ only exists because operators **fully commute** with each other. For instance, $(X \otimes Z \otimes Z)(Z \otimes I \otimes X) = (Z \otimes I \otimes X)(X \otimes Z \otimes Z)$... and the same for any pair of rows. Always true when **symmetric** matrix with X on the diagonal and $\{I, Z\}$ off it. ... but what about when matrix is not symmetric??

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is **stabilised** by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\begin{pmatrix} X & Z & Z \\ Z & X & I \\ Z & I & X \end{pmatrix}$

 $|G\rangle$ only exists because operators **fully commute** with each other. For instance,

 $(X \otimes Z \otimes Z)(Z \otimes I \otimes X) = (Z \otimes I \otimes X)(X \otimes Z \otimes Z)$... and the same for any pair of rows.

Always true when **symmetric** matrix with X on the diagonal and $\{I, Z\}$ off it.

... but what about when matrix is not symmetric??
A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is **stabilised** by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\begin{pmatrix} X & Z & Z \\ Z & X & I \\ Z & I & X \end{pmatrix}$

 $|G\rangle$ only exists because operators **fully commute** with each other. For instance,

 $(X \otimes Z \otimes Z)(Z \otimes I \otimes X) = (Z \otimes I \otimes X)(X \otimes Z \otimes Z)$... and the same for any pair of rows.

Always true when **symmetric** matrix with X on the diagonal and $\{I, Z\}$ off it.

... but what about when matrix is not symmetric??

A generalisation to mixed graph states

A graph state, $|G\rangle$, is a joint eigenvector, i.e. it is **stabilised** by each operator row of the operator code, e.g. for our 3-qubit example, the operator code is generated by: $\begin{pmatrix} X & Z & Z \\ Z & X & I \\ Z & I & X \end{pmatrix}$

 $|G\rangle$ only exists because operators **fully commute** with each other. For instance,

 $(X \otimes Z \otimes Z)(Z \otimes I \otimes X) = (Z \otimes I \otimes X)(X \otimes Z \otimes Z)$... and the same for any pair of rows.

Always true when **symmetric** matrix with X on the diagonal and $\{I, Z\}$ off it.

... but what about when matrix is not symmetric??

 $(X \otimes Z \otimes I)(I \otimes X \otimes Z) = -(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows **anti-commute**.

So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example,

embedd 3×3 in 4×4 :

$(X \otimes Z \otimes I)(I \otimes X \otimes Z) = -(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows **anti-commute**.

So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example,

embedd 3×3 in 4×4 :

$(X \otimes Z \otimes I)(I \otimes X \otimes Z) = -(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows **anti-commute**.

So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example,

 $(X \otimes Z \otimes I)(I \otimes X \otimes Z) = -(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows **anti-commute**.

So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example,

 $\begin{pmatrix} X & Z & I & | & Z \\ I & X & Z & | & Z \\ I & Z & X & | & I \\ Z & I & I & | & X \end{pmatrix} \rightarrow \begin{pmatrix} X & Z & I & | & Z \\ Z & X & Z & | & I \\ I & Z & X & | & I \\ Z & I & I & | & X \end{pmatrix}$

 $(X \otimes Z \otimes I)(I \otimes X \otimes Z) = -(I \otimes X \otimes Z)(X \otimes Z \otimes I)$ so first two rows **anti-commute**.

So $|G\rangle$ doesn't exist. So embedd non-commuting matrix in larger commuting matrix. For example, embedd 3×3 in 4×4 :

$$\begin{pmatrix} X & Z & I & Z \\ I & X & Z & X \\ I & Z & X & I \\ Z & I & I & X \end{pmatrix} \rightarrow \begin{pmatrix} X & Z & I & Z \\ Z & X & Z & I \\ I & Z & X & I \\ Z & I & I & X \end{pmatrix}$$

mixed graph extended to graph

mixed graph extended to graph

Alice. Bob. Charlie receive instructions from the

non-commuting operator code: $\begin{pmatrix} X & Z & I & Z \\ I & X & Z & X \\ I & Z & X & I \\ Z & I & I & X \end{pmatrix}.$

Instructions are XZI, IXZ, XYZ, IZX, XIX, IYY, XXY with Q = 1apart from Q(XYZ) = -1.

... to be continued