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A game

Referee sends instructions to Alice and Bob.
Alice and Bob obey instructions and return
results to referee.
Referee computes function of instructions and
results. Returns 0 or 1. Win if result is 1.



A NONLOCAL game

Alice and Bob are nonlocal to each other . . . i.e.
cannot communicate instruction or result to each
other.

Can Alice and Bob always win? . . . depends on
game.



Nonlocality and pseudo-telepathy games

Referee sends input x ∈ X to Alice, y ∈ Y to Bob
using prob. distr. π(x , y).
Alice outputs a ∈ A, Bob outputs b ∈ B .
Referee computes V (a, b, x , y) ∈ {0, 1}. Declares
‘win’ if result is 1.



Classical version

Alice computes a from x using function sA : X → A.
Bob computes b from y using function sB : Y → B .



Quantum version

Alice/Bob share quantum state |ψ〉
Given x , Alice measures {Px

a }a∈A, outputs an a ∈ A.
Given y , Bob measures {Py

b }b∈B , outputs a b ∈ B .



Classical vs quantum

Classical game: referee distributes function inputs
to players.

Quantum game: referee distributes measurement
instructions to players.



Classical vs. Quantum winning probs.

max. classical winning prob. is:
wc = maxsA,sB

∑
x ,y π(x , y)V (x , y , sA(x), sB(y)).

max. quantum winning prob. is:
wq = max|ψ〉,{Px

a },{P
y
b }
∑

x ,y π(x , y)V (x , y , a, b)Pr(a, b|x , y)

= max|ψ〉,{Px
a },{P

y
b }
∑

x ,y π(x , y)V (x , y , a, b) 〈ψ|Px
a ⊗ Py

b |ψ〉 .



Bell inequality for nonlocal game

max. classical winning prob. is:
wc = maxsA,sB

∑
x ,y π(x , y)V (x , y , sA(x), sB(y)).

max. quantum winning prob. is:
wq = max|ψ〉,{Px

a },{P
y
b }
∑

x ,y π(x , y)V (x , y , a, b) 〈ψ|Px
a ⊗ Py

b |ψ〉 .

Bell inequality: wc ≤ t, t ∈ [0, 1].

Violated by quantum mechanics if: wq > t.

Pseudo-telepathy game if: wc < wq = 1.



A 3-player Game



A 3-player Game

Choose V = 1− log−1(sA(x)sB(y)sC (z)Q(x , y , z)),
where sA, sB , sC ,Q ∈ {1,−1}.
Instructions/measurements for Alice, Bob, Charlie
from {I ,X ,Y ,Z}. I returns 1 (don’t measure).

Referee instruction set, each with prob. 1
7 :

{XZZ ,ZXI ,YYZ ,ZIX ,YZY , IXX ,XYY }.
Choose Q so that Q(XZZ ) = Q(ZXI ) =
Q(YYZ ) = Q(ZIX ) = Q(YZY ) = Q(IXX ) = 1,
and Q(XYY ) = −1.

Classical challenge: How do Alice, Bob, Charlie
choose sA, sB , sC so that V = 1 always?
Answer: Impossible
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Try some examples

We have: Q(XZZ ) = Q(ZXI ) = Q(YYZ ) =
Q(ZIX ) = Q(YZY ) = Q(IXX ) = 1, and
Q(XYY ) = −1.

So how to choose

X Y Z

sA ? ? ?
sB ? ? ?
sC ? ? ?

so that sAsBsCQ = 1 always? . . . impossible. But
quantum game always wins.
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Game uses a 3-qubit quantum graph state

Let I =
(

1 0
0 1

)
X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

Y = iXZ , i =
√
−1. . . . (Pauli matrices)

Let the graph state |G 〉 be the unique joint
eigenvector of operators X ⊗ Z ⊗ Z , Z ⊗ X ⊗ I ,
and Z ⊗ I ⊗ X .

Represent |G 〉 by a 3-vertex graph, G , with

adjacency matrix Γ =

(
0 1 1
1 0 0
1 0 0

)
:

(
X Z Z
Z X I
Z I X

)

G is:
|G 〉 = 1√

8
(−1)x0x1+x0x2 = (1, 1, 1,−1, 1,−1, 1, 1).
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Operator code

|G 〉 is unique joint eigenvector of operators
X ⊗ Z ⊗ Z , Z ⊗ X ⊗ I , and Z ⊗ I ⊗ X .

So,

(X ⊗ Z ⊗ Z ) |G 〉 = (Z ⊗ X ⊗ I ) |G 〉 =
(Z ⊗ I ⊗ X ) |G 〉 = |G 〉 .

But also, for instance,

(X⊗Z⊗Z )(Z⊗X⊗I ) |G 〉 = (Y⊗Y⊗Z ) |G 〉 = |G 〉 ,

and

(Z ⊗ I ⊗ X )(Z ⊗ X ⊗ I )(X ⊗ Z ⊗ Z ) |G 〉 =
−(X ⊗ Y ⊗ Y ) |G 〉 = |G 〉 .
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Operator code ↔ F4-additive code

|G 〉 is ‘stabilized’ by following ‘code’ of operators:

III ,XZZ ,ZXI ,ZIX ,YYZ ,YZY , IXX ,−XYY .

Remember for our game Q(XZZ ) = Q(ZXI ) =
Q(ZIX ) = Q(YYZ ) = Q(YZY ) = Q(IXX ) = 1,
and Q(XYY ) = −1

Operator code can be represented by self-dual
F4-additive code:(

X Z Z
Z X I
Z I X

)
↔

(
w 1 1
1 w 0
1 0 w

)
,

w 2 = w + 1,w ∈ F4.
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Measuring graph states

Let |+〉 = 1√
2
(1, 1), |−〉 = 1√

2
(1,−1) be orthogonal

eigenvectors of X with eigenvalues 1 and −1, resp.

Let |0〉 = (1, 0), |1〉 = (0, 1) be orthogonal
eigenvectors of Z with eigenvalues 1 and −1, resp.

Let |y+〉, |y−〉 be orthogonal eigenvectors of Y with
eigenvalues 1 and −1, resp.

So X |+〉 = Z |0〉 = Y |y+〉 = 1, and
X |−〉 = Z |1〉 = Y |y−〉 = −1.
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Measuring graph states

Let |G 〉 = 1√
8
(−1)x0x1+x0x2 = .

|G 〉 is ‘stabilized’ by operator code:

III ,XZZ ,ZXI ,ZIX ,YYZ ,YZY , IXX ,−XYY .

Measure XZZ on |G 〉 means measure X on qubit 0,
Z on qubit 1, Z on qubit 2.
Collapses |G 〉 to one of:
|+〉 ⊗ |0〉 ⊗ |0〉, |−〉 ⊗ |1〉 ⊗ |0〉
|−〉 ⊗ |0〉 ⊗ |1〉, |+〉 ⊗ |1〉 ⊗ |1〉.

The four resultant vectors are pairwise orthogonal.
In all four cases, product of qubit eigenvalues is 1.
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Measuring XZZ on |G 〉

If we measure XZZ on |G 〉 and obtain |+〉 ⊗ |0〉 ⊗ |0〉,
then eigenvalue is 1× 1× 1 = 1.
The event is: xzz .

If, instead, we obtain |−〉 ⊗ |1〉 ⊗ |0〉,
then eigenvalue is −1×−1× 1 = 1.
The event is: xzz .

If, instead, we obtain |−〉 ⊗ |0〉 ⊗ |1〉,
then eigenvalue is −1× 1×−1 = 1.
The event is: xzz .

If, instead, we obtain |+〉 ⊗ |1〉 ⊗ |1〉,
then eigenvalue is 1×−1×−1 = 1.
The event is: xzz .

There are four exclusive events: xzz , xzz , xzz , xzz .
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Why four exclusive events??

For our example Alice, Bob, and Charlie measure
XZZ and obtain one of:
xzz , xzz , xzz , xzz .

. . . e.g. xzz means that Alice, Bob, and Charlie all
measure 1. But if, say, xzz is measured then Alice
and Bob both measured −1, and Charlie measured
1. Classically it is impossible for both scenarios to
be true, but quantumly it is possible.

We make a big graph whose vertices are all possible
events and with edges between exclusive events,
e.g. an edge between vertex xzz and vertex xzz .
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A big graph H from a small graph G

Make a graph from all possible events resulting from
measuring |G 〉 with stabilizing operators.
Let |G 〉 = 1√

8
(−1)x0x1+x0x2. Operator code is:

III ,XZZ ,ZXI ,ZIX ,YYZ ,YZY , IXX ,−XYY .

Construct big graph H(G ) with 22 vertices:

xzz , xzz , xzz , xzz ,
zxI , zxI ,
zIx , zI x ,
yyz , yyz , yyz , yyz ,

yzy , yzy , yzy , yzy ,

Ixx , I xz ,
xyy , xyy , xyy , xyy .

Edges between mutually exclusive events.
e.g. xzz − xzz and xzz − yzy .



Example big graph

Let |G 〉 = 1√
8
(−1)x0x1+x1x2.

Then H(G ) is:

.



Another drawing for same graph

Let |G 〉 = 1√
8
(−1)x0x1+x1x2.

Then H(G ) is:



Big graph H invariant over LC orbit of G

Local complementation (LC) at a vertex, v , of G
complements the edges between the neighbours of
G , e.g.

Both graphs generate the same big graph, H , (to
within re-labelling). In general, all members of the
LC orbit generate the same H .



Big graph H invariant over LC orbit of G

Local complementation (LC) at a vertex, v , of G
complements the edges between the neighbours of
G , e.g.

Both graphs generate the same big graph, H , (to
within re-labelling). In general, all members of the
LC orbit generate the same H .



Big graph H invariant over LC orbit of G

So the pseudo-telepathy game is a property of the
LC orbit of G
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code associated with G .
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Reminder: Nonlocality and pseudo-telepathy games

Referee sends input x ∈ X to Alice, y ∈ Y to Bob
using prob. distr. π(x , y).
Alice outputs a ∈ A, Bob outputs b ∈ B .
Referee computes V (a, b, x , y) ∈ {0, 1}. Declares
‘win’ if result is 1.



Classical version

Alice computes a from x using function sA : X → A.
Bob computes b from y using function sB : Y → B .



Quantum version

Alice/Bob share state |ψ〉
Given x , Alice measures {Px

a }a∈A, outputs an a ∈ A.
Given y , Bob measures {Py

b }b∈B , outputs a b ∈ B .



Classical vs. Quantum winning probs.

max. classical winning prob. is:
wc = maxsA,sB

∑
x ,y π(x , y)V (x , y , sA(x), sB(y)).

max. quantum winning prob. is:
wq = max|ψ〉,{Px

a },{P
y
b }
∑

x ,y π(x , y)V (x , y , a, b) 〈ψ|Px
a ⊗ Py

b |ψ〉 .



Bell inequality for nonlocal game

max. classical winning prob. is:
wc = maxsA,sB

∑
x ,y π(x , y)V (x , y , sA(x), sB(y)).

max. quantum winning prob. is:
wq = max|ψ〉,{Px

a },{P
y
b }
∑

x ,y π(x , y)V (x , y , a, b) 〈ψ|Px
a ⊗ Py

b |ψ〉 .

Bell inequality: wc ≤ t, t ∈ [0, 1].

Violated by quantum mechanics if: wq > t.

Pseudo-telepathy game if: wc < wq = 1.



Pseudo-telepathy using big graph

Let |G 〉 = 1√
8
(−1)x0x1+x1x2. So H(G ) is:

n = 3 players. Set of instructions is {I ,X ,Y ,Z} for
each player. Ref sends one of
XZI ,ZXZ ,YYZ , IZX ,XIX ,ZYY ,YXY as defined
by π({I ,X ,Y ,Z}3). Q = 1 except Q(YXY ) = −1.
V is product of 3 measurement results × Q.
Win is 1.



Pseudo-telepathy using big graph

Optimal classical strategy: choose max. size
independent set in H(G ).
e.g. zxz , yyz , yxy , xzI , xIx , Izx - size 6. Then:
sA: X → 1,Y → 1,Z → 1
sB : X → 1,Y → 1,Z → 1
sC : X → 1,Y → −1,Z → 1.
Product of function results × Q is 1 but if referee
sends ZYY then
sA(Z )sB(Y )sC (Y )Q(ZYY ) = 1× 1×−1× 1 = −1.
But joint quantum measurement gives either
1×1×1×1 or −1×−1×1×1 or −1×1×−1×1
or 1×−1×−1× 1, so result always 1.
So wc = 6

23−1 = 6
7 , wq = 23−1

23−1 = 1 .
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Important properties of big graph

Let |G 〉 = 1√
8
(−1)x0x1+x1x2. So H(G ) is:

Max independent set size: α(H(G )) = 6.

Lovasz number: ϑ(H(G )) = 2n − 1 = 23 − 1.

= max
n−1∑
i=0

| 〈ψ| |vi〉 |2,

max taken over all unit vectors ψ and all orthogonal
representations {vi} of H(G ) - orth. representation
maps adjacent vertices in H(G ) to orth. vectors.
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Proof that ϑ(H(G )) ≥ 2n − 1

Let |G 〉 = 1√
8
(−1)x0x1+x1x2.

Let S = {ZXZ ,YYZ ,YXY ,XZI ,XIX , IZX ,ZYY }
and si ∈ S .
Eigendecomposition: si =

∑
j λij | |si ,j〉 〈si ,j | |.



Fractional packing number of H(G )

Fractional packing number of H is given by:

α∗(H(G )) = max
∑

i∈V (H)

wi ,

where max is over 0 ≤ wi ≤ 1 restricted by∑
i∈Cj

wi ≤ 1, for all cliques, Cj ∈ H(G ).

If no of vertices of G is n then

α∗(H(G )) = 2n − 1.

e.g. let |G 〉 = 1√
8
(−1)x0x1+x1x2. So H(G ) is:

and α∗(H(G )) = 23 − 1 = 7.
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α(H(G )) < ϑ(H(G )) = α∗(H(G )) = 2n − 1,

because Lovasz showed that, for any graph g ,

ϑ(g) ≤ α∗(H(G )),

. . . and we know that ϑ(H(G )) ≥ 2n − 1 and
α∗(H(G )) = 2n − 1.

The property α(H(G )) < ϑ(H(G )) explains why we
have a nonlocality game for |G 〉.
The property ϑ(H(G )) = α∗(H(G )) = 2n − 1
explains why we have a pseudo-telepathy game.
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A generalisation to mixed graph states

A graph state, |G 〉, is a joint eigenvector, i.e. it is
stabilised by each operator row of the operator
code, e.g. for our 3-qubit example, the operator

code is generated by:

(
X Z Z
Z X I
Z I X

)
|G 〉 only exists because operators fully commute
with each other. For instance,
(X ⊗Z ⊗Z )(Z ⊗ I ⊗X ) = (Z ⊗ I ⊗X )(X ⊗Z ⊗Z )
. . . and the same for any pair of rows.
Always true when symmetric matrix with X on the
diagonal and {I ,Z} off it.
. . . but what about when matrix is not symmetric??
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Example mixed graph

Consider

(
X Z I
I X Z
I Z X

)
: mixed graph:

(X ⊗Z ⊗ I )(I ⊗X ⊗Z ) = −(I ⊗X ⊗Z )(X ⊗Z ⊗ I )
so first two rows anti-commute.
So |G 〉 doesn’t exist. So embedd non-commuting
matrix in larger commuting matrix. For example,
embedd 3× 3 in 4× 4: X Z I Z

I X Z X
I Z X I
Z I I X

 →

 X Z I Z
Z X Z I
I Z X I
Z I I X


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mixed graph extended to graph

(
X Z I
I X Z
I Z X

)
: mixed graph:

. . . extended to . . . X Z I Z
I X Z X
I Z X I
Z I I X

 →

 X Z I Z
Z X Z I
I Z X I
Z I I X

 : graph:

mixed graph represents mixed quantum state.
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The game?

Alice, Bob, Charlie receive instructions from the

non-commuting operator code:

 X Z I Z
I X Z X
I Z X I
Z I I X

 .

Instructions are
XZI , IXZ ,XYZ , IZX ,XIX , IYY ,XXY with Q = 1
apart from Q(XYZ ) = −1.
. . .
. . . to be continued . . .


