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Abstract—In this paper, we propose to enhance the perfor-
mance of the sum-product algorithm (SPA) by interleaving SPA
iterations with a random local graph update rule. This rule is
known as edge local complementation (ELC), and has the effect
of modifying the Tanner graph while preserving the code. We
have previously shown how the ELC operation can be used to
implement an iterative permutation group decoder (SPA-PD)–one
of the most successful iterative soft-decision decoding strategies
at small blocklengths. In this work, we exploit the fact that ELC
can also give structurally distinct parity-check matrices for the
same code. Our aim is to describe a simple iterative decoder,
running SPA-PD on distinct structures, based entirely on random
usage of the ELC operation. This is called SPA-ELC, and we
focus on small blocklength codes with strong algebraic structure.
In particular, we look at the extended Golay code and two
extended quadratic residue codes. Both error rate performance
and average decoding complexity, measured by the average
total number of messages required in the decoding, significantly
outperform those of the standard SPA, and compares well with
SPA-PD. However, in contrast to SPA-PD, which requires a
global action on the Tanner graph, we obtain a performance
improvement via local action alone. Such localized algorithms
are of mathematical interest in their own right, but are also
suited to parallel/distributed realizations.

I. INTRODUCTION

Inspired by the success of iterative decoding of low-density

parity-check (LDPC) codes, originally introduced by Gallager

[1] and later rediscovered in the mid 1990’s by MacKay and

Neal [2], on a wide variety of communication channels, the

idea of iterative, soft-decision decoding has recently been

applied to classical algebraically constructed codes in order

to achieve low-complexity belief propagation decoding [3–8].

Also, the classical idea of using the automorphism group of the

code, Aut(C), to permute the code, C, during decoding (known
as permutation decoding (PD) [9]) has been successfully

modified to enhance the sum-product algorithm (SPA) in [5].

We will denote this algorithm by SPA-PD. Furthermore, good

results have been achieved by running such algorithms on sev-

eral structurally distinct representations of C [3, 6]. Both Reed-

Solomon and Bose-Chaudhuri-Hocquenghem (BCH) codes

have been considered in this context. Certain algebraically

constructed codes are known to exhibit large minimum dis-

tance and a non-trivial Aut(C). However, additional properties
come into play in modern, graph-based coding theory, for

instance, sparsity, girth, and trapping sets [10, 11]. Structural

weaknesses of graphical codes are inherent to the particular

parity-check matrix, H , used to implement C in the decoder.

This matrix is a non-unique (n−k)-dimensional basis for the

null space of C, which, in turn, is a k-dimensional subspace

of {0, 1}n. Although any basis (for the dual code, C⊥) is a

parity-check matrix for C, their performance in decoders is not

uniform. H is said to be in standard form if the matrix has

n − k weight-1 columns. The weight of H is the number of

non-zero entries, and the minimum weight is lower-bounded

by (n − k)dmin(C⊥), where dmin(C⊥) denotes the minimum

distance of C⊥. It is well-known that H can be mapped

into a bipartite (Tanner) graph, TG(H), which has an edge

connecting nodes vi and uj iff Hji 6= 0. Here, vi, 0 ≤ i < n,
refers to the bit nodes (columns of H), and uj , 0 ≤ j < n−k,
refers to the check nodes (rows of H). The local neighborhood

of a node, v, is the set of nodes adjacent to v, and is denoted

by Nv . The terms standard form and weight extend trivially

to TG(H). In the following, we use bold face notation for

vectors, and the transpose of H is written HT .

This paper is a continuation of our previous work on

edge local complementation (ELC) and iterative decoding, in

which selective use of ELC (with preprocessing and memory

overhead) equals SPA-PD [8]. In this work, we use ELC

in a truly random, online fashion, thus simplifying both the

description and application of the proposed decoder. The key

difference from our previous work is that we do not take

measures to preserve graph isomorphism, and explore the

benefits of going outside the automorphism group of the code.

This means that we alleviate the preprocessing of suitable ELC

locations (edges), as well as the memory overhead of storing

and sampling from such a set during decoding. Our proposed

decoding algorithm can be thought of as a combination of

SPA-PD [5] and multiple bases belief propagation [6]. We also

discuss the modification of the powerful technique of damping

to a graph-local perspective.

II. THE ELC OPERATION

The operation of ELC [12–14], also known as Pivot, is a

local operation on a simple graph (undirected with no loops),

G, which has been shown to be useful both for code equiva-

lence and classification [13], and for decoding purposes [8]. It

has recently been identified as a useful local unitary primitive

to be applied to graph states [14]–a proposed paradigm for

quantum computation [15]. Fig. 1(a) shows GNu∪Nv
, the local

subgraph of a bipartite graph induced by nodes u, v, and their

disjoint neighborhoods which we denote by N v
u , Nu \ {v}



(a) (b)

Fig. 1. ELC on edge (u, v) of a bipartite graph. Doubly slashed links mean
that the edges connecting the two sets have been complemented.

and N u
v , Nv \ {u}, respectively. ELC on a bipartite graph

is described as the complementation of edges between these

two sets; ∀v′ ∈ N v
u and ∀u′ ∈ N u

v , check whether edge

(u′, v′) ∈ G, in which case it is deleted, otherwise it is

created. Finally, the edges adjacent to u and v are swapped –

see Fig. 1(b). ELC on G extends easily to ELC on TG(H)
when H is in standard form [8]. Given a bipartite graph with

bipartition (V,U), we then have a one-to-one mapping to a

Tanner graph, with check nodes from the set U and bit nodes

from V ∪U . Fig. 2 shows an example, where the bipartition is

fixed according to the sets V and U . In Fig. 2(a), the left and

right nodes correspond to V and U , respectively, for the simple

graph G. TG(H) may be obtained by replacing grey nodes by

a check node singly connected to a bit node, as illustrated in

Fig. 2(b). Figs. 2(a) and 2(c) show an example of ELC on the

edge (0, 5). Although the bipartition changes (edges adjacent

to 0 and 5 are swapped), Figs. 2(b) and 2(d) show how the

map to Tanner graphs, in fact, preserves the code.

By complementing the edges of a local neighborhood of

TG(H), ELC has the effect of row additions on H . The

complexity of ELC on (u, v) is O(|Nu||Nv|). The set of

vertex-labeled graphs generated by ELC on TG(H) (or,

equivalently, G) is here called the ELC-orbit of C. Each

information set for C corresponds to a unique graph in the

ELC-orbit [13]. Note that this is a code property, which, as

such, is independent of the initial parity-check matrix, H .

The set of structurally distinct (unlabeled) graphs generated by

ELC is here called the s-orbit of C, and is a subset of the ELC-

orbit. Graphs are structurally distinct (i.e., non-isomorphic) if

the corresponding parity-check matrices are not row or column

permutations of each other. Each structure in the s-orbit has

a set of |Aut(C)| isomorphic graphs, comprising an iso-orbit

[8]. In the following, we will refer to ELC directly on TG(H),
keeping Fig. 2 in mind.

III. DECODING ALGORITHMS

A. SPA

The SPA is an inherently local algorithm on TG(H), where
the global problem of decoding is partitioned into a system of

simpler subproblems [16]. Each node and its adjacent edges

can be considered as a small constituent code, and essentially

performs maximum-likelihood decoding (MLD) based on local

information. The key to a successful decoder lies in this

partitioning–how these constituent codes are interconnected.

The summed information contained in a bit node, vi, is the

(a) G (b) TG(H)

(c) G′ (d) TG(H′)

Fig. 2. (a) and (c) show ELC on the edge (0, 5) of a small simple graph G.
The corresponding Tanner graphs, in (b) and (d), are distinct structures (e.g.,
the weight of G and G′ is not the same) for the same toy [8, 4, 2] code. This
code has a total of three structures in its s-orbit.

a posteriori probability (APP), x̂i, at codeword position i.
The vector x̂ constitutes a tentative decoding of the received

channel vector, y. The decoder input is the log-likelihood

ratio (LLR) vector L = (2/σ2)y, where σ is the channel

noise standard deviation on an additive white Gaussian noise

(AWGN) channel. Subtracting the input from the APP leaves

the extrinsic information, x̂i − Li, which is produced by the

decoder. The message on the edge from node v to u, in the

direction of u, µv→u, is computed according to the SPA rule

on node v. The SPA computation of all check nodes, followed

by all bit nodes, is referred to as one flooding iteration.

Classical codes, for which strong code properties are known,

are typically not very suitable for iterative decoding mainly

due to the high weight of their parity-check matrices, which

gives many short cycles in the corresponding Tanner graphs.

B. Diversity Decoding

A few recent proposals in the literature have attempted to

enhance iterative decoding by dynamically modifying TG(H)
during decoding, so as to achieve diversity and avoid fixed

points (local optima) in the SPA convergence process. Efforts

to improve decoding may, roughly, be divided into two cat-

egories. The first approach is to employ several structurally

distinct matrices, and use these in a parallel, or sequential,

fashion [3, 6]. These matrices may be either preprocessed, or

found dynamically by changing the graph during decoding.

However, this incurs an overhead either in terms of memory

(keeping a list of matrices, as well as state data), or complexity

(adapting the matrix, e.g., by Gaussian elimination [3]). The

other approach is to choose a code with a non-trivial Aut(C),
such that diversity may be achieved by permuting the code

coordinates [4, 5, 7, 8]. An example is SPA-PD, listed in Al-



Algorithm 1 SPA-PD(I1, I2, I3, α0) [5]

1: // Input: (y,H, α0, I1, I2, I3).
2: // Output: Θ−1(x̂).

3: α← α0.

4: for I3 times do

5: L← (2/σ2)y and Θ← π0 // identity permutation.

6: for I2 times do

7: µv→u ← Lv, ∀(u, v) ∈ TG(H).
8: Do I1 flooding iterations, x̂← SPA(TG(H)).
9: Take the hard decision of x̂ into c, stop if cHT = 0.

10: Li ← (x̂i − Li)α + Li, 0 ≤ i < n.
11: Draw random permutation π ∈ Aut(C) [17].

12: L← π(L) and Θ← π(Θ).
13: end for

14: α← α0 + (1− α0)
I3

I3−1
.

15: end for

gorithm 1, where Aut(C) is represented by a small set of

generators, and uniformly sampled using an algorithm due to

Celler et al. [17]. These permutations tend to involve all, or

most, of the code coordinates, making it a global operation.

Note that line 7 in Algorithm 1 is to compensate for the fact

that permutations are applied to L in line 12, rather than to

the columns of H , after which the messages on the edges

no longer ‘point to’ their intended recipients. This is yet

another global stage. The extrinsic information is damped by

a coefficient α, 0 < α ≤ 1, in line 10 before being used to re-

initialize the decoder. Each time α is incremented, the decoder

re-starts from the channel vector, y.

C. SPA-ELC

Our proposed local algorithm is a two-stage iterative de-

coder, interleaving the SPA with random ELC operations. We

call this SPA-ELC, and say that it realizes a local diversity

decoding of the received codeword. Our algorithm is listed in

Algorithm 2. Both SPA-PD and SPA-ELC perform a maximum

of T , I1I2I3 iterations. SPA update rules ensure that

extrinsic information remains summed in bit nodes, such that

an edge may be removed from TG(H) without loss of infor-
mation. New edges, (u′, v′), should be initialized according

to line 13 in Algorithm 2. Although neutral (i.e., LLR 0)

messages will always be consistent with the convergence

process, our experiments clearly indicate that this has the

effect of ‘diluting’ the information, resulting in an increased

decoding time and worse error rate performance.

The simple SPA-ELC decoder requires no preprocessing or

any complex heuristic or rule to decide when or where to

apply ELC. As ELC generates the s-orbit of C, as well as

the iso-orbit of each structure, diversity of structure can be

achieved even for random codes, for which |Aut(C)| is likely
to be 1 while the size of the s-orbit is generally very large.

However, going outside the iso-orbit means that we change

the properties of H , most importantly in terms of density and

number of short cycles. Ideally, the SPA-ELC decoder operates

Algorithm 2 SPA-ELC(p, I1, I2, I3, α0)

1: // Input: (y,H, α0, I1, I2, I3, p).
2: // Output: x̂.

3: α← α0.

4: for I3 times do

5: L← (2/σ2)y.
6: µv→u ← Lv, ∀(u, v) ∈ TG(H).
7: for I2 times do

8: Do I1 flooding iterations, x̂← SPA(TG(H)).
9: Take the hard decision of x̂ into c, stop if cHT = 0.

10: for p times do

11: Select random edge e = (u, v) ∈ TG(H).
12: TG(H)← ELC(TG(H), e).
13: µv′→u′ ← (x̂v′ − Lv′)α + Lv′ ,

∀(u′, v′) ∈ TG(H), u′ ∈ N u
v , v′ ∈ N v

u .

14: end for

15: end for

16: α← α0 + (1− α0)
I3

I3−1
.

17: end for

on a set of structurally distinct parity-check matrices, which

are all of minimum weight. With the exception of codes with

very strong structure, such as the extended Hamming code, the

ELC-orbit of a code will contain structures of weight greater

than the minimum. SPA-ELC should take measures against the

negative impact of increased weight. In this paper, we adapt the

technique of damping to our graph-local perspective. Damping

with the standard SPA, where TG(H) is fixed, does not work,
so we only want to damp the parts of the graph which change.

As opposed to SPA-PD, only a subgraph of TG(H) is affected
by ELC, so we restrict damping to new edges in line 13.

Note that SPA-ELC simplifies to a version without damping,

denoted by SPA-ELC(p, I1, T ), when α0 = 1, I2 = T/I1, and

I3 = 1. This is, simply, flooding iterations interspersed with

random ELC operations, where new edges are initialized with

the adjacent APP (line 13).

Currently, the SPA stopping criterion (i.e., the parameters

used to flag when decoding should stop) is still implemented

globally. However, a reasonable local solution would be to

remove the syndrome check (cHT = 0) from the stopping

criterion, and simply stop after T̂ SPA-ELC iterations, where

T̂ can be empirically determined. However, this has obvious

implications for complexity and latency. In some scenarios a

stopping criterion can be dispensed with anyway–for instance

when using the decoder as some form of distributed process

controller, or for a pipelined implementation in which the

iterations are rolled out.

IV. RESULTS

We have compared SPA-ELC against standard SPA, and

SPA-PD. Extended quadratic residue (EQR) codes were cho-

sen for the comparison, mainly due to the fact that for some

of these codes, Aut(C) can be generated by 3 generators

[18]. In fact, our experiments have shown that EQR codes



TABLE I
OPTIMIZATION OF CODES USED IN SIMULATIONS

Initial Reduced Reduced IP
W C W C W C

[24, 12, 8] * 96 366 * 96 147 * 96 366

[48, 24, 12] 320 4936 * 288 897 * 288 2672

[104, 52, 20] 1344 89138 1112 16946 1172 49839

have Tanner graphs well-suited to SPA-ELC, at least for

short blocklengths. The codes considered have parameters

[24, 12, 8] (the extended Golay code), [48, 24, 12] (EQR48),

and [104, 52, 20] (EQR104). Parity-check matrices for the

codes were preprocessed by heuristics to minimize the weight

and the number of 4-cycles. The results are listed in Table I,

where columns marked ‘W’ and ‘C’ show the weight and the

number of 4-cycles, respectively. Columns marked ‘Initial’

show the weight and the number of 4-cycles of the initial

Tanner graph constructions. ‘Reduced’ and ‘Reduced IP’ refer

to optimized Tanner graphs, where the latter is restricted to

Tanner graphs in standard form. Entries marked by an asterisk

correspond to minimum weight parity-check matrices.

In Figs. 3-5, we show the frame error rate (FER) perfor-

mance and the average number of SPA messages of SPA, SPA-

PD, and SPA-ELC for the extended Golay code, the EQR48

code, and the EQR104 code, respectively, on the AWGN

channel versus the signal-to-noise ratio, Eb/N0.

The specific parameters used are indicated in the figure

legends. For the extended Golay code and the EQR48 code,

we set a maximum at T = 600 iterations, which we increased

to T = 2000 to accommodate the larger EQR104 code. For

SPA-ELC we have also included results without damping.

Since SPA-ELC changes the weight of TG(H), we can

not compare complexity by simply counting iterations. Since

the complexity of one ELC operation is much smaller than

the complexity of a SPA iteration, the total number of SPA

messages may serve as a common measure for the complexity

of the decoders. We have no initial syndrome check, so the

number of iterations approaches 1 at high Eb/N0. In the same

way, the complexity approaches the average weight of the

matrices encountered during decoding. Each FER point was

simulated until at least 100 frame errors were observed.

From the figures, we observe that the SPA-ELC decoder

outperforms standard SPA decoding, both in terms of FER and

decoding complexity. The extended Golay code is a perfect

example for demonstrating the benefits of SPA-ELC. The s-

orbit of this code contains only two structures, where one is

of minimum weight (weight 96) and the other only slightly

more dense (weight 102), while the iso-orbit of the code is

very large. Thus, we can extend SPA-PD with multiple Tanner

graphs (two structures) while keeping the density low. Not

surprisingly, SPA-ELC achieves the FER performance of SPA-

PD, albeit with some complexity penalty. Note that the simple

SPA-ELC decoder, without damping, approaches closely the

complexity of SPA-PD at the cost of a slight loss in FER. For

the larger codes, the sizes of the s-orbits are very large, and

many structures are less suited for SPA-PD. Still, the same
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Fig. 3. [24, 12, 8] extended Golay code

tradeoff between FER performance and complexity holds,

based on whether or not we use damping. For the EQR48

code, we have observed a rich subset of the s-orbit containing

minimum weight structures (weight 288). The optimum value

of p (see line 10 in Algorithm 2) was determined empirically.

V. CONCLUSION AND FUTURE WORK

We have described a local diversity decoder, based on the

SPA and the ELC operation. The SPA-ELC algorithm outper-

forms the standard SPA both in terms of error rate performance

and complexity, and compares well against SPA-PD, despite

the fact that SPA-PD uses global operations. Ongoing efforts

are devoted to further improvements, and include; selective

application of ELC, rather than random; devise techniques

such that diversity may be restricted to sparse structures in

the s-orbit; identify a code construction suited to SPA-ELC,

for which the s-orbit contains several desirable structures even

for large blocklengths.
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Fig. 4. [48, 24, 12] EQR48 code
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