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The Multi-Dimensional Aperiodic Merit Factor of Binary Sequences

T. Aaron Gulliver, and Matthew G. Parker

Abstract
A new metric, the Multi-Dimensional aperiodic Merit Factor, is presented, and various recursive quadratic sequence constructions are

given for which both the one and multi-dimensional aperiodic Merit Factors can be computed exactly. In some cases these constructions lead
to Merit Factors with non-vanishing asymptotes.

I. Introduction

We introduce the Multi-dimensional aperiodic Merit Factor (MMF) metric and provide infinite binary constructions
for which the MMF can be computed exactly. Unlike the MMF, the one-dimensional aperiodic Merit Factor (MF) has
a long history [6], as sequences with high MF have applications in telecommunications, information theory, physics, and
chemistry. However they are also very difficult to find and/or construct, in particular as sequence length increases. Merit
Factor is interesting because 1

MF evaluates the squared-difference between the continuous power Fourier spectrum of
the sequence and the flat power spectrum. If the MF of a sequence is large, then the continuous Fourier power spectrum
of the sequence is nearly flat, which is a very desirable property in many contexts. Similarly, 1

MMF evaluates the
squared-difference between the continuous multi-dimensional Fourier power spectrum and the flat multi-dimensional
Fourier power spectrum.

Rudin-Shapiro sequences [18], [17], [1] are the foremost example of Golay Complementary Sequences [5], and their
interpretation as certain Reed-Muller, RM(1,m), cosets of RM(2,m) has recently been exploited by Davis and Jedwab
[3], and generalised by Parker and Tellambura [16]. The fundamental Rudin-Shapiro set possesses an aperiodic Merit
Factor that can be computed exactly for any length N = 2n by means of a recursion on sum-of-squares values [9]

σn = 2σn−1 + 8σn−2

where σn is the sum-of-squares value for a sequence of length 2n. The Merit Factor (MF) of a sequence is given by

MF =
N2

2σn

so the asymptotic MF of the fundamental Rudin-Shapiro set is 3. The recursion on sum-of-squares is a surprising
and satisfying number-theoretic result, and motivates the question as to whether other sequence constructions can be
found which obey similar recursive formulas for their one-dimensional sum-of-squares values. In this paper we identify,
computationally, a number of constructions for which similar recursions appear to exist. Although we examine the
one-dimensional Merit Factor for certain sequence constructions, our primary aim here is to introduce the aperiodic
Multi-dimensional Merit Factor (MMF) as an interesting metric for sequences of length N = 2n. In particular, we
identify certain infinite sequence constructions where the MMF can be computed exactly because the multi-dimensional
sum-of-squares values obey recursions. To the best of our knowledge the aperiodic MMF is a new metric. However, the
periodic sum-of-squares metric is already known, and is considered a useful measure of cryptographic strength for boolean
functions used in the design of certain stream ciphers [19]. Moreover, the multi-dimensional periodic autocorrelation is
the underlying structure exploited by Differential Cryptanalysis, as applied to Block Ciphers. The novelty in this paper
is that we propose to examine aperiodic measures as opposed to periodic measures. One implicit aim of this work is to
determine the large-scale properties of undirected graphs constructed from simple local rules, as we envisage that graphs
of this type will have application to the design of iterative decoders for Low-Density Parity Check Codes [10], and also
to the future design of practical quantum computers [14], [15], [4], [8]. For the constructions proposed in this paper,
the MMF is found to have a constant asymptote in a number of cases. For those cases where there is no asymptote,
the MMF vanishes as the sequence length, N , goes to infinity. This is similar to the one-dimensional case, where the
MF either has an asymptote or vanishes. We therefore conjecture that no one-dimensional or multi-dimensional binary
sequence construction exists such that the MF or MMF, respectively, of the sequence goes to infinity as N goes to
infinity. The highest asymptotic MF known is ' 6.34 [12], [2], but we have not yet found a binary sequence construction
for which the MMF has a higher asymptote than 3.0. This may be because we have, thus far, only considered sequences
constructed from quadratic boolean functions.
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II. Definitions and Theory

A. The One-Dimensional Case

The one-dimensional aperiodic autocorrelation of a length N sequence, s, is defined as

ak =
N−1∑
i=0

sis
∗
i+k, −N < k < N (1)

where si ∈ C, si = 0 for i < 0 and i ≥ N , and ∗ means complex conjugate.
The sum-of-squares value, σ, is then given by

2σ =
N−1∑

k=1−N,k 6=0

|ak|2. (2)

The one-dimensional aperiodic Merit Factor is defined as

MF =
N2

2σ
(3)

where 2σ is the sum-of-squares of the one-dimensional aperiodic autocorrelation coefficients, excluding the zero’th
coefficient. (The factor of 2 is required because σ only takes into account half of the coefficients and by symmetry, the
other half will be identical). The Aperiodic Merit Factor has a particularly nice interpretation in the spectral domain as
the integral of the squared difference between its power spectrum and the flat power spectrum. By Parseval’s theorem,
the sum-of-squares of the autocorrelation coefficients, including N2 for the zero’th coefficient, is equal to the sum of the
square of the power spectrum coefficients, χ, where

χ = N2 + 2σ. (4)

For a completely flat spectrum, χ = N2. The sum of the difference between χ and the flat power spectrum is given by
χ−N2. We normalise this value by dividing by N2. Therefore the normalised difference is given by

χ−N2

N2
=

2σ

N2
=

1
MF

. (5)

We can also think of the sequence, s, as a polynomial, s(z) = s0 + s1z + s2z
2 + . . . + sN−1z

N−1. Then the aperiodic
autocorrelation of s can also be computed as the polynomial multiplication,

a(z) = s(z)s(z−1)∗ (6)

where the coefficients of a(z) are the aperiodic autocorrelation coefficients.
Finding the Merit Factor of a sequence, s, is equivalent to finding its L4-norm. The Lα-norm, ‖s‖α, is computed by

integrating the αth power of the evaluations of s(x) on the unit circle, and then taking the αth root of the result [13].

‖s‖α =
(

1
2π

∫ 2π

0

|s(eiθ)|αdθ

)1/α

(7)

where i2 = −1. Then,
1

MF(s)
=
‖s‖44 − ‖s‖42

‖s‖42
(8)

where, from (5), ‖s‖44 = χ and ‖s‖42 = N2.

B. The Multi-Dimensional Case

For the multi-dimensional case we proceed in a similar fashion to the one-dimensional case above (in this paper we
only consider the case where each dimension is of length 2). Let i, k and v be length n vectors such that,

i = (i0, i1, . . . , in−1), k = (k0, k1, . . . , kn−1), v = (v0, v1, . . . , vn−1) (9)

where ij ∈ {0, 1}, kj ∈ {−1, 0, 1}, and vj ∈ {−1, 0, 1, 2}, ∀j.
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We define the length N = 2n sequence, s, to have elements si ∈ C. We can also think of s as having elements si,
where i is the radix-2 evaluation of vector i such that i =

∑n−1
j=0 ij2j . Aperiodicity of s is ensured as follows

s is multi-dimensionally aperiodic iff si = 0, {∀i|ij 6∈ {0, 1}, for one or more j values}

We now define the vector operation ’+’ as follows

v = i + k implies vj = ij + kj ,

Therefore the multi-dimensional aperiodic autocorrelation of s is defined by

ak =
i=(11...1)∑
i=(00...0)

sis
∗
i+k, kj ∈ {−1, 0, 1},∀j (10)

There are 3n multi-dimensional aperiodic autocorrelation coefficients, ak, because kj ∈ {−1, 0, 1}. However

ak = a∗k′ , if k′j = −kj ,∀j

Therefore, if we exclude k = 0, there are only 3n−1
2 different sum-of-square values, |ak|2, to consider. The sum-of-squares

of the aperiodic autocorrelation coefficients is

2σ =
∑

k|kj∈{−1,0,1},∀j,k6=0

|ak|2. (11)

The multi-dimensional Merit Factor is given by

MMF =
N2

2σ
. (12)

We can also think of the sequence, s as a polynomial

s(z) = s(z0, z1, . . . , zn−1) = s0 + s1z0 + s2z1 + s3z0z1 + s4z2 + . . . + s2n−1z0z1z2 . . . zn−1 (13)

The multi-dimensional aperiodic autocorrelation of s is then given by the coefficients of

a(z0, z1, . . . , zn−1) = s(z0, z1, . . . , zn−1)s(z−1
0 , z−1

1 , . . . , z−1
n−1)

∗ (14)

2σ is therefore equal to the sum-of-squares of the out-of-phase coefficients of a(z0, z1, . . . , zn−1).
The Multi-dimensional Merit Factor of an n-dimensional sequence, s, is equivalent to finding its Ln,4-norm, where we

define the Ln,α-norms as the multi-integral of the αth power of the simultaneous evaluations of s(x) on n unit circles,
and then taking the αth root of the result. We thus define the Ln,α-norm of a sequence, s, by

‖s‖n,α =
(

1
(2π)n

∫ 2π

0

∫ 2π

0

. . .

∫ 2π

0

|s(eiθ0 , eiθ1 , . . . , eiθn−1)|αdθ0dθ1 . . . dθn−1

)1/α

. (15)

Then
1

MMF(s)
=
‖s‖4n,4 − ‖s‖4n,2

‖s‖4n,2

(16)

where ‖s‖4n,4 = χ and ‖s‖4n,2 = N2.

C. Multi-dimensional Symmetries

The MMF metric induces invariance classes under certain symmetry operations. Let the ith element of s be si, where
i is, itself, a vector with elements ij ∈ {0, 1}.

C.1 Symmetric Permutation

Unlike the one-dimensional Merit Factor, the multi-dimensional Merit Factor is always invariant with respect to a
certain large subset of permutations of the sequence indices. Let π : Zn → Zn be any permutation of Zn, and

i′ = (iπ(0), iπ(1), . . . , iπ(n−1)) (17)

where i was previously defined in (9). If s′i′ = si, ∀i, then MMF(s′) = MMF(s).
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C.2 Affine Offset

We define the affine offset as taking s to s′, where

s′i = (−1)e+
∑n−1

j=0 djij si (18)

where e, dj ∈ {0, 1},∀j. Then MMF(s′) = MMF(s).

C.3 Multi-dimensional Cyclic Shift

Let f = (f0, f1, . . . , fn−1) be a length n vector where fj ∈ {0, 1}, ∀j. Then, if s′ is such that

s′i = si⊕f (19)

where i⊕ f implies ij ⊕ fj , ∀j, where ’⊕’ means addition, mod 2, then MMF(s′) = MMF(s).

D. Tensor Product of Sequences

Let s0 and s1 be two sequences of lengths N0 and N1, respectively, with values σ0 and σ1 for their sum-of-squares,
respectively, whether one- or multi- dimensional. Let s be the length N0N1 sequence, s = s0 ⊗ s1, where ’⊗’ means
tensor product. Then the one or multi-dimensional sum-of-squares value, σ, of s satisfies

σ = 2σ0σ1 + N2
0 σ1 + N2

1 σ0. (20)

For the special case where σ0 = σ1 and N0 = N1, (20) reduces to,

σ = 2σ0(σ0 + N2). (21)

Equations (20) and (21) allow us to concentrate on constructions which cannot be written as tensor products. From
(12) and (20), the MF or MMF of the tensor product of s0 and s1 always vanishes as N →∞.

E. Using Algebraic Normal Form (ANF) to Represent Sequences

Consider the multivariate boolean function

p(x) = p(x0, x1, . . . , xn−1) : Zn
2 → Z2

where xi ∈ Z2. Then s = s(x) : Zn
2 → {1,−1}, can be defined by

s = s(x) = (−1)p(x). (22)

We use the ANF to describe p(x), and hence s, where

p(x) = p0 + p1x0 + p2x1 + p3x0x1 + . . . + p2n−1x0x1 . . . xn−1, pj ∈ Z2.

F. Aperiodic Multi-dimensional Autocorrelation of Algebraic Normal Forms

Let s = s(x) = (−1)p(x). We can write ak in terms of p(x), as follows. Let Qk and Rk be integer sets where, for a
given k with kj ∈ {−1, 0, 1}

Qk = {t|kt = 1}, Rk = {t|kt = −1}.
Define q(x)k to be p(x) restricted to the subspace obtained when all variables xt, with indicies, t, in Q

⋃
R, are fixed.

q(x)k = p(x) xt = 0, ∀t ∈ Qk
xt = 1, ∀t ∈ Rk

+ p(x) xt = 1, ∀t ∈ Qk
xt = 0, ∀t ∈ Rk

(23)

q(x)k is defined over a subspace of n− |Qk| − |Rk| binary variables, and ak is related to the weight of q(x)k as follows

ak = 2wt(q(x)k)− 2n−|Qk|−|Rk| (24)

where ’wt(q)’ means the binary weight of the output of q when evaluated over the remaining variables in x that are not
contained in Q

⋃
R. In this paper we only construct p(x) with quadratic form. When p(x) is quadratic then q(x)k only

has degree 0 or 1, in which case (24) simplifies to

ak = 0 deg(q(x)k) = 1
ak = 2n−|Qk|−|Rk| deg(q(x)k) = 0.

(25)

Moreover, when p(x) is quadratic it is straightforward to show the following, using (23) and (25)

ak = ak′ iff deg(p(x)) = 2 and kj = 0 ⇒ k′j = 0. (26)

Therefore, in this paper we only consider ak, where kj ∈ {0, 1} as the case kj = −1 is the same as for kj = 1. The
MMF invariance symmetries of subsection II-C are simply described using the ANF. Equation (17) is equivalent to
invariance with respect to the permutation xj → xπ(j). (18) is equivalent to invariance with respect to the operation
p(x) → p(x) + (

∑n−1
j=0 djxj) + e, e, dj ∈ {0, 1}, ∀j. Finally, (19) is equivalent to invariance with respect to substituting

xj + 1 for xj in p(x), for any j.
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III. An Overview of Multi-Dimensional Merit Factor (MMF) for Binary Sequences

A. The MMF of Worst-Case and Best-Case Binary Sequences

The worst-case (lowest possible) MMF occurs when p(x) is constant or linear. The maximum possible σ satisfies
σn = 6σn−1 + 22n−2 = 6n−4n

2 , giving a minimum MMF of 2n

3n−2n . This worst-case MMF vanishes as n → ∞. It is an
open-problem as to the best-case (highest possible) MMF. The highest MMF found so far is for the trivial length N = 4
binary sequence where p(x) = x0x1, which attains an MMF of 4.0.

B. The MMF of a Random Binary Sequence and of a Random Quadratic Binary Sequence

Fig 1 (left) shows computations for the expected MMF for a random binary sequence when n = 10 (12000 samples).
The average MMF for n from 4 to 15 is plotted in Fig 1 (right) with an ’o’. The average MMF of a random binary
sequence appears to be around 1.0, similar to the one-dimensional case [11]. We are particularly interested in cases where
the MMF asymptote is greater than 1.0. However constructions that only achieve an asymptote of 1.0 are still interesting
as they provide a non-vanishing asymptote via a simple recursive (non-random) construction. Next we computed the
expected MMF for s = s(x) = (−1)p(x) where p(x) is a homogeneous quadratic function. Fig 1 (middle) shows the
results for n = 10 (12000 samples). One can also compute the average multivariate sum-of-squares for a given number of
variables, n, and Fig 1 (right) shows the results for n = 2 to n = 11 variables, expressed as 1

average(1/MMF) for samplings
of quadratics, cubics, and boolean functions of any degree. The results suggest that the asymptotic average multivariate
sum-of-squares is 2n−1(2n − 1), leading to an average value for 1

FM of 1.0.

IV. Some Constructions

We examine a number of constructions for quadratic boolean functions, determine the recursions obeyed by the sum-of-
squares and, from these recursions, identify whether or not the MMF and/or MF asymptote is a non-vanishing constant.
We refer to the constructions by self-evident, graphical names. Table IV gives the MMF results. For instance, the Star
construction satisfies the sum-of-squares recursion, σn = 4 × (3σn−1 − 11σn−2 + 12σn−3) so that σn = 2n − 4n

2 + 6n

6 ,
giving an asymptotic MMF of 0 as n →∞. All proofs are omitted because of page limitations.

Table IV gives the computational MF results for those graphs for which we were able to ascertain a recursive rela-
tionship. It remains an open problem to prove these results (apart from the Line [9]).

V. Conclusion

Recursions have been identified for the Multidimensional and One-dimensional Merit Factors of some binary quadratic
sequence constructions. Open problems as to the highest possible Merit Factors remain, asymptotic or otherwise.
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Graph p(x) σn: Recursion MMF Asymp.
σn: Closed-Form

Line
∑n−2

i=0 xixi+1 2σn−1 + 8σn−2 3
4n

6 − (−2)n

6

Circle xn−1x1 +
∑n−2

i=0 xixi+1 2σn−1 + 8σn−2 1
(−2)n

2 + 4n

2

Clique
∑i=n−1

i=0,j<i xixj 2× (5σn−1 − 10σn−2 − 20σn−3 + 48σn−4) 0
2n

2 + 6n

4 − 4n

2 − (−2)n

4
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2n − 4n

2 + 6n

6
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∑n−3

i=0 xixi+2 + xi+1xi+2 2σn−1 + 16σn−3 + 256σn−5
5
3

( 5
84 i
√

7− 1
12 )(1 +

√
7i)n − ( 5

84 i
√

7 + 1
12 )(1−

√
7i)n − ( 1

15 + 2
15 i)(−2 + 2i)n − ( 1

15 −
2
15 i)(−2− 2i)n + 3

104n

Squares x0x1 +
∑n/2−1

i=0 x2ix2i+2 + x2i+1x2i+3 + x2i+2x2i+3 12σn−2 + 32σn−4 + 1024σn−6 − 8192σn−8
5
3

n even 3 16n
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(∑
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r )n
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∑n−2
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2 − ( 1
4 + 1

4 i
√

7)(−1 +
√

7i)n + (− 1
4 + 1

4 i
√

7)(−1−
√

7i)n

TABLE I

Proven Results for the Multidimensional Merit Factor of Various Constructions
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