
Improved Adaptive Belief Propagation Decoding

Using Edge-Local Complementation

Joakim Grahl Knudsen, Constanza Riera∗, Lars Eirik Danielsen, Matthew G. Parker, and Eirik Rosnes
Dept. of Informatics, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway

email: {joakimk, larsed, matthew, eirik}@ii.uib.no
∗Bergen University College, Nygårdsgt. 112, 5008 Bergen, Norway, email: csr@hib.no

Abstract—This work is an extension of our previous work
on an iterative soft decision decoder for high-density parity-
check codes, using a graph-local operation known as edge-local
complementation (ELC). The random application of ELC is
replaced by ELC operations to target the inferred least reliable
codeword positions, in between sum-product algorithm iterations.
This is related to other decoding algorithms employing similar
ideas, where our experience with graph-local operations allow
us to improve the heuristics, and thus the performance of the
decoder. This gain is both in terms of error-rate performance,
and complexity in terms of a significant reduction in the required
number of such operations. Simulations results are shown for
two types of high-density parity-check codes (Reed-Solomon and
quadratic residue codes), for which a gain is shown over our
previous ELC-decoders, as well as iterative permutation decoding
(SPA-PD) and adaptive belief-propagation (JN-ADP).

I. INTRODUCTION

Iterative soft-input soft-output (SISO) decoding of graph-

based codes has been shown to give near-optimum results,

when the sum-product algorithm (SPA) is used on low-density

parity-check codes. Recently, these results have been extended

to high-density parity-check (HDPC) codes, in order to facil-

itate the use of well-known strong families of codes, such as

Bose-Chaudhuri-Hocquenghem [1, 2], quadratic residue (QR)

[3], and Reed-Solomon (RS) codes [4–6]. Constructions of

these types have strong structural properties (most importantly,

large automorphism group and minimum distance), as well

as convenient algebraic descriptions to simplify hardware

implementation. We have previously described a graph-local

operation known as edge-local complementation (ELC), to

improve the performance of SPA decoding by providing di-

versity during decoding. In addition to random application of

a small number of ELC operations [3], we have considered

the controlled application of ELC such as to preserve graph

isomorphism [7], or to maintain a bound on graph density [8].

This work is an extension on our work on ELC-based SISO

HDPC decoding, where the aim is now to affect inferred error

positions during decoding. By using the structural effects of

ELC on the Tanner graph, these positions are arguably set in

a ‘listening state,’ such that they may continue to converge,

but without influencing other nodes (e.g., via cycles). This

approach is similar to iterative permutation decoding (SPA-

PD), which uses permutations from the automorphism group

of the code in an attempt to confine errors to a parity-set of the

code, such that these may be corrected by simply re-encoding

Fig. 1. ELC on edge (u, v), as implemented on a (systematic) Tanner
graph, where vu is the systematic node for node u. Straight links between
two sets mean that these are completely connected, while curved links mean
arbitrary connections. Dashed lines indicate non-edges. Doubly slashed links
are complemented (edges are replaced by non-edges, and vice versa) resulting
in v and vu swapping connections. This graph may be a subgraph of a larger
graph.

the corresponding information set [1]. The adaptive belief

propagation (JN-ADP) decoder [4] uses Gaussian elimination

(GE) on the (n−k)×n parity-check matrix H , to reduce the

columns corresponding to the n− k least reliable positions to

an identity matrix. We will show how the ELC operation is

related to GE. The novelty of the proposed SPA-ADP-ELC

decoder lies in the significant reduction in the number of

positions (columns of H) affected by the ‘ADP-stage,’ whether

it is implemented using GE or ELC, while simultaneously

achieving a gain in error-rate performance over SPA-PD and

JN-ADP. We also maintain the locality argument of the ELC

operation, which leads to several modifications to improve the

performance of the ADP-ELC heuristic (i.e., how to choose

the least reliable positions).

First, some notation and definitions. We will use boldface

notation for vectors, and italics uppercase for matrices. A

binary linear code C of length n, dimension k, and minimum

distance dmin is denoted by [n, k, dmin]. The (n − k) × n

parity-check matrix is denoted by H , and is said to be

systematic if its columns can be reordered into the form [I P],
where I is the identity matrix of size n−k. The corresponding

codeword positions comprise a parity set I, and an information

set P , respectively, referring to the k × n generator matrix

[PT I]. The single non-zero entry of a systematic column

is referred to as a pivotal. Unless stated otherwise, codes

discussed in this paper are represented by H in systematic

form. The local neighborhood of a node v is the set of nodes

adjacent to v, and is denoted by Nv , while N u
v is shorthand

for Nv \ {u}. We will refer to variable node vi as simply v

when the index is obvious from the context.

Fig. 2. The SPA update of a degree-2 variable node, v.

II. ELC ON A TANNER GRAPH

ELC is defined on a simple graph, G =
(

0 P

P T
0

)

, cor-

responding to a code in systematic form H = [I P], or,

equivalently, a Tanner graph TG(H) =
(

0 H

HT
0

)

. We have

previously described ELC on TG(H) by going via G [3].

We will now discuss the implementation of ELC as directly

applied to TG(H). ELC requires that H is systematic, and

since it is natural to assume there are no repeated columns,

each row u has a unique pivotal. Let this single adjacent node

to u be denoted by vu ∈ I. The implementation of ELC

on TG(H) is to complement the edges connecting Nu and

N u
v , as shown in Fig. 1. By definition, v is adjacent to all

nodes in Nv , whereas the systematic node vu ∈ Nu is not

connected to N u
v at all. Thus, the complementation entails

the effect of swapping the connections of these nodes, or,

equally, the corresponding two columns in H . Since vu ∈ I
and v ∈ P , this is a swap between I and P . Note that ELC on

(u, vu) has no effect, as N u
vu

= ∅. A maximum of n− k ELC

‘independent’ ELC operations may be applied to TG(H)–one
per row.

It is readily verified that ELC is a graph implementation of

the row-additions performed to reduce a column to systematic

form during GE. As such, we may define GE (on a systematic

matrix) as n − k ELC operations. For completeness, we

mention that the above described operation applied to a non-

systematic TG(H) will reduce the corresponding column to

systematic form. For reference, we may define this as non-

systematic ELC.

III. ADAPTIVE BELIEF PROPAGATION

The idea of incorporating the inferring and moving of errors

into solvable positions as part of a decoding algorithm, was

suggested by MacWilliams and Sloane for their algebraic

permutation decoder (PD) [9]. PD has recently been extended

to an iterative algorithm [1, 7], SPA-PD, so as to further benefit

from SISO decoding. In a similar fashion, JN-ADP attempts to

produce an identity submatrix in the columns corresponding to

error positions, by means of GE on H [4]. The GE operation

affects individual columns independently, and can be targeted

directly to the desired n− k positions, whereas a permutation

generally affects all n positions of the code.

Over an additive white Gaussian noise (AWGN) channel,

the error positions are obviously unknown to the receiver.

However, simple heuristics exist to infer the reliability of the

a posteriori probability (APP), or state value, at a position.

Using binary phase-shift keying (mapping 0 → +1, 1 → −1),
the received noisy vector is yi = (−1)xi + ei, 0 ≤ i < n,

where x is a codeword and e is AWGN. In the log-likelihood

ratio (LLR) domain, the magnitude |Lv
j | serves as a measure

on the reliability of the APP at position v, in iteration j.

Note that Lv
0 , 2

η2 y, where η is the standard deviation

of the AWGN. The JN-ADP algorithm begins by sorting

the n codeword positions according to increasing magnitude.

Let the corresponding permutation be σ, such that σj = i,

0 ≤ j, i < n, if vi is the j’th least reliable position. Let

K = σ(L) be the sorted sequence of APPs, and define a

counter, δ. Then, for each row 0 ≤ j − δ < n − k of H ,

a pivotal is attempted in column hKj
(position Kj) at row

index j − δ. The placement of a pivotal in a column is not

important for SPA decoding, yet, an important aspect of JN-

ADP is to avoid cancellations, where several pivotals affect

the same row. Due to the nature of GE, a pivotal is unique not

only to its column, but also to its row, in that any repeated

application (within the same GE-stage) on the same row will

replace the previous pivotal in that row. As K is processed

in order of improving reliabilities, any such cancellation must

have a counter-productive effect on performance (this is easily

verified by simulations). To avoid this, JN-ADP processes the

rows in an ordered fashion. If hKj
is zero in row entry j − δ,

then let j′ > j − δ be the first non-zero row entry in hKj
.

Row j′ is then added onto row j − δ, such that a pivotal

may be made here. As such, the GE-stage does work even

when position Kj is already in I. Only when the column is

zero in all coordinates j′ ≥ j − δ will JN-ADP skip to the

next position, Kj+1, and increase δ by 1. The GE-stage ends

when j − δ = n − k, or, failing that, when K is exhausted.

As described in [5], the aim of JN-ADP is to affect as many

unreliable positions as possible in each GE-stage. Usually, δ

is small, such that one GE-stage does p ≈ n − k pivotals to

produce a new TG(H).

A. Isolating Weak Positions

The presence of weight-1 columns in H has a significant

impact on the flow of messages in SPA decoding. As illustrated

in Fig. 2, the Tanner graph equivalent of a weight-1 column

in H is a variable node of degree 1, not counting the Forney-

style input half-edge, y. This node is minimally connected to

TG(H), and is not part of any cycles. The SPA-rules must

adhere to an extrinsic principle, in which the message passed

out on any edge is independent of the incoming message

along that same edge. This message is the marginal for the

variable encoded by the edge. The SPA rule for a check node

is the parity (XOR) function of its incoming messages, which

we denote by f(Θ). Thus, the marginal on v is f(Θ \ v),
providing v with updated information from the rest of the

graph. For a variable node in the LLR domain, the SPA

rule is simple summation. When v is systematic, the APP

is Lv = y + f(Θ \ v), and the node can only relay its input

message, Lv − f(Θ \ v) = y, to the single adjacent check

node. This variable node may be said to be in a listening

or passive state. If such a position is unreliable, it will not

disturb the rest of the graph, while receiving information to

help it converge.

Still, the gain of JN-ADP can not be accredited to this

isolation effect alone. Specifically, it is known that modify-

Example 1 (ADP-ELC-stage). Consider the extended Hamming [8, 4, 4] code, H , and some decoder state (vector of APPs), L. The actual values are not

important for an example, so we focus directly on a permutation, σ. The bipartition is indicated (in σ) by underlining the indices of positions in P . The

current position (column) to consider for ELC is indicated by a star symbol over H . This ELC-stage ends after two ELC operations.

⋆

0 1 2 3 4 5 6 7

H =

»

1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

–

σ = (5 1 4 3 0 7 2 6)
u⋆ = u0

−→

ELC(u0, v5)

⋆

0 1 2 3 4 5 6 7

H =

»

1 0 0 0 1 1 1 0

1 1 0 0 0 0 1 1

0 0 1 0 1 0 1 1

1 0 0 1 1 0 0 1

–

σ = (5 1 4 3 0 7 2 6)
u⋆ = u2

−→

ELC(u2, v4)

⋆

0 1 2 3 4 5 6 7

H =

»

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

0 0 1 0 1 0 1 1

1 0 1 1 0 0 1 0

–

σ = (5 1 4 3 0 7 2 6)
u⋆ = ∅.

ing the structure of TG(H) during SPA decoding may, in

itself, improve performance [2, 3, 5, 10, 11]. Such diversity will

change the structure of cycles, change the node-degree distri-

butions (as with irregular low-density parity-check codes), and,

generally, alter the flow of messages during SPA decoding.

After the GE-stage, the new TG(H) is initialized for the

next SPA iteration, by damping each variable node. Damping

involves scaling down the extrinsic contribution to the APP by

a damping coefficient, 0 < α < 1. This is then accumulated

on the input, to initialize the next iteration with

Lv
j+1 := Lv

j + αΓv
j , (1)

where Γv
j = Σu∈Nv

µv←u
j , the sum of messages incoming to

v in iteration j, and Γv
0 , Lv

0 . The (global) damping stage,

(GD) applies (1) to all variable nodes in TG(H). This slightly
complicates the argument of isolating a variable node, as the

input to v is no longer fixed to the channel value y. As JN-

ADP uses a constant damping coefficient, the accumulation

may be expressed as,

Lv
j+1 = y + αΣj

j′=1
(Γv

j′ − Γv
j′−1).

Thus, damping never affects the channel value, and we see

that the accumulation is negligible when α is small, such that

the isolation argument may still hold.

IV. SPA-ADP-ELC

Let us initially describe the proposed SPA-ADP-ELC al-

gorithm simply as SPA iterations interspersed with an ADP-

ELC-stage acting on a number 0 < p ≤ n − k of the

least reliable positions. From the graph-local ELC perspective,

however, certain distinctions from the JN-ADP algorithm

naturally occur. Let us first point out that, although the process

of sorting the APPs is indeed a global operation, it is possible

to approach the problem from a graph-local perspective.

The first distinction is that SPA-ELC decoding has been

shown to be effective for p ≪ n − k, meaning a reduction in

complexity – the major concern with JN-ADP. Some further

distinctions arise from the description of ELC. ELC requires

that H is in systematic form, and we observe that the GE-

stage of JN-ADP will immediately reduce any H to systematic

form. For a systematic node vu ∈ I, N u
v = ∅, such that

ELC on (u, vu) has no effect. While processing K, we may

immediately skip any position already in I. The cancellation

issue is handled by flagging the check node, u, as ‘used,’ such

that it will not be considered again in this ADP-ELC-stage.

We have previously described how the technique of damping

may be simplified to affect only the edges affected by ELC [3].

If an operation acts locally on only certain nodes in TG(H),

we may restrict (1) to these nodes. For example, ELC on (u, v)
entails damping of variable node v, which also serves to place

outgoing messages onto the new edges inserted by ELC. This,

by itself, has a beneficial effect on performance, and we refer

to this as local damping (LD). The following sections discuss

some further benefits of a local ADP-ELC-stage.

A. Improved Heuristic to Select ELC Positions

Consider the implicit ‘swap effect’ involved in ELC on

TG(H). Extending the argument made for JN-ADP – namely,

to move (isolate) the least reliable positions into P (I-part of

H) – it is equally reasonable to ensure also the converse; that

the positions moved into I are the most reliable positions. The

procedure is simple and graph-local. Given a position, v, rather

than only choosing arbitrarily among the unused adjacent

check nodes u ∈ Nv , the ADP-ELC algorithm chooses the

check node u⋆ ∈ Nv for which the induced swap is with the

most reliable systematic position adjacent to Nv ,

u⋆ = argmax
u∈Nv, |vu|>|v|

|vu|. (2)

In the event where u⋆ = ∅, no ELC is possible for this

position, and ADP-ELC moves on to the next-worst position.

For completeness, we mention that in the event that the best

edge is not unique, the heuristic will simply select and return

the first instance encountered. However, as this is unlikely to

occur for real-valued APPs, we will simply view these edges

as equally good choices, and not attempt to refine the response

to this situation. The ADP-ELC(p) algorithm processes the p

first information positions in K, applying (2) to determine the

ELC locations. No additional measures are needed to avoid the

cancellation problem. The algorithm simply works from both

ends of K, pairing the leftmost (weakest) information position

with the rightmost (strongest) parity position. The resulting

ELC swaps the corresponding positions across the bipartition,

and requires that we keep track of the bipartition (I and P).

This simple approach avoids the cancellation issue, in that the

systematic positions corresponding to the ‘used’ rows, become

non-systematic – but, with large magnitude – due to the swap.

Lemma 1. Although variable nodes share the same check

nodes, the proposed heuristic will never repeatedly choose the

same check node u⋆ within an ADP-ELC-stage.

Proof: Consider two positions, v and w, which are both

adjacent to the same check node, u. Without loss of generality,

say |v| < |w|, so we first consider v. Then, (2) gives u⋆ = u,

and we perform ELC on (u, v) such that vu becomes non-

systematic, and the systematic node of u is now v. When we

later consider w, choosing the same u⋆ = u would entail a

swap of w with v, thus cancelling the previous swap. However,

this choice of u⋆ is not possible, because |v| < |w|.
Example 1 shows a case, where v = v5 and w = v4, both

adjacent to u = u0 (row 0). When considering v4, we can not

choose again u⋆ = u0, since vu = v5 and |v5| < |v4|.
As a final issue, consider the situation when we reach a

position vu⋆, which has already been involved in a swap with

some other position v. This means that vu⋆ has been moved

from P to I (I to P -part of H) within this ADP-ELC-stage.

The proposed scheme will never do a second ELC on an edge

adjacent to this node, which would cancel the previous swap.

Lemma 2. A position swapped from P into I will not be

subject to any subsequent ELC, within the same ADP-ELC-

stage.

Proof: Say the preceding ELC was on (u, v), which

swapped vu into I. If the heuristic later reaches this same

w = vu (before exhausting p), no subsequent ELC is possible

for this position. In the initial ELC, vu was the most reliable

systematic position adjacent to any u ∈ Nv , such that |vu| >

|v|. However, this now means that |w| > |vu′ |, ∀u′ ∈ Nw,

since w = vu.

Consequently, (2) yields ∅, and ADP-ELC proceeds to

consider the next position in K. Again, Example 1 shows

a case, in the last stage, when v = v0. We have now

covered all the possible cancellation issues, without any extra

bookkeeping or complexity in the ADP-ELC heuristic (apart

from keeping track of the bipartition).

B. Local-Neighborhood Damping

As an increasing number of ELC operations is applied to

TG(H), the overall modification to the graph can no longer be

considered to be local. In this situation, we have observed by

experiment that local damping does not give the best results. In

ELC on (u, v), local damping may be extended to all variable

nodes v ∈ Nu, without violating the locality restriction. This

is referred to as local-neighborhood damping (ND).

V. RESULTS

The frame error-rate (FER) performance of SPA-ADP-ELC

is simulated on the [31, 25, 8] RS code over GF(25) (we use

a binary [155, 125] image), and the [48, 24, 12] extended QR

code. The algorithms are implemented using our generalized

SISO HDPC decoder, Algorithm 1. SPA-ADP-ELC(p, T, α)
= SISO-HDPC(1, 1, T, 1, α,ADP−ELC(p),DR), where

T is the maximum number of SPA iterations and the

damping rule is either LD or ND. JN-ADP(T, 1, α)
= SISO-HDPC(1, 1, T, 1, α,GE,GD), where the GE-

stage may be implemented by n − k ELC operations.

Since I2 = T , and I1 = I3 = 1, these decoders

use constant damping. For JN-ADP, we use “Variation

A” (avoid degree-1 columns), whereas we do not use

“Variation B” (list decoding) [5]. SPA-PD(I1, I2, I3, α0)
= SISO-HDPC(1, I1, I2, I3, α0,PD,GD) and SPA-

ELC(p, I1,I2,I3, α0) = SISO-HDPC(p, I1,I2,I3,α0,ELC,LD)
update α from α0 to 1. It is interesting to note that the

Algorithm 1 SISO-HDPC(p, I1, I2, I3, α0,OP,DR). Stages

A and C may only apply when implementing the JN-ADP

or SPA-ADP-ELC algorithm

1: α = α0

2: for I3 times do

3: Restart decoder from channel vector

4: for I2 times do

5: (C) HDD stage. RS-code only.

6: Stop if syndrome check is satisfied

7: Apply damping rule, DR, with coefficient α

8: Apply at random p operations, OP
9: (A) Random row additions (no degree-1 columns)

10: for I1 times do

11: Apply SPA iteration (‘flooding’ scheduling)

12: end for

13: end for

14: Increment α towards 1

15: end for

SPA-ADP-ELC decoder outperforms SPA-PD on the QR

code, which has a very large automorphism group [3].

For SPA(T) and SPA-PD we use a non-systematic matrix

optimized on weight. For both codes, Figs. 3(a) and 4(a)

show that the SPA-ADP-ELC decoder also has a gain over

the successful JN-ADP algorithm, even when JN-ADP uses

“Variation C,” a symbol-level hard-decision list-decoding

(HDD) stage for the RS code. This gain is attributed mainly

to our improved ADP-ELC heuristic, but we also observe a

gain due to the modified damping. We may also benefit from

an HDD stage, mainly to reduce an error-floor effect. For

both codes, the performance is quite near the union bound.

We also observe a reduction in the average number of SPA

messages computed per frame, due to a reduction in number

of SPA iterations. The HDD stage is implemented using a

“genie-aided stopping criterion,” rather than a list-decoder

[5]. As such, the complexity of these two-stage can not be

counted in terms of SPA iterations as implemented.

We now focus on the reduction in complexity, in terms of

ELC operations. As we increase p from 1 to n−k, we simulate

signal-to-noise ratio (SNR) range 3.5 to 5.0 dB. Figs. 3(b)

and 4(b) show the results for SPA-ADP-ELC, for which the

FER improves with increasing p, until an optimal value, p⋆, is

reached. As postulated initially, a competetive FER is achieved

for p⋆ ≪ n−k, for a significant reduction in ELC complexity.

JN-ADP performance for the same SNR is indicated by the

horizontal lines. As we have discussed, an ADP-ELC (or GE)

stage is sometimes unable to perform an ELC operation for a

given unreliable position. The GE-stage of JN-ADP always

does work equivalent to n − k ELC operations. Define a

function, p̄(p), to give the average number of ELC operations

performed per ADP-ELC-stage, for a given p. Figs. 3(c) and

4(c) compare p̄(p) against the linear ELC-complexity of JN-

ADP. As stated also in [6], a reduction can be achieved by

simply improving the implementation of GE to do no work

whenever an unreliable position is already in P . The plots

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5 6 7

F
E

R

Eb/N0 (dB)

SPA(600)
SPA-PD(1,30,20, 0.08)

JN-ADP(600, 1, 0.05)
SPA-ELC(2, 1,30,20, 0.08)

SPA-ADP-ELC(7, 600, 0.05)
SPA-ADP-ELC(24, 600, 0.05)

Union Bound

0

10

20

30

40

50

 3 4 5 6

A
v
e

ra
g

e
 S

P
A

 I
te

ra
ti
o

n
s

(a) FER performance, and average number of SPA iterations per frame.

10
-5

10
-4

10
-3

10
-2

 1 5 10 15 20 24

F
E

R

p

 3.5dB
 4.5dB
 5.0dB

(b) Optimal value, p⋆ = 7

1

5

10

15

20

24

 1 5 10 15 20 24

A
v
e
ra

g
e
 N

o
.
E

L
C

 P
e
r

S
ta

g
e

p

3.5dB
4.5dB
5.0dB

(c) ELC usage, p̄(p), of ADP-ELC

Fig. 3. For the [48, 24, 12] extended QR code, the best performance is using
local damping. The performance using ND damping is indicated by the lines
in Fig. 3(b). Maximum T = 600 iterations.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 2 3 4 5 6

F
E

R

Eb/N0 (dB)

SPA(20)
JN-ADP(20, 1, 0.05) & HDD
SPA-ADP-ELC(10, 20, 0.05)
SPA-ADP-ELC(30, 20, 0.05)

SPA-ADP-ELC(10, 20, 0.05) & HDD
Union Bound

0

5

10

15

20

 3 4 5 6

A
v
e

ra
g

e
 S

P
A

 I
te

ra
ti
o

n
s

(a) FER performance, and average number of SPA iterations per frame.

10
-4

10
-3

10
-2

10
-1

 1 5 10 15 20 25 30

F
E

R

p

3.5dB
4.5dB
5.0dB

(b) Optimal value, p⋆ = 10

1

5

10

15

20

25

30

 1 5 10 15 20 25 30

A
v
e
ra

g
e
 N

o
.
E

L
C

 P
e
r

S
ta

g
e

p

3.5dB
4.5dB
5.0dB

(c) ELC usage, p̄(p), of ADP-ELC

Fig. 4. For the binary image of the [31, 25, 7] Reed-Solomon code over
GF(25), the gain is greater using ND damping. The performance using LD
damping is indicated by the lines in Fig. 4(b). Maximum T = 20 iterations.

verify that JN-ADP performs n − k − p̄(n − k) redundant

ELC operations. Even comparing against this improved GE

implementation in [6], the figures show that p̄(p) grows

linearily before flattening out at high p. By using p⋆, we

may then get a further reduction in average number of ELC

operations.

VI. CONCLUSION AND FUTURE WORK

We have described an SPA-ADP-ELC decoder to target the

least reliable positions during decoding. An improvement is

shown over related algorithms, both in terms of error-rate

performance and complexity, which is ascribed to an improved

heuristic to apply the ELC operations. Most importantly,

the amount of ELC operations can be reduced significantly,

compared to a full GE-stage. Future work is concerned with

further extensions of the ADP-ELC heuristic, and using a non-

systematic variant of ELC to avoid degree-1 nodes. We are also

working on a distributed implementation of the sorting stage,

where each check node sorts its adjacent variable nodes.

REFERENCES

[1] T. R. Halford and K. M. Chugg, “Random redundant iterative soft-in
soft-out decoding,” IEEE Trans. Commun., vol. 56, no. 4, pp. 513–517,
Apr. 2008.

[2] I. Dimnik and Y. Be’ery, “Improved random redundant iterative HDPC
decoding,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1982–1985, Jul.
2009.

[3] J. G. Knudsen, C. Riera, L. E. Danielsen, M. G. Parker, and E. Rosnes,
“Random edge local complementation and iterative soft-decision decod-
ing,” in Proc. IEEE Int. Symp. Inform. Theory, Seoul, Korea, Jul. 2009,
pp. 899–903.

[4] J. Jiang and K. R. Narayanan, “Iterative soft decision decoding of Reed-
Solomon codes,” IEEE Commun. Lett., vol. 8, no. 4, pp. 244–246, Apr.
2004.

[5] ——, “Iterative soft-input soft-output decoding of Reed-Solomon codes
by adapting the parity-check matrix,” IEEE Trans. Inform. Theory,
vol. 52, no. 8, pp. 3746–3756, Aug. 2006.

[6] M. El-Khamy and R. J. McEliece, “Iterative algebraic soft-decision list
decoding of Reed-Solomon codes,” IEEE J. sel. Areas Commun., vol. 24,
no. 3, pp. 481–490, 2006.

[7] J. G. Knudsen, C. Riera, M. G. Parker, and E. Rosnes, “Adaptive soft-
decision decoding using edge local complementation,” in Proc. Second

Int. Castle Meeting on Coding Theory and Applications (2ICMCTA),

LNCS 5228, Castillo de la Mota, Medina del Campo, Spain, Sep. 2008,
pp. 82–94.

[8] J. G. Knudsen, C. Riera, L. E. Danielsen, M. G. Parker, and E. Rosnes,
“On iterative decoding of HDPC codes using weight-bounding graph
operations,” in Proc. Int. Zürich Seminar on Commun., Zürich, Switzer-
land, Mar. 2010.

[9] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes. North Holland, 1977, ch. 16.
[10] A. Kothiyal and O. Takeshita, “A comparison of adaptive belief prop-

agation and the best graph algorithm for the decoding of linear block
codes,” in Proc. IEEE Int. Symp. Inform. Theory, Adelaide, Australia,
Sep. 2005, pp. 724–728.

[11] T. Hehn, J. B. Huber, S. Laendner, and O. Milenkovic, “Multiple-bases
belief-propagation for decoding of short block codes,” in Proc. IEEE

Int. Symp. Inform. Theory, Nice, France, Jun 2007, pp. 311–315.

