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Aperiodic Propagation Criteria for Boolean Functions
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Abstract
We characterise aperiodic autocorrelation for a boolean function, f , and define the Aperiodic Propagation Criteria

(APC) of degree l and order q. We establish the strong similarity between APC and Extended Propagation Criteria
(EPC) of degree l and order q as defined by Preneel et al. in 1991, although the criteria are not identical. We also show
how aperiodic autocorrelation can be related to the first derivative of f . We further propose the metric APC Distance
and show that Quantum Error Correcting Codes (QECCs) are natural candidates for boolean functions with favourable
APC Distance.
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I. Introduction

Imagine the block cipher scenario where an attacker has knowledge of the values of a fixed subset, µ, of the
plaintext bits and any subset of the ciphertext bits, for multiple plaintext/ciphertext pairs. Moreover he is
able to modify any of the plaintext bits from the set µ, in order to realise a differential attack on the cipher.
For a given cipher, what is the smallest size of µ such that a biased differential can be established across the
cipher? This scenario motivates us to define Aperiodic Propagation Criteria (APC) for a boolean function
such that APC Distance is this minimum size for µ for a constituent boolean function of the cipher. We also
define multivariate aperiodic autocorrelation of a boolean function, from which APC is derived.

Now imagine a similar scenario where the attacker has knowledge of the values of a fixed subset, µ, of the
plaintext bits, and he is able to modify any subset, a, of the plaintext bits, but this time a is not necessarily
a subset of µ. For a given cipher, and for a given size for a, what is the smallest size for µ such that a
biased differential can be established across the cipher? Preneel et al. [30] have defined Extended Propagation
Criteria (EPC) such that, for a constituent boolean function of the cipher, EPC(l) of order q means that a
biased differential can not be found if µ is of size q or less given that a is of size l or less. To ease comparison
with APC, we further propose EPC Distance to be the minimum size of µ

⋃
a such that a biased differential

can be found. EPC is also considered in [24] and [5].
It is the purpose of this paper to characterise aperiodic autocorrelation for a boolean function, to motivate

its use for cryptanalysis, and to consider constructions for boolean functions with favourable aperiodic criteria,
where favourable here means that the aperiodic coefficients are zero at low weight indices. Preneel et al. [30]
propose (periodic) Propagation Criteria (PC) of degree l and order q which evaluates periodic properties
of a boolean function when q of the input bits are kept constant. In the same way we propose Aperiodic
Propagation Criteria (APC) of degree l and order q to evaluate aperiodic properties when q bits are kept
constant. It is then natural to compare APC with EPC.

By interpreting our boolean function over m variables as a quantum state over m qubits, we also establish,
rather surprisingly, that APC Distance of a quadratic boolean function is equal to the minimum distance of
an associated zero-dimension Quantum Error-Correcting Code (QECC) which is, in turn, a highly-entangled
pure quantum state [21]. We apply recent results on quantum codes to the construction of quadratic boolean
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functions with favourable APC. This suggests that the disciplines of quantum entanglement and cryptographic
criteria for boolean functions are closely related [28]. The mapping of boolean functions into Hilbert space
allows one to apply Local Unitary Transforms to establish orbits of boolean functions over which APC Distance
is invariant. Orbits of quadratic functions can be generated by successive Vertex-Neighbour-Complement
(VNC) operations [14] which encode the action of a special subset of Local Unitary Transforms. Similarly,
APC Distance-invariant orbits of functions of algebraic degree > 2 can also be generated by application of
the same set of Local Unitary Transforms.

This paper is structured as follows. After establishing the notation, we characterise aperiodic and fixed-
aperiodic autocorrelation for a boolean function. We then define APC, elaborate on the similarities between
APC and EPC, and define APC and EPC distance metrics. We consider constructions for quadratic boolean
functions with favourable APC, using known results for QECCs. We also highlight the unusual VNC symmetry.
Finally we consider the challenging problem of finding constructions for boolean functions of algebraic degree
> 2 with favourable APC, and we describe the generalisation of VNC for such functions. We also show, in
Appendix B, how to use aperiodic coefficients to compute the combined periodic/negaperiodic coefficients,
and vice versa. Symmetries associated with aperiodic autocorrelation are described in Appendix C. Finally
Appendix D presents the results of the (truncated) differential analysis of a few state-of-the-art S-boxes with
respect to periodic, aperiodic, and fixed-aperiodic autocorrelation.

II. Preliminaries

Let Bm denote the set of all Boolean functions on m variables. For a = (a0, a1, . . . , am−1) ∈ Fm
2 , the

Hamming Weight of a is

wt(a) =
m−1∑
i=0

ai.

We define the operators :̄Fm
2 → Fm

2 , and &:Fm
2 ×Fm

2 → Fm
2 as bitwise negation and modular multiplication

mod 2, respectively. Let a, b, c ∈ Fm
2 , then

c = a&b ⇒ ci = aibi ∀i, 0 ≤ i < m.

c = ā ⇒ ci = ai + 1 ∀i, 0 ≤ i < m.

Let a, b ∈ Fm
2 , then

b � a ⇔ bi ≤ ai ∀i, 0 ≤ i < m,

and we say that a covers b.
The dual, V ⊥, of a subspace, V ⊂ Fm

2 can be described relative to the scalar product

V ⊥ = {x ∈ Fm
2 |∀y ∈ V, x · y = 0}.

In particular, for r ∈ Fm
2 , we define Vr as follows

Vr = {x ∈ Fm
2 |x � r}.

Moreover, for any k ∈ Fm
2 , k + V defines a coset of V .

Let E be any subset of Fm
2 . For any f ∈ Bm we define fφE as the restriction of f to E such that fφE(x) = 1

iff f(x) = 1 and x ∈ E. If E is a k-dimensional linear subspace of Fm
2 then, for any coset, b+ E, we identify

fφb+E with a boolean function in Bk, where the function obtained depends on b.
For any f ∈ Bm we define F(f) as follows

F(f) =
∑

x∈F m
2

(−1)f(x).
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If E is a k-dimensional linear subspace of Fm
2 then, for any coset, b+ E

F(fφb+E) =
∑

x∈b+E

(−1)f(x).

The (Walsh-Hadamard) Fourier Spectrum of f ∈ Bm is expressed as the multi-set

{F(f + α · x), α ∈ Fm
2 }.

Definition 1: Let f ∈ Bm and let t be some positive integer. The function f is said to be Correlation-
Immune of order t if and only if F(f + α · x) = 0 for any α ∈ Fm

2 such that 1 ≤ wt(α) ≤ t. Moreover, when
f is balanced, it is said to be t-Resilient. A Balanced Function is 0-Resilient.

For any f ∈ Bm and a ∈ Fm
2 , the first derivative of f with respect to a is given by Daf ∈ Bm, where

Daf = f(x) + f(x+ a).

In the sequel we use expressions of the form DafφE which should always be taken to mean (Daf)φE , i.e.
we omit brackets for clarity.

For a, k, µ ∈ Fm
2 , a � µ̄, k � µ, the fixed-periodic autocorrelation coefficients, pa,k,µ, of f after fixing the

subspace, Vµ, to k, can be defined by

pa,k,µ = F(Dafφk+Vµ̄), a � µ̄, k � µ. (1)

When µ = 0 there is no subspace fixing, and (1) simplifies to the periodic autocorrelation of f , given by

pa = F(Daf). (2)

Definition 2: [30] Let E ⊂ Fm
2 . The function f ∈ Bm satisfies the (periodic) Propagation Criteria (PC)

with respect to E if, for all e ∈ E, pe = 0. The function f satisfies PC of degree l and order q (PC(l) of order
q) for some positive integers l and q if pa,k,µ = 0 for any a, k, µ ∈ Fm

2 such that a � µ̄, k � µ, 1 ≤ wt(a) ≤ l

and 0 ≤ wt(µ) ≤ q. For q = 0 we abbreviate, saying that f satisfies PC(l).

III. Aperiodic Autocorrelation of a Boolean Function

For a, k, µ ∈ Fm
2 , a, k � µ, and θ = µ + a, where θ and a are disjoint, the fixed-aperiodic autocorrelation

coefficients of f after fixing the subspace, Vθ, to k&θ are defined by

ua,k,µ = F(Dafφk+Vµ̄), a, k � µ. (3)

The only difference between (1) and (3) is that, for the fixed-periodic case, a � µ̄ whereas, for the fixed-
aperiodic case, a � µ. For (1), (Daf)φk+Vµ̄ = Da(fφk+Vµ̄), but this is ill-defined for (3). Note that ”knowledge
of the values of a fixed subset, µ”, as stated in Section I, is here characterised by fixed values of k, where k is
covered by µ.

When µ = a there are no additional fixed values, and (3) simplifies to the aperiodic autcorrelation of f ,
given by

ua,k = F(Dafφk+Vā), k � a. (4)

In other words, the aperiodic autocorrelation coefficients are given by a set of restrictions on the first deriva-
tives of f . From the definitions there are

∑
a∈F m

2
2wt(a) = 3m coefficients, ua,k, and

∑
µ∈F m

2
22wt(µ) = 5m

coefficients, ua,k,µ. In fact, for autocorrelations of real functions, Fm
2 → R, there are only a maximum of 3m/2

and 5m/2 different values for ua,k and ua,k,µ, respectively.
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The fixed-aperiodic autocorrelation of a boolean function over a subspace is related to the Extended Propa-
gation Criteria (EPC) as defined by Preneel et al. in [30]. This was investigated by Carlet in [5]. However, the
aperiodic property is more accurately characterised by a criteria we define as Aperiodic Propagation Criteria
(APC). We first, therefore, explain why (3) is an aperiodic (non-modular) metric, and later we return to the
definitions of both APC and EPC.

Proposition 1: The periodic autocorrelations of (1) and (2) can be expressed as modular (periodic) mul-
tivariate polynomial multiplications, and the aperiodic autocorrelations of (3) and (4) can be expressed as
non-modular (aperiodic) multivariate polynomial multiplications.

Proof: Let pa and ua,k be as defined in (2) and (4), respectively. Let z ∈ Cm
2 . Define v(z), P (z), and

A(z) as follows
v(z) =

∑
x∈F m

2
(−1)f(x)

∏
i∈Zm

zxi
i

P (z) =
∑

a∈F m
2
pa

∏
i∈Zm

zai
i

A(z) =
∑

k,a∈F m
2 ,k�a ua,k

∏
i∈Zm

z
ai(−1)ki

i

Then an expansion verifies the following modular and non-modular relationships for P (z) and A(z)

P (z) = v(z)v(z−1) ( mod
∏

i∈Zm
(z2

i − 1))
A(z) = v(z)v(z−1),

respectively. The above argument carries over simply to (1) (resp. (3)) by first fixing a subspace Vµ (resp.
Vθ), then computing a modular (resp. non-modular) polynomial multiplication over the remaining subspace.

For a, c ∈ Fm
2 , define Ga,c as the Fourier Spectrum of Daf , so that

Ga,c = F(Daf + c · x). (5)

The fixed-aperiodic autocorrelation of f after fixing a subspace, Vθ, is equivalent to a subspace Fourier
Transform of the Fourier Transform of the first derivatives of f , as in the following proposition.

Proposition 2:
ua,k,µ = 2−wt(µ)

∑
c�µ

Ga,c(−1)k·c, a, k � µ,

and
Ga,c =

∑
k�µ

ua,k,µ(−1)c·k, a, c � µ,

where, as before, the simplification to no additional fixed values is given by assigning µ = a above.
Proof: See Appendix A.

The relationship between aperiodic autocorrelation and its constituent periodic and negaperiodic autocor-
relations is described in subsection VIII-A of Appendix B, and relationships to the second derivative are
described in subsection VIII-B of the same Appendix.

We can establish power relationships between fixed-aperiodic coefficients and Fourier spectra of the first
derivative of f , as follows ∑

k�µ

|ua,k,µ|2 = 2−wt(µ)
∑
c�µ

|Ga,c|2. (6)

We define the fixed-aperiodic sum-of-squares with respect to a after fixing a subspace Vθ, referred to as σa,µ,
as follows

σa,µ =
∑
k�µ

|ua,k,µ|2. (7)
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By summing over all a, µ ∈ Fm
2 where a � µ, we arrive at an expression for the complete fixed-aperiodic

sum-of-squares, Φ, for f
Φ =

∑
µ∈F m

2

∑
a�µ

σa,µ =
∑

µ∈F m
2

∑
a,k�µ

|ua,k,µ|2. (8)

When a = µ, the above expression simplifies to the aperiodic sum-of-squares

σ =
∑

a∈F m
2

σa =
∑

a∈F m
2

∑
k�a

|ua,k|2. (9)

The aperiodic sum-of-squares has been investigated in [19] where recursions in σ have been established for
certain infinite quadratic boolean constructions. Of significant interest in this paper are the choices for a
and µ such that σa,µ = 0, in particular for the cases where wt(µ) is small. To this end we define Aperiodic
Propagation Criteria as follows.

Definition 3: The function f ∈ Bm satisfies the Aperiodic Propagation Criteria (APC) of degree l and order
q (APC(l) of order q), for some positive integers l and q if ua,k,µ = 0 for any a, k, µ ∈ Fm

2 such that a, k � µ,
µ = a+ θ, 1 ≤ wt(a) ≤ l and 0 ≤ wt(θ) ≤ q, where a and θ are disjoint. For q = 0 we abbreviate, saying that
f satisfies APC(l).
An intuitive reason for the usefulness of APC in a classical cryptographic context is as follows. Let x be the
complete set of input bits {xi}, let xµ,xa ⊂ x be such that xa ⊂ xµ, |xµ| ≤ q + |xa|, and |xa| ≤ l. Then a
boolean function, f , satisfies APC(l) of order q if, for every possible xµ,xa pair, knowledge of the bits in xµ

gives no information as to the values of the function Daf , where ai = 1 iff xi ∈ xa. This definition is very
similar but not identical to the Extended Propagation Criteria (EPC) originally defined by Preneel et al. [30].
In order to define EPC, we first define extended autocorrelation.

For a, k, µ ∈ Fm
2 , k � µ, and θ � µ, the extended autocorrelation coefficients of f after fixing the subspace,

Vθ, to k&θ, are defined by
va,k,µ = F(Dafφk+Vµ̄), k � µ. (10)

When µ � a, (10) simplifies to the extended autocorrelation of f , given by

va,k = F(Dafφk+Vµ̄), k � a. (11)

Note that
ua,k,µ = va,k,µ, a � µ, and ua,k = va,k, a = µ, (12)

so the fixed-aperiodic autocorrelation coefficients are a subset of the extended autocorrelation coefficient
spectra. EPC is defined as follows.

Definition 4: [30] The function f ∈ Bm satisfies the Extended Propagation Criteria (EPC) of degree l and
order q (EPC(l) of order q) for some positive integers l and q if va,k,µ = 0 for any a, k, µ ∈ Fm

2 , such that
k � µ, 1 ≤ wt(a) ≤ l and 0 ≤ wt(µ) ≤ q. For q = 0 we abbreviate, saying that f satisfies EPC(l).
An intuitive reason for the usefulness of EPC in a classical cryptographic context is as follows [30], [5]. Let
x be the complete set of input bits {xi}, let xµ,xa ⊂ x be such that |xµ| ≤ q, and |xa| ≤ l. Then a boolean
function, f , satisfies EPC(l) of order q if, for every possible xµ,xa pair, knowledge of the bits in xµ gives no
information as to the values of the function Daf , where ai = 1 iff xi ∈ xa.

The essential difference between APC and EPC is that, for APC the bits in the set xa are assumed to
be known. This is not necessarily the case for EPC. In practice this means that APC envisages a scenario
where the ability to modify input bits from the set xa also means that the attacker has ’free’ knowledge of
the values of these same bits. In other words, ’Modify’ and ’Read’ are not distinguished for APC, whereas
they are distinguished for EPC.
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It is useful to define both APC and EPC in terms of one parameter, namely APC Distance and EPC
Distance, respectively.

Definition 5: The function f ∈ Bm has APC Distance d if it satisfies the APC(l) of order q for all positive
integers, l, q, such that d > l + q.

Definition 6: The function f ∈ Bm has EPC Distance d if it satisfies the EPC(l) of order q for all positive
integers, l, q, such that d > l + q.
The following is easily verified from (12)

APC Distance(f) ≤ EPC Distance(f). (13)

Computational results suggest that, for most boolean functions, the two distances are equal. A counterexample
is the clique function, namely, f =

∑
i<j xixj . For m ≥ 4, we have EPC Distance = 4 but APC Distance = 2.

The APC has been defined above in terms of fixed-aperiodic coefficients, ua,k,µ, but can also be defined in
terms of Ga,c. From (6) we have the following two-way implication, where a � µ

ua,k,µ = 0,∀k � µ ⇔ Ga,c = 0,∀c � µ. (14)

Preneel et al. [30] and Carlet [5] have given spectral characterizations of the EPC in terms of the Fourier
Transform of Daf . We now re-express this characterization in terms of EPC distance and Resilience of Daf .

Corollary 1:

f has EPC Distance d ⇔ Daf is (d− wt(a)− 1)-Resilient, ∀a,wt(a) < d.

Using (13) we obtain the following corollary.
Corollary 2:

f has APC Distance d ⇒ Daf is (d− wt(a)− 1)-Resilient, ∀a,wt(a) < d.

If Daf is (d − wt(a) − 1)-Resilient, then f may have APC distance less than d (e.g. the clique function
f =

∑
i<j xixj for m ≥ 3).

APC is slightly stricter than EPC1 and a much stricter criteria than PC. For example, it is easily verified
that the hyper-bent function

f = x0x1x2 + x0x1x5 + x0x2x3 + x0x4x5 + x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4

+x1x3x5 + x1x4x5 + x2x4x5 + x0x3 + x0x5 + x1x4 + x2x3 + x3x4

has PC(6), but only APC(1), and further has APC Distance and EPC Distance of 2. In fact, PC acts as an
upper-bound on EPC which, in turn, acts as an upper bound on APC, giving the following lemma.

Lemma 1: Let f satisfy

PC(l) of order q, EPC(l′) of order q, APC(l′′) of order q .

Then l′′ ≤ l′ ≤ l.
Fig 1. shows the scope of µ and a for EPC, APC and PC. Although EPC is more general then APC (because
a is not necessarily a subset of µ), the ”spectral region” examined by EPC is no bigger than for APC. In other
words, for EPC, the part of a not covered by µ is, in a sense, superfluous, as it refers only to the periodic
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Fig. 1
Relative Scope of µ and a for Extended, Aperiodic, and Periodic autocorrelations

autocorrelation, which is a spectral subset of the aperiodic autocorrelation 2. APC, on the other hand, has
no purely periodic part.

Here is a well-known quadratic construction [11] for f ∈ Bm which has APC(bm
2 c).

Theorem 1: Define f ∈ Bm, e ∈ Fm
2 , and d ∈ F2 such that

f(x) =
m−2∑
i=0

xπ(i)xπ(i+1) + e · x+ d,

where π is any permutation from Zm to Zm. Then f has APC(bm
2 c).

Proof: See Appendix A
Unfortunately the construction of Theorem 1 only gives APC Distance 2. This is because fixing variables can
comprise the strength of the residual subspace function. For instance, for π the identity, µ = 1100 . . ., and
a = 100 . . . we find that ua,k,µ 6= 0 and wt(µ) = 2.

IV. Constructions for Boolean Functions with Favourable APC

A. Qubits and Local Unitary Transforms

A ’quantum bit’ or qubit is an idealisation of a 2-dimensional quantum object. It is described by the vector
(q0, q1), such that the probablity of measuring the qubit in state 0 or state 1 is |q0|2 or |q1|2, respectively,
with |q0|2 + |q1|2 = 1. Similarly, m qubits comprise a 2m-dimensional object or pure 3 quantum state, |ψ >,
as described by the vector s = (s00...0, s00...1, . . . , s11...1) such that the probability of a joint measurement on
the m qubits of |ψ > yielding state i is |si|2, where i ∈ Zm

2 , and ||s||22 =
∑11...1

i=00...0 |si|2 = 1, where ||s||p is the
Lp-norm of s. We say that s is normalised if ||s||22 = 1. A local change of basis on the measurement axes is
realised by evaluating s′ = Us, where U is a 2m × 2m tensor-decomposable, unitary matrix. U is unitary if
UU † = I, where I is the identity and † means ’transpose-conjugate’, and U is tensor-decomposable if it can
be written as U = u0 ⊗ u1 ⊗ . . . ⊗ um−1, where the uj are 2 × 2 unitary matrices. If U is of this form then
it is referred to as a Local Unitary Transform. The transform is local because it is fully tensor-decomposed.
We define s and s′ to be locally equivalent if s′ = Us for U a Local Unitary Transform. In such a case s and
s′ are considered to be equivalent quantum states. It is this notion of equivalence that is exploited later in
this section in the context of boolean functions. As in [28], we will use a bijective mapping from a boolean

1Although the fixed-aperiodic autocorrelation coefficients are a subset of the extended autocorrelation coefficients (see (12)),

the interpretation of the weight of the coefficient indices as a distance measure means that APC is stricter than EPC.
2 By ”spectral region” we mean that the ua,k,µ and va,k,µ of f can both be computed from the {I, H, N}m set of transforms,

where {I, H, N}m is as defined in section IV-F. More specifically, aperiodic autocorrelation (ua,k) can be computed from the set

of {H, N}m transform coefficients, whereas periodic autocorrelation (pa) can be computed from the {H}m (Walsh-Hadamard)

coefficients, which are a subset of the {H, N}m transform coefficients.
3 We only deal with ’pure’ states in this paper.
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function, f ∈ Bm, to a quantum state of m qubits, |ψ >, as represented by s

|ψ >≡ s = 2−
m
2 (−1)f(x) (15)

with si = 2−
m
2 (−1)f(x=i). Consequently we refer to qubit i as xi. This mapping allows us to view the

fixed-aperiodic autocorrelation of a boolean function in a quantum context. In particular we will see that
the typical error model used to define a QECC can be related precisely to the operations associated with
the fixed-aperiodic autocorrelation of a boolean function. As the QECC error set is invariant to local basis
change, this means that, if s = 2−

m
2 (−1)f(x) and s′ = 2−

m
2 (−1)f ′(x) are locally equivalent, then f and f ′ have

the same fixed-aperiodic autocorrelation profile.

B. Quantum Error Correcting Codes (QECCs)

Stabilizer QECCs [16], [33], [17], [18], [20] make excellent candidates for boolean functions with favourable
APC. An [[m, k, d]] QECC is a code over m qubits of dimension k and distance d, where each of the 2k

codewords can be thought of as a length 2m normalised complex vector. The typical error-model for such a
code assumes the occurence of no error, bit-flip, phase-flip, or combined phase-flip then bit-flip error on each
qubit, independently, (errors I,X,Z, and Y , respectively). We introduce the Pauli Matrices, I =

(
1 0

0 1

)
,

X =
(

0 1

1 0

)
, Z =

(
1 0

0 −1

)
, Y =

(
0 −i

i 0

)
which form a linear basis for all 2×2 complex unitary matrices.

Let a quantum code of m qubits be subject to an error, E = (E0, E1, . . . , Em−1), such that Ej ∈ {I,X,Z, Y =
iXZ} acts on qubit j, where i2 = −1. An error from E can be described by the Local Unitary Transform
UE = E0 ⊗ E1 . . . ⊗ Em−1 such that s′ = UEs takes s to the error state s′. The weight of the error vector,
E , is given by wt(E) = |{Ej |Ej 6= I}|, and an [[m, k, d]] QECC can, by definition, detect any error vector of
weight less than d. Any Stabilizer QECC can be represented by a graph over m vertices [33], [14], [37], [18],
[15]. Quantum states with a graphical representation which have a direct interpretation as quadratic boolean
functions were also investigated in [28]. These turn out to be QECCs of dimension k = 0, and therefore
correspond to the graph states recently proposed in [21], [38]. These QECCs also correspond to additive
self-dual codes over GF(4) [3], [20]. The mapping from an additive self-dual code over GF(4) to a graph
can be understood by converting the code generator matrix over GF(4) to an equivalent form, G, such that
G = Γ+ωI, where Γ is a symmetric m×m matrix in GF(2) with zeroes on the diagonal, and ω ∈ GF(4) such
that ω2 +ω+1 = 0. This conversion is always possible if the code is self-orthogonal. Γ is then, simultaneously,
the adjacency matrix for a simple graph that represents the graph state. In this paper we also intepret this
graph state as a quadratic boolean function, f =

∑
j>i Γi,jxixj , where the Γi,j are entries of G. In other

words, we exploit the equivalence of [[m, 0, d]] Stabilizer QECCs [17] to quadratic boolean functions via their
interpretation as simple graphs. Conversely, we interpret a quadratic boolean function as a graph state which,
in turn is a Stabilizer QECC of zero dimension, using the mapping (15). The QECC literature often refers to
stabilizer states more abstractly as eigenvectors of a subset of error operators 4 but, w.l.o.g., we can associate
these eigenvectors with specific states. When the dimension of the QECC is k = 0 the code coincides with a
single quantum state which we interpret in this paper by a quadratic boolean function and, if the distance,
d, of the code is high, the state is relatively robust to errors, implying that the state is highly entangled
[28], [21]. Later in this section we also use the mapping (15) to find non-stabilizer QECCS via non-quadratic
boolean functions. A pure m-partite quantum state is un-entangled if its associated state vector can be fully
decomposed as a tensor product. Otherwise the quantum state is considered to be entangled. There are an
infinite number of metrics to describe the entanglement of an m-partite quantum state just as there are an
infinite number of metrics to describe the properties of an error-correcting code [28], (and, for large enough m,

4 The QECC is defined by finding a subset of error operators such that any codeword in the QECC is a joint eigenvector of all

operators in the subset, i.e. the codeword is ’stabilized’ by this subset of error operators. The minimum distance of the QECC is

then given by the minimum-weight error operator in the subset.
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most of them are intractable). Therefore any single metric is, inevitably, a partial measure. However, in this
paper, we focus on the fixed-aperiodic properties of the state as giving a good indication of the entanglement
of the state - certainly much more useful than just the periodic properties - with high APC Distance indicating
high entanglement.

For |ψ > described by f above, and a ∈ Fm
2 , a = (a0, a1, . . . , am−1), the set of bit-flips, Xa, on |ψ > on

qubits xj , j ∈ {k|ak = 1, 0 ≤ k < m} can be described in terms of f as follows

|ψ >→ Xa(|ψ >) ⇔ f(x) → f(x+ a).

Similarly, for c ∈ Fm
2 , c = (c0, c1, . . . , cm−1), the set of phase-flips, Zc, on |ψ > on qubits xj , j ∈ {k|ck =

1, 0 ≤ k < m} can be described in terms of f as follows

|ψ >→ Zc(|ψ >) ⇔ f(x) → f(x) + c · x.

Therefore any combination of phase-flips followed by bit-flips on |ψ > can be described in terms of f as follows

|ψ >→ XaZc(|ψ >) ⇔ f(x) → f(x+ a) + c · x+ c · a,

with a combined phase-flip then bit-flip occuring at the indices covered by a&c. ZcXa(|ψ >) = −XaZc(|ψ >)
but to simplify the discussion in this paper we ignore post-multiplication by −1 and assume phase-flips are
always performed before bit-flips.

The error-vector, E , describing XaZc(|ψ >), has weight wt(µ), where µ = a+ ā&c (i.e. µ = a OR c). To
ensure that the QECC can detect all errors of weight < d it is necessary and sufficient that, for wt(µ) < d,
all error states, XaZc(|ψ >), are orthogonal to |ψ > with respect to the normal scalar product of vectors. If
this is true then the QECC is an [[m, 0, d]] code.

Theorem 2: For f ∈ Bm, let |ψ > be a [[m, 0, d]] QECC, described by s = 2−
m
2 (−1)f(x). Then f has APC

Distance d. Conversely, if f has APC Distance d then s represents an [[m, 0, d]] QECC, |ψ >.
Proof: See Appendix A

Remark: Theorem 2 holds for f of any algebraic degree, but when f has degree 2 we are considering
stabilizer QECCs. In this case, the error-subset which forms the stabilizer can be identified with the subset
of fixed-aperiodic (as opposed to periodic) propagations that identify all linear structures [13], [7].

As stated earlier, a particularly convenient way to construct QECCs is via additive codes over GF(4). In
this paper we focus on those codes of zero dimension as these relate to single boolean functions. (Higher
dimension codes relate to sets of functions which will be dealt with in future work). Upper-bounds on the
minimum distance of a stabilizer QECC can, for instance, be ascertained from [20]. These bounds depend
on whether the underlying additive self-dual code over GF(4) is of Type I or Type II. For Type I codes, the
minimum distance, dI , for m > 1, satisfies

dI ≤


2bm

6 c+ 1, if m ≡ 0( mod 6)
2bm

6 c+ 3, if m ≡ 5( mod 6)
2bm

6 c+ 2, otherwise.

For Type II codes, the minimum distance, dII , for m > 1, satisfies

dII ≤ 2bm
6
c+ 2.

These upper-bounds translate directly into upper-bounds on the APC Distance for quadratic boolean functions
on m variables.
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C. Spectral Equivalence and the Vertex-Neighbour-Complement (VNC) Operation

Parker and Rijmen [28] observed that quantum states represented by the clique function, f(x) =
∑

i<j xixj ,
and the star function, f(x) =

∑m−1
i=1 x0xi, are equivalent with respect to Local Unitary Transforms (and

further equivalent to the generalised GHZ (Greenberger-Horne-Zeilinger) state). It turns out that, for a
special subset of Local Unitary Transforms, for any pair of boolean functions which are equivalent with
respect to this transform set, the APC Distance remains invariant. This invariance is already known in the
context of QECCs, (i.e. for quadratic boolean functions), but the proof is extended to all boolean functions
in subsection IV-F, where the transform equivalence is described in more detail. 5

We focus here on the quadratic equivalence which has been re-formulated as a graph symmetry by Glynn
[14], [15], where the symmetry operation is referred to as Vertex-Neighbour-Complement (VNC). It was also
described independently by Hein et al. [21] and Van Den Nest et al. [38]. In [31] VNC is explicitly described
via repeated actions of the so-called {I,H,N}m transform set. VNC also has a history in graph theory, where
it is referred to as Local Complementation by Bouchet [2], who identified isotropic systems as being equivalent
with respect to Local Complementation. VNC also translates into the natural equivalence between additive
codes over GF(4) which preserves the weight distribution, and this is the context in which it is presented
by Calderbank et al. [3]. Not surprisingly, isotropic systems and GF(4) additive codes are very similar
structures. The VNC symmetry rule can be described as follows.

Definition 7: If the quadratic monomial xixj occurs in the algebraic normal form of the quadratic boolean
function f , then xi and xj are mutual neighbours in the graph represented by f , as described by the m×m

symmetric adjacency matrix, Γ, where Γi,j = Γj,i = 1 iff xixj occurs in f , and Γi,j = 0 otherwise. For
quadratic f, f ′ ∈ Bm, f and f ′ are in the same VNC orbit if

f ′(x) = f(x) +
∑

j,k∈Na,j 6=k

xjxk ( mod 2), (16)

where Na comprises the neighbours of xa in the graphical representation of f .
In the same way that a Bent function f and its dual, f̃ , are equivalent with respect to a Walsh-Hadamard
Transform [12], so the members of a VNC-orbit represent flat spectra with respect to a certain set of Local
Unitary Transforms as described in subsection IV-F. [31]. Exploiting this generalised Fourier duality, one can
show the following.

Theorem 3: [14], [15] Let f, f ′ ∈ Bm such that f and f ′ are quadratic and in the same VNC orbit. Then

APC Distance(f) = APC Distance(f ′).

For example, the quadratic functions

fh = x0x1 + x0x3 + x0x4 + x1x2 + x1x5 + x2x3 + x2x5 + x3x4 + x4x5,

and
f ′h = x0(x1 + x2 + x3 + x4 + x5) + x1x2 + x2x3 + x3x4 + x4x5 + x5x1,

are in the same orbit and therefore have the same APC distance (of 4). They are the two forms of the [[6, 0, 4]]
hexacode up to graph isomorphism. The graphs associated with these two functions both satisfy a maximum
Independent Set of 2, but the maximum Independent Sets of the clique and star graph, which are two members

5 Note, however, that boolean functions of degree > 2 with APC Distance d do not map to stabilizer QECCs as these functions

no longer map to joint eigenvectors of the error-set. However, one can still interpret the functions as [[m, 0, d]] QECCs, as all

errored-states of error-weight less than d are orthogonal to the unerrored state and, for large d, the quantum state is highly-

entangled.
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of another VNC orbit, are 1 and m− 1 respectively. In general, VNC orbits which only comprise graphs with
low maximum Independent Sets represent quadratic boolean functions with high APC Distance [9], [10].

To illustrate the interpretation of the graph as a GF(4) additive code, consider the hexacode as represented
by the boolean function, fh, above. Then an associated generator matrix for the [6, 26, 4] additive code over
GF(4) can immediately be written as

w10110
1w1001
01w101
101w10
1001w1
01101w

,

where w ∈ GF(4), w2 + w + 1 = 0.
It has been shown by Calderbank et al. (up to m = 5) [3], by Hohn (up to m = 7) [22], by Glynn et al. (up

to m = 9) [15], by Hein et al. (up to m = 7) [21], and by Danielsen (up to m = 12) [10] that, up to graph
isomorphism, the number of VNC-orbits for quadratic boolean functions that represent connected graphs is

m 1 2 3 4 5 6 7 8 9 10 11 12
#orbits 1 1 1 2 4 11 26 101 440 3132 40457 1274068

This sequence exists as sequence A090899 in The On-Line Encylopedia of Integer Sequences [35]. A database
of orbit representatives up to m = 12 can be obtained from http://www.ii.uib.no/˜larsed/vncorbits/.

D. Examples

Consider the following important construction. Let p be a prime integer of the form 4k+ 1. Assign aij = 1
iff j − i is a quadratic residue, mod p, and aij = 0 otherwise. Let f ∈ Bp be a quadratic boolean function
defined by

f(x) =
∑
i<j

aijxixj .

Then f has favourable APC distance. The m ×m symmetric adjacency matrix, Γ, where Γi,j = Γj,i = 1 iff
ai,j = 1, represents the Paley Graph which is well-known in the graph-theoretic literature.

We extend the above construction by ’bordering’ the function, as follows. With f as defined above, let
g ∈ Bp+1 be a quadratic boolean function defined by

g(x) = f(x) + xp

p−1∑
i=0

xi.

Then g has favourable APC distance.
As an example, for p = 5, f(x) = x0x1+x1x2+x2x3+x3x4+x4x0, and g(x) = f(x)+x5(x0+x1+x2+x3+x4).

f has APC distance 3 and g has APC Distance 4. g is unique over the 6-variable quadratics in achieving an
optimal APC Distance of 4. g is the hexacode over GF(4) (a code which is both linear and additive over
GF(4)). g was identified as being a highly-entangled 6-qubit quantum state in [28]. Another example with
p = 29, f has an APC Distance of 11 and g has an APC Distance of 12.

For m = 12 variables the QECC with optimal distance is the dodecacode which maps to a function with
APC Distance 6. Its VNC orbit can be represented by the boolean function

f = 03, 07, 08, 09, 0B, 14, 16, 18, 19, 1A, 25, 26, 27, 2A, 2B, 36, 38, 3A, 3B, 46, 47, 49, 4B, 57, 58, 59, 5A, 69, 7A, 8B,

where ij, kl denotes xixj + xkxl, . . . ,, etc. It is interesting to note that both the hexacode and dodecode can
be represented by graphs which have minimal node degree for every node, namely 3 and 5, these being one

http://www.research.att.com/~njas/sequences/
http://www.ii.uib.no/~larsed/vncorbits/
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less than their respective distances, d. These minimal representations appear to be possible for many optimal
QECCs although not all. In particular, a partial (but significant) search did not reveal a graph with node
degree 11 in the VNC orbit of the graph of the [[30, 0, 12]] QECC.

We are also able to use the VNC orbit to improve the resiliency of our function combined with the addition
of a suitable linear function to the quadratic function identified. This addition of a linear term does not
change the APC. The VNC orbit is particularly useful in this context as the maximum resiliency achievable
can change over the orbit. For example, as discussed previously, there are two versions of the hexacode to
within graph isomorphism - namely fh and f ′h. One of these functions, f ′h, is Bent (i.e. satisfies PC(n)),
and so cannot be resilient for any linear offset. The other function is correlation-immune of order 1 and the
maximum achievable resiliency is 0 by choosing, say, the balanced function, fh + x0. Typically the maximum
achievable resiliency for functions with favourable APC will be low [7].

E. Aperiodic Properties of Boolean Functions of Algebraic Degree > 2

To the best of our knowledge, QECCs represented by boolean functions of degree greater than two have not
been examined in the literature. These will, in general, be non-stabilizer QECCs, as the boolean functions no
longer map to eigenvectors of the error set, so one must be careful how to use these QECCs. However APC
remains well-defined for such functions. We are particularly interested in boolean functions of high degree so
as to avoid potential algebraic attacks. From a quantum standpoint, in general, one may expect the QECC
minimum distance to decrease as algebraic degree rise. We now consider the APC Distance of such functions.
These functions can also be referred to as hypergraph states. Note that Carlet [5] has proposed non-quadratic
boolean functions with favourable EPC properties based on Kerdock and Preparata codes.

An exhaustive computer search, making use of nauty [26], reveals that no boolean function of m = 4 or 5
variables and of degree > 2 satisfies an APC Distance greater than 2. However, there are 24 cubic functions
of m = 6 variables which satisfy an APC Distance of 3. These 24 functions are inequivalent with respect
to symmetries discussed in subsections IX-B and IX-C of Appendix C. For example f = x1x3x5 + x1x2x5 +
x3x4x5+x2x4x5+x0x1x3+x0x1x2+x0x3x4+x0x2x4+x0x4+x0x5+x1x2+x1x4+x2x3+x2x5+x3x4+x3x5+x4x5

satisfies has APC and EPC Distances of 3. By incorporating nauty [26] into a computer search, it was found
that no cubic functions of 6 variables achieve an APC Distance greater than 3. By searching all inequivalent
boolean functions with just one non-quadratic term we found 7-variable and 8-variable functions with APC
Distances 3 and 4, respectively. For example f = x1x3x5+x0x1+x0x2+x1x6+x2x5+x3x4+x3x6+x4x5+x5x6

and f = x0x1x2x3+x0x4+x0x5+x1x4+x1x6+x2x5+x2x6+x3x4+x3x5+x3x6 have APC and EPC Distances
of 3, and f = x0x1x2 + x0x4 + x0x5 + x0x7 + x1x4 + x1x6 + x1x7 + x2x5 + x2x6 + x2x7 + x3x4 + x3x5 + x3x6

and f = x0x1x2x3 +x0x4 +x0x5 +x0x6 +x1x4 +x1x5 +x1x7 +x2x4 +x2x6 +x2x7 +x3x5 +x3x6 +x3x7 have
APC and EPC Distances of 4. These results equal the best distances achievable using quadratic functions.

The Maiorana-McFarland construction [12] is as follows.

f(y, z) = y · λ(z) + g(z), (17)

where f ∈ Br+s, y ∈ F r
2 , z ∈ F s

2 , g(z) ∈ Bs, and λ maps F s
2 to F r

2 . Following [5], the above examples of
7-variable and 8-variable functions can both be described using (17) with λ a linear map and g(z) the non-
quadratic part. We have found, as shown above, functions of this kind with favourable APC but, as pointed
out by Carlet [5], the reliance on g(z) to make the function non-quadratic may lead to cryptanalytic attack.
A more interesting set of functions is obtained by changing λ to a non-linear mapping. Carlet constructs such
functions with favourable EPC in [5], based on nonlinear Kerdock/Preparata mappings. We can, trivially,
use Lemma 1 to state that, for the Kerdock/Preparata-based constructions of [5], the resultant 2m+1-variable
functions satisfy APC(l) of order 2m−1 − 2m/2−1 − 1, with maximum possible l ≤ 5, or APC(l) of order 5
with maximum possible l ≤ 2m−1 − 2m/2−1 − 1. Moreover, using (13), both the EPC and APC Distances for
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such functions are upper-bounded by 2m−1 − 2m/2−1 + 5. From (17), the Maiorana-McFarland construction
is bipartite with a maximum Independent Set of its associated hypergraph being ≥ r. Typically one chooses
r = s, but VNC-orbits for the graphs of the best QECCs maintain a small maximum Independent Set for
every member of the orbit, i.e. r � s, with g(z) an APC-favourable sub-graph. We expect, similarly, that
constructions for boolean functions of algebraic degree > 2 (hypergraphs) with favourable APC should also
have a small Independent Set for their quadratic part, with g(z) constructed recursively in the same way. Over
32 variables the Maiorana-McFarland constructions of Carlet [5] satisfy an APC Distance upper-bounded by
11 and the maximum Independent Set of the quadratic part of the functions is 16. In contrast the 30-variable
function of subsection IV-D satisfies APC Distance 12, and the graph describing this quadratic function has a
maximum Independent Set of only 6. Moreover a partial search of 9779546 functions from within the (huge)
VNC orbit of this 30-variable function did not reveal a maximum Independent Set greater than 7.

F. Orbits of Boolean Functions with respect to the {I,H,N}m Transform Set

We describe how an orbit of boolean functions can be generated such that any two members of the orbit are
spectral ’duals’ with respect to a certain Local Unitary Transform (LUT) taken from a set of transforms called
the {I,H,N}m set (using and refining the terminology introduced by Parker in [29]). The APC Distance is
invariant over this orbit.

For a, b ∈ Fm
2 , define a+̃b such that 0+̃0 = 0, 1+̃0 = 0+̃1 = 1, and 1+̃1 = 2. Moreover, for h ∈ F2 and

c ∈ Z, define ch to be in {0, c}.
Let f ∈ Bm and θ, r, α, e ∈ Fm

2 such that r � θ and α, e � θ̄. Then each pair of values of e and θ describe
one of 3m possible Local Unitary Transforms taken from the so-called {I,H,N}m set, as follows

se,θ(z) = 2
wt(θ)

2

∑
x∈r+Vθ̄

i2(f(x)+α)+̃e, (18)

where z = α + r, i2 = −1, and se,θ ∈ C2m
. In related papers [28], [29], [31] the {I,H,N}m transform set is

described as the set of 3m Local Unitary Transform matrices of size 2m × 2m, constructed from any possible
tensor product combination of the 2×2 unitary matrices I, H, and N , where I =

(
1 0

0 1

)
, H = 1√

2

(
1 1

1 −1

)
,

and N = 1√
2

(
1 i

1 −i

)
, with i2 = −1. In this paper we largely avoid the matrix terminology but retain the

name ”{I,H,N}m”.
If, for a fixed e and θ, se,θ is a flat spectrum, i.e. if |se,θ(z)| = |se,θ(z′)| ∀z 6= z′, then we can write

se,θ(z) = 2
m
2 wge,θ(z),

where ge,θ(z) is a function from Fm
2 to Zm

8 and w8 = 1, w ∈ C.
Definition 8: Let f, f ′ ∈ Bm. Then f and f ′ are in the same {I,H,N}m orbit iff, for some choice of e and

θ, se,θ is a flat spectrum and ge,θ can further be written as

ge,θ(z) = 4f ′(z) + c · z + d mod 8,

where c ∈ Zm
8 , and d ∈ Z8.

The following Theorem has previously been proven for f quadratic but not for general f , which is proven
here. The VNC Symmetry discussed in subsection IV-C is a translation of the quadratic case of this theorem
into graphical operations.

Theorem 4: Let f, f ′ ∈ Bm. If f and f ′ are both in the same {I,H,N}m orbit, then

APC Distance(f ′) = APC Distance(f).
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Proof: The proof relies on two critical observations that we express as Lemmas.
Lemma 2: Let a, b ∈ CN be two length N complex vectors. Let U be an N × N complex unitary (i.e.

invertible) matrix such that a′ = Ua and b′ = Ub. Define orthogonality of vectors a and b with respect to the
scalar product by the statement < a, b >= 0. Then

< a, b >= 0 ⇒ < a′, b′ >= 0.

Let E ∈ {I,X, Y, Z}, as defined in Section IV, be the error vector acting on a 1-qubit quantum state. Then it
can be shown that any transform, T , taken from the {I,H,N} set for m = 1, takes the error set, {I,X, Y, Z}
to itself under conjugation. This is because the {I,H,N} set specifies the Local Clifford Group which is
defined as the group of local unitary matrices that keeps the Pauli set of matrices over a single complex
variable invariant with respect to conjugation [23] (to within a global constant). Explicitly, for T ∈ {I,H,N},
E ′ = TET−1 satisfies, E ′ ∈ {I,X, Y, Z} 6. It follows immediately that the {I,H,N}m transform set, as defined
in (18), keeps E within the Pauli set for any fixed m, and keeps the weight of E invariant. We then arrive at
the following Lemma.

Lemma 3: Let Te,θ ∈ {I,H,N}m and E ∈ {I,X, Y, Z}m. Then

E ′ = Te,θET−1
e,θ ⇒ E ′ ∈ {I,X, Y, Z}m

⇒ wt(E ′) = wt(E)

Let a quantum state of m qubits, |ψ >, be represented by a length 2m vector s ∈ C2m
, where s = 2−

m
2 (−1)f(x).

We can then re-express Theorem 2 as follows

APC Distance(f) = d ⇒ < Es, s >= 0, ∀E|0 < wt(E) < d,

where E ∈ {I,X, Y, Z}m. We wish to show that

APC Distance(f) = d ⇒ < E ′s′, s′ >= 0, ∀E ′|0 < wt(E ′) < d,

where E ′ ∈ {I,X, Y, Z}m, and s′ is any vector that occurs as a spectral output with respect to any transform
taken from the {I,H,N}m set. To do this we note that s = Te,θs

′ for some Te,θ ∈ {I,H,N}m. We now use
Lemma 3 to conjugate E acting on s to E ′ acting on s′. Now we can write < Es, s >= 0 as

< T−1
e,θ E

′Te,θs, T
−1
e,θ Te,θs >= 0

It follows from Lemmas 2 and 3 that

< E ′Te,θs, Te,θs >= 0, ∀E ′|0 < wt(E ′) < d

The theorem follows.
Remark: Note that we have proved the invariance of ’APC Distance’ for any s and s′ in the same orbit
with respect to the {I,H,N}m transform set. So the proof not only holds for boolean functions, f and f ′,
but also more generally for f and f ′ functions from Fm

2 to Z8. More generally still, the proof holds for any s
and s′, even when s and s′ represent non-flat spectra.

We next provide an example of this spectral symmetry for non-quadratic boolean functions, which gener-
alises VNC and uses the flat spectra of a boolean function with respect to the {I,H,N}n transform set to

6 Note that conjugation by H takes X to Z, Z to X, and Y to −Y . Conjugation by N takes X to −iY , Z to X, and Y to −Z.

Conjugation by I takes X to X, Z to Z, and Y to Y .
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generate an orbit of boolean functions with the same APC Distance, as described above. Consider the cubic
boolean function x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x2x4 + x0x5 + x1x3 + x1x5 + x2x4 + x2x5 + x3x4

which has APC Distance 3. Applying the transform technique described above, we obtain 144 flat spectra of
which 20 map to boolean functions. Of these 20, only 3 are inequivalent. These 3 functions are cubic and
have APC Distance and EPC Distance 3. For instance, x0x1x5 + x0x3x5 + x0x4x5 + x0x1 + x0x2 + x0x3 +
x0x5 + x1x2 + x1x3 + x1x4 + x1x5 + x2x5 + x3x4 + x4x5 is in the same orbit and is obtained via the transform
obtained by setting θ = 110110 and e = 001000. Note, however, that no linear offset of a member of this orbit
is balanced, so resiliency cannot be satisfied.

V. Conclusions

We have motivated and characterised aperiodic autocorrelation and APC for a boolean function. In par-
ticular we have equated, for quadratic boolean functions, Aperiodic Propagation Criteria (APC) Distance
with the minimum distance of an associated zero-dimension Quantum Error-Correcting Code. It follows that,
for quantum states which have an interpretation as boolean functions, the quantum entanglement of the
state is partially described by the APC of the function. We highlighted the importance of Vertex-Neighbour-
Complement (VNC) symmetry for APC analysis of quadratic boolean functions, and also gave a generalisation
of VNC to boolean functions of algebraic degree > 2. We presented some results for the APC Distance of
functions of degree > 2 variables and discussed possible forms future boolean constructions might take to
improve APC Distance.

APC as introduced in this paper is also a potential attack scenario. Just as the generalised linear crypt-
analysis of [29] finds substantially higher biases over state-of-the-art S-boxes, the differential ’dual’, as covered
by this paper, finds substantially higher differential biases where, by ’differential’ we here refer to an input
differential ∆x ∈ Fm

2 , and an output binary (truncated) differential ∆y ∈ F2. Appendix D gives results for an
exhaustive search for the worst-case differential biases of given input differential weight, taken over the linear
space of selected state-of-the-art S-boxes. It is evident that significantly higher biases can be obtained by
using aperiodic as opposed to periodic differentials. One should remember that the context in which the S-Box
is used will determine whether a high-bias differential constitutes a weakness for the cipher. For instance,
the 9 × 9 Misty1 S-Box, because it is a quadratic S-box, has a linear space with periodic differential biases
that occur with probability 1.0 for all weights, (i.e. it has linear structures for all weights), but these do not
necessarily constitute a weakness as the S-Box is used in a Feistel structure, and in conjunction with a 7× 7
cubic S-Box. Still, the 7× 7 S-Box exhibits significantly higher aperiodic and fixed-aperiodic biases compared
to periodic biases. These biases may lead to a practical block cipher attack. However, for the typical block
cipher which inputs the key via XOR, one cannot exploit these higher biases by using the standard tech-
nique of piecing together differential trails through successive cipher rounds, as the ’route’ of the trail will be
key-dependent [29], [36]. In other words, although aperiodic and fixed-aperiodic differentials establish much
higher biases across constituent S-Boxes and, by implication, across complete block ciphers, than periodic dif-
ferentials, the location of these biases across multiple rounds is strongly key-dependent. So it may be difficult
to exploit these high biases. Even so, the results of this paper provide an extended theoretical framework
for a boolean function, which suggests a technique where one finds a function with favourable fixed-aperiodic
criteria, then one traverses, either exactly or approximately, through the orbit generated by a set of Local
Unitary Transforms, so as to optimise the function with respect to the Walsh-Hadamard spectral criteria.
The problem of designing an S-box (or block cipher) so that all constituent boolean functions have high APC
Distance is also an interesting challenge, but the stipulation that an S-box is a balanced function from Fm

2

to Fn
2 may limit the achievable APC distance. Note that all S-boxes examined in Appendix D achieve only

APC Distance 1 over the complete linear space of the S-box (in fact most S-boxes are not even designed to
achieve PC(1)). At the end of Table I we have included the worst-case biases for the single quadratic boolean
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function that represents the [[6, 0, 4]] hexacode. By definition, the biases are all 0.5 up to weight 4. However
it is much more constraining - and remains an open problem - to construct a function (S-Box) with output
in Fn

2 , n > 1, such that the low-weight biases of the linear space of the S-Box are all near to 0.5. Finally,
functions with favourable APC Distance automatically have high generalised nonlinearity with respect to the
generalised transform sets discussed by [29] and [31], e.g. with respect to {I,H,N}m. This can be explained
by considering a generalisation of the results of [6] to larger transform sets.
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VII. Appendix A

Proof: (Proposition 2): Proposition 1 of [4] states∑
v∈V ⊥

F(f + x · v) = 2m−kF(fφV ), (19)

where k is the dimension of V . Applying (19) to (5) gives∑
c�µ

Ga,c =
∑
c�µ

F(Daf + c · x) = 2wt(µ)F(DafφVµ̄). (20)

It is further stated in [4] that ∑
v∈V ⊥

F(f + x · v)(−1)k·v = 2m−kF(fφk+V ). (21)

Applying (21) to (3), (5) and (20) gives the result.
Proof: (Theorem 1): First we compute the values of ua,k for k = 0 with π the identity permutation.

Let ua,k[m] denote the values of ua,k for f over m variables. Below are tabulated the values of ua,0[m] and
the associated upper bound on the l of APC(l) inferred from these ua,0[m], for all possible assignments to the
three least significant bits (lsbs) of a, where ∗ means ’don’t care.

a(lsb on the left) ua,0[m] upper bound on l
100 . . . 0 ≤ m

01 ∗ . . . 0 ≤ m

11 ∗ . . . ua,0[m− 1] ≤ (m− 1) + 1 = m

001 . . . 0 ≤ m

101 . . . ua,0[m− 2] ≤ (m− 2) + 1 = m− 1

We are interested in the lowest value of l that we can achieve by suitable assignments to a. From the above
table, the only case where the upper bound on l is lower than m is in the last row of the table. We recursively
assign the lsbs of a according to this last row (e.g. for the second iteration we have a = 10101 . . . and
l ≤ m − 2). By induction one concludes that l = bm

2 c. As f is a quadratic function we can invoke the
symmetry of Lemma 4 in Appendix C to extend the result from ua,0[m] to all ua,k[m]. We further invoke
the permutation symmetry of Lemma 5 to extend the result to all functions f where π is not necessarily the
identity permutation.

Proof: (Theorem 2): Consider all bit-flip and phase-flip errors on |ψ > of weight < d, described by a

and c such that wt(µ) = wt(a) + wt(θ) < d, as discussed previously, where µ = a + ā&c and θ = ā&c. We
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know that XaZc(|ψ >), is orthogonal to |ψ > and this can be interpreted in terms of f by asserting that
Daf + c · x is balanced, ∀a, c such that wt(µ) < d. In other words, from (5), (14), and Definition 4, Ga,c = 0
∀a, c � µ. The first part of the theorem follows from Definition 5. The converse is easily proven.

VIII. Appendix B - Further Spectral Identities

A. Periodic/Negaperiodic Autocorrelation

We here define the periodic/negaperiodic autocorrelation of f , and show how its coefficients are derived
from the Fourier Spectra of Daf , thus allowing us to relate the periodic/negaperiodic autocorrelation with
the aperiodic autocorrelation. The reason we refer to the autocorrelations as ’periodic/negaperiodic’ will be
explained in Proposition 3. Define the periodic/negaperiodic autocorrelation coefficients of f after fixing the
subspace, Vθ, as Ua,e,r,µ, where a, r, µ ∈ Fm

2 , e � a � µ, r � θ, and θ = µ+ a, and θ and a are disjoint. Then

Ua,e,r,µ = 2−wt(θ) ∑
c∈e+Vθ

F(Daf + c · x+ wt(c))(−1)r·c

= 2−wt(θ) ∑
c∈e+Vθ

F(Daf + c · x)(−1)r̄·c . (22)

When µ = a then θ = 0 and there is no subspace fixing, so that (22) simplifies to the computation of the
periodic/negaperiodic autocorrelation coefficients of f , namely Ua,c, where c � a

Ua,c = (−1)wt(c)F(Daf + c · x) c � a. (23)

There are 3m coefficients, Ua,c, c � a, but only 2m complete autocorrelation profiles that we can obtain
from Ua,c as each value, Ua,c, is represented 2wt(ā) times to realise a complete set of 22m autocorrelation
coefficients. Combining (5) with (22) and (23) yields

Ua,e,r,µ = 2−wt(θ) ∑
c∈e+Vθ

Ga,c(−1)r̄·c e � a � µ, r � θ, (24)

and
Ua,c = (−1)wt(c)Ga,c c � a. (25)

Note that the factor of (−1)wt(c) is of no significance in this paper, but we retain it for completeness.
By combining Proposition 2 with (24) and (25) we can now express the fixed-aperiodic (non-modular)

autocorrelation coefficients in terms of the periodic/negaperiodic autocorrelation coefficients, and vice versa,
where e � a � µ, k � µ, θ = a+ µ, and r = k&θ

ua,k,µ = 2−wt(a)
∑

e�a Ua,e,r,µ(−1)k̄·e, k � µ

Ua,e,r,µ =
∑

k�r+Va
ua,k,µ(−1)e·k̄, e � a

(26)

ua,k = 2−wt(a)
∑

c�a Ua,c(−1)k̄·c, k � a

Ua,c =
∑

k�a ua,k(−1)c·k̄, c � a.
(27)

We now explain why (22) and (23) can be viewed as periodic/negaperiodic (modular) metrics.
Proposition 3: Each periodic/negaperiodic autocorrelation of (22) and (23) is specified after fixing a sub-

space (without fixing) by the parameters a, e, r, µ (resp. a, c). For each setting of the parameters, the
coefficients can be calculated using multivariate polynomial multiplications which are periodially modular for
the variables identified by the ’1’ positions of a&ē (resp. a&c̄), and negaperiodically modular for the variables
identified by the ’1’ positions of e (resp. c).

Proof: Let Ua,c be as defined in (23), and let z ∈ Cm
2 . Define v(z), and Qc(z) as follows

v(z) =
∑

x∈F m
2

(−1)f(x)
∏

i∈Zm
zxi
i

Qc(z) =
∑

a∈F m
2
Ua,c

∏
i∈Zm

zai
i .
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Then an expansion verifies the following modular relationship for Qc(z)

Qc(z) = v(z)v(z−1) ( mod
∏

i∈Zm

(z2
i − (−1)ci)).

Qc(z) is the evaluation of a periodic (negaperiodic) multiplication for variable i if ci = 0, (resp. ci = 1).
The above argument then carries over to (22) by first fixing the subspace Vθ, then computing all possible
periodic/negaperiodic multivariate polynomial multiplications over the remaining unfixed subspace.
We can recover the (non-modular) polynomial A(z) of Proposition 1 by applying the Chinese Remainder
Theorem (CRT) to the residue polynomials Qc(z). In summary

A(z) = v(z)v(z−1) = v(z)v(z−1)( mod
∏

i∈Zm

(z4
i − 1)) = CRT({Qc(z)}).

In this way, we obtain an alternative derivation of (27). A similar argument can be used with respect to a
fixed subspace, Vθ, so as to rederive (26).

B. Relationships to the Second Derivative

As Ga,c is the Fourier Spectrum of the first derivative of f , there is a natural relationship between the
Fourier Power Spectra of Ga,c and the second derivative of f , DbDaf , where a, c, b ∈ Fm

2∑
c�µ

|Ga,c|2(−1)c·k = 2wt(µ)
∑

b∈k+Vµ̄

F(DbDaf), k � µ.

Moreover we can use Parseval’s Theorem to establish the following

∑
c�µ

|Ga,c|4 = 2wt(µ)
∑
k�µ

 ∑
b∈k+Vµ̄

F(DbDaf)

2

Combining the above relationship with (6), we can establish the following upper bound on the fixed-aperiodic
sum-of-squares with respect to a after fixing a subspace Vθ, referred to as σa,µ, and defined in (7), in terms of
the second derivative of f

σa,µ ≤ 2−2wt(µ)
∑
k�µ

 ∑
b∈k+Vµ̄

F(DbDaf)

2

.

C. A Generalised Definition of APC

Using the results of this Appendix and Appendix C we are able to generalise (14) as follows

ua,k,µ = 0,∀k � µ ⇔ Ua,e,r,µ = 0,∀e � a,∀r � θ

⇔ Ga,c = 0,∀c � µ ⇔
∑

b∈k+Vµ̄
F(DbDaf) = 0,∀k � µ,

(28)

where a � µ.

IX. Appendix C - Symmetries of Aperiodic Autocorrelation

We summarise some important conditions for simplification of the fixed-aperiodic autocorrelation profile and
and/or symmetry operations that operate on a boolean function and that keep the multiset of fixed-aperiodic
autocorrelation coefficients unchanged to within a multiplicative phase offset and to within a permutation of
the coefficient positions within the autocorrelation profile.
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A. Quadratic Simplification

When deg(f) = 2, a substantial simplification of the fixed-aperiodic autocorrelation profile can be obtained
as follows.

Lemma 4: Define f ∈ Bm where deg(f) = 2. For ua,k,µ as defined in (3) then, for any k′ � µ,

ua,k,µ = ±ua,k′,µ

Proof: The proof is straightforward.
The simplification described by this Lemma significantly reduces the APC analysis for quadratic boolean
functions as we can set k = 0. From Section IV the APC Distance is equivalent to the distance measure
for zero-dimension Quantum Error-Correcting Codes (QECCs). Such QECCs map to quadratic boolean
functions. As QECCs of the stabilizer type are conveniently described by additive codes over GF(4) [3], [33],
[18], [20] then, conversely, quadratic boolean functions with favourable APC can be constructed with relative
ease via additive codes over GF(4). This simplification implicitly exploits the symmetry of Lemma 4.

B. Index Permutation Symmetry (Hypergraph Isomorphism)

Lemma 5: Define f ∈ Bm. Let π be a permutation from Zm to Zm. Let γ be a permutation from Fm
2 to Fm

2

such that, for r ∈ Fm
2 , γ(r) takes ri to rπ(i). For f = f(x0, x1, . . . , xm−1), let f ′ = f(xπ(0), xπ(1), . . . , xπ(m−1)).

Then
ua,k,µ(f ′) = uγ(a),γ(k),γ(µ)(f),

so that both f and f ′ achieve APC(l) of order q.

C. Periodic and Negaperiodic Symmetries

The fixed-aperiodic autocorrelation coefficient magnitudes of a function f ∈ Bm remain unchanged to within
a linear permutation of the indices after periodic and/or negaperiodic shift of the input variables of f . With
γ ∈ Fm

2 define f ′ as a periodic shift of f , where

f ′(x) = f(x+ γ).

Proposition 4: With a, k, γ, µ ∈ Fm
2 and f ′ as defined above, and fixed-aperiodic autocorrelation coefficients

as defined in (3)
ua,k,µ(f) = ua,(k+γ)&µ,µ(f ′), k � µ. (29)

Proof: Using (3)
ua,k,µ(f ′) = F(Daf

′φk+Vµ̄), k � µ

= F(Dafφγ+k+Vµ̄), k � µ.

With k � µ

γ + k + Vµ̄ = (γ&µ+ k) + γ&µ̄+ Vµ̄ = (γ + k)&µ+ (γ&µ̄+ Vµ̄) = (γ + k)&µ+ Vµ̄.

Therefore, after a change of variable k → (k + γ)&µ, we obtain

ua,(k+γ)&µ,µ(f ′) = F(Dfφk+Vµ̄) = ua,k,µ(f), k � µ.
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Similarly, with λ ∈ Fm
2 we define f ′′ as a negaperiodic shift of f , where

f ′′(x) = f(x+ λ) + λ · x+ wt(λ).

Proposition 5: With a, k, λ, µ ∈ Fm
2 , and f ′′ as defined above, and fixed-aperiodic autocorrelation coeffi-

cients as defined in (3)
ua,k,µ(f) = (−1)λ·aua,(k+λ)&µ,µ(f ′′), k � µ. (30)

Proof: Remembering that f ′ is a periodic shift of f , observe that

Daf
′′ = f(x+ λ) + f(x+ λ+ a) + λ · a = Daf

′ + λ · a.

Therefore
ua,k,µ(f ′′) = F(Daf

′′φk+Vµ̄), k � µ

= F(Daf
′φk+Vµ̄ + λ · a), k � µ

= (−1)λ·aF(Daf
′φλ+k+Vµ̄), k � µ.

Substituting k with (k + λ)&µ gives

ua,(k+λ)&µ,µ(f ′′) = (−1)λ·aua,k,µ(f), k � µ,

and the proposition follows.
We can combine the above results for periodic and negaperiodic shift (Propositions 4 and 5) as follows. With
γ, λ ∈ Fm

2 we define fpn as a periodic/negaperiodic shift of f , where

fpn(x) = f(x+ γ) + λ · x+ wt(λ), λ � γ.

Proposition 6: With a, k, γ, λ, µ ∈ Fm
2 and fpn as defined above, and fixed-aperiodic autocorrelation coeffi-

cients as defined in (3)

ua,k,µ(f) = (−1)λ·aua,(k+γ)&µ,µ(fpn), k � µ, λ � γ. (31)

Proof: Combine Propositions 4 and 5.
Corollary 3: For the special case with γ � µ̄ and fpn defined as above

ua,k,µ(f) = ua,k,µ(fpn), k � µ ∈ Fm
2 .

Proof: γ&µ = 0.
Therefore a periodic shift (resp. negaperiodic shift) of f after fixing a subspace Vθ does not change the values
(resp. magnitudes) of the fixed-aperiodic autocorrelation coefficients of f , but may permute them.

Given fpn as defined above, (3) and Proposition 2, we obtain the identities for the periodic/negaperiodic
autocorrelation coefficients given in Lemma 32.

Lemma 6:
Ga,c(f) = (−1)λ·a+γ·cGa,c(fpn), λ � γ, c � µ

Ua,c(f) = (−1)λ·a+γ·cUa,c(fpn), λ � γ, c � a

Ua,e,r,µ(f) = (−1)λ·a+γ·eUa,e,(r+γ&θ),µ(fpn), λ � γ, e � a, r � θ

. (32)
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Proof: For k � µ and λ � γ, and noting that, for c � µ, γ&µ · c = γ · c,

(−1)λ·aua,(k+γ)&µ,µ = 2−wt(µ)(−1)λ·a
∑
c�µ

Ga,c(−1)(k+γ)&·c = 2−wt(µ)(−1)λ·a
∑
c�µ

((−1)γ·cGa,c)(−1)k·c

The results for Ua,c and Ua,e,r,µ follow in a similar way.
Therefore the magnitudes of the periodic/negaperiodic autocorrelation coefficients are unchanged by a periodic
and/or negaperiodic shift of f to within a linear permutation of the indices.

As the magnitudes of ua,k,µ(f), Ua,c(f), and Ua,e,r,µ are invariant to a periodic and/or negaperiodic shift of
f to within a linear permutation, it follows, from (9), Definition 4, and (14) that σa,θ(f), Φ(f), σ(f), and the
APC of f are invariant to periodic and/or negaperiodic shifts of f . We summarise these observations in the
following Corollary.

Corollary 4: For f ∈ Bm, and µ ∈ Fm
2 , a � µ, let fpn be a periodic and/or negaperiodic shift of f . Then

σa,µ(fpn) = σa,µ(f), Φ(fpn) = Φ(f), σ(fpn) = σ(f),
APC(fpn) of order q = APC(f) of order q
APC Distance(fpn) = APC Distance(f).

X. Appendix D - Generalised Differential Biases of State-of-the-Art S-Boxes

In this section we examine the worst-case (truncated) differential bias for a given input differential weight,
with respect to periodic, aperiodic, and fixed-aperiodic autocorrelation, for selected state-of-the-art S-boxes.
More precisely, we consider a function f (S-Box) mapping Fm

2 to Fn
2 , and comprising n m-variable functions,

fi ∈ Bm, 0 ≤ i < n. Then we define the linear space of the S-Box to be the set of functions, {gc | ∀c ∈ Fn
2 },

such that gc = c · f . We then compute, for a given S-Box, the maximum bias over all functions in the
set {gc}. The periodic bias at weight |a| is given by 2m+|pa|

2m+1 , the aperiodic bias at weight |a| is given by
2m−|a|+|ua,k|

2m−|a|+1 , and the fixed-aperiodic bias at weight µ is given by 2m−|µ|+|ua,k,µ|
2m−|µ|+1 , where, for a given differential

weight, periodic bias ≤ aperiodic bias ≤ fixed-aperiodic bias always holds. Table I shows the results. For
example, an exhaustive search of all 256 8-variable boolean functions constructed by linear combinations of
the 8 constituent boolean functions of the AES S-Box reveals that a weight-4 differential can be found with
bias 0.56, 0.94, and 1.00, for periodic, aperiodic, and fixed-aperiodic differentials, respectively.
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linear space Differential Weight

of SBox autocorrelation 1 2 3 4 5 6 7 8 9

AES [8] periodic 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

(8× 8) aperiodic 0.56 0.66 0.81 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.56 0.66 0.81 1.00 1.00 1.00 1.00 1.00

Khazad [32] periodic 0.67 0.67 0.69 0.70 0.67 0.67 0.66 0.63

(8× 8) aperiodic 0.67 0.77 0.94 1.00 1.00 1.00 1.00 1.00

fixed-aperiodic 0.67 0.77 0.94 1.00 1.00 1.00 1.00 1.00

Whirlpool [1] periodic 0.66 0.69 0.67 0.69 0.66 0.67 0.66 0.64

(8× 8) aperiodic 0.66 0.75 0.84 1.00 1.00 1.00 1.00 1.00

fixed-aperiodic 0.66 0.78 0.91 1.00 1.00 1.00 1.00 1.00

Misty1 [25] periodic 0.56 0.56 0.56 0.56 0.56 0.56 0.56

(7× 7) aperiodic 0.56 0.75 0.75 1.00 1.00 1.00 1.00

fixed-aperiodic 0.56 0.75 1.00 1.00 1.00 1.00 1.00

Misty1 periodic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(9× 9) aperiodic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

fixed-aperiodic 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES-1 [27] periodic 0.88 0.81 0.81 0.81 0.75 0.69

(6× 4) aperiodic 0.88 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.88 1.00 1.00 1.00 1.00 1.00

DES-2 periodic 0.94 0.81 0.81 0.81 0.88 0.75

(6× 4) aperiodic 0.94 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.94 1.00 1.00 1.00 1.00 1.00

DES-3 periodic 0.88 0.75 0.81 0.81 0.75 0.69

(6× 4) aperiodic 0.88 0.88 1.00 1.00 1.00 1.00

fixed-aperiodic 0.88 1.00 1.00 1.00 1.00 1.00

DES-4 periodic 1.00 0.75 0.75 1.00 1.00 0.75

(6× 4) aperiodic 1.00 1.00 1.00 1.00 1.00 1.00

fixed-aperiodic 1.00 1.00 1.00 1.00 1.00 1.00

DES-5 periodic 0.81 0.81 0.81 0.81 0.75 0.63

(6× 4) aperiodic 0.81 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.81 1.00 1.00 1.00 1.00 1.00

DES-6 periodic 0.81 0.88 0.81 0.81 0.81 0.69

(6× 4) aperiodic 0.81 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.81 1.00 1.00 1.00 1.00 1.00

DES-7 periodic 0.88 0.88 0.81 0.81 0.81 0.69

(6× 4) aperiodic 0.88 1.00 1.00 1.00 1.00 1.00

fixed-aperiodic 0.88 1.00 1.00 1.00 1.00 1.00

DES-8 periodic 0.88 0.88 0.81 0.81 0.75 0.75

(6× 4) aperiodic 0.88 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.88 1.00 1.00 1.00 1.00 1.00

FDE-1 [34] periodic 0.69 0.88 0.88 0.88 0.75 0.63

(6× 4) aperiodic 0.69 1.00 1.00 1.00 1.00 1.00

fixed-aperiodic 0.69 1.00 1.00 1.00 1.00 1.00

FDE-2 periodic 0.69 0.69 0.75 0.75 0.75 0.63

(6× 4) aperiodic 0.69 0.81 1.00 1.00 1.00 1.00

fixed-aperiodic 0.69 0.88 1.00 1.00 1.00 1.00

FDE-3 periodic 0.75 0.75 0.75 0.69 0.69 0.75

(6× 4) aperiodic 0.75 0.88 1.00 1.00 1.00 1.00

fixed-aperiodic 0.75 0.88 1.00 1.00 1.00 1.00

FDE-4 periodic 0.81 0.75 0.81 0.81 0.75 0.63

(6× 4) aperiodic 0.81 0.88 1.00 1.00 1.00 1.00

fixed-aperiodic 0.81 1.00 1.00 1.00 1.00 1.00

FDE-5 periodic 0.75 0.69 0.75 0.75 0.69 0.69

(6× 4) aperiodic 0.75 0.94 1.00 1.00 1.00 1.00

fixed-aperiodic 0.75 0.94 1.00 1.00 1.00 1.00

FDE-6 periodic 0.75 0.75 0.75 0.75 0.75 0.63

(6× 4) aperiodic 0.75 0.81 1.00 1.00 1.00 1.00

fixed-aperiodic 0.75 0.88 1.00 1.00 1.00 1.00

FDE-7 periodic 0.75 0.75 0.75 0.75 0.69 0.69

(6× 4) aperiodic 0.75 0.88 1.00 1.00 1.00 1.00

fixed-aperiodic 0.75 0.88 1.00 1.00 1.00 1.00

FDE-8 periodic 0.69 0.75 0.75 0.81 0.75 0.63

(6× 4) aperiodic 0.69 0.88 1.00 1.00 1.00 1.00

fixed-aperiodic 0.69 0.88 1.00 1.00 1.00 1.00

[[6,0,4]] periodic 0.50 0.50 0.50 1.00 0.50 0.50

hexacode aperiodic 0.50 0.50 0.50 1.00 0.50 1.00

(single function) fixed-aperiodic 0.50 0.50 0.50 1.00 1.00 1.00

TABLE I
Periodic, Aperiodic, and Fixed-Aperiodic Autocorrelation Biases for Selected S-Boxes
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