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A Framework for the Construction of
Golay Sequences

Frank Fiedler, Jonathan Jedwab, and Matthew G. Parker

Abstract—In 1999 Davis and Jedwab gave an explicit algebraic
normal form for m! · 2

h(m+2) ordered Golay pairs of length 2
m

over Z2h , involving m!/2 · 2
h(m+1) Golay sequences. In 2005

Li and Chu unexpectedly found an additional 1024 length 16
quaternary Golay sequences. Fiedler and Jedwab showed in 2006
that these new Golay sequences exist because of a “cross-over”
of the aperiodic autocorrelation function of certain quaternary
length 8 sequences belonging to Golay pairs, and that they spawn
further new quaternary Golay sequences and pairs of length2m

for m > 4 under Budišin’s 1990 iterative construction.
The total number of Golay sequences and pairs spawned in

this way is counted, and their algebraic normal form is givenex-
plicitly. A framework of constructions is derived in which Turyn’s
1974 product construction, together with several variations, plays
a key role. All previously known Golay sequences and pairs of
length 2

m over Z2h can be obtained directly in explicit algebraic
normal form from this framework. Furthermore, additional
quaternary Golay sequences and pairs of length2m are produced
that cannot be obtained from any other known construction. The
framework generalizes readily to lengths that are not a power of
2, and to alphabets other thanZ2h .

Index Terms—autocorrelation function, algebraic normal form,
complementary, construction, cross-over, Golay sequence, quater-
nary, shared autocorrelation property.

I. I NTRODUCTION

Let H be an even positive integer. Asequence of length
n over ZH is a sequence of valuesa = (a0, a1, . . . , an−1),
where eachai ∈ ZH . Let ξ be a primitiveH-th root of unity
and define theaperiodic autocorrelation functionof a to be

Ca(u) :=

n−1−u
∑

i=0

ξai−ai+u for integeru satisfying0 ≤ u < n.

A pair (a, b) of sequences of lengthn over ZH is called a
Golay complementary pair(often abbreviated toGolay pair)
of lengthn over ZH if

Ca(u) + Cb(u) = 0 for all integeru satisfying0 < u < n.

A sequencea is called aGolay sequenceif it forms a Golay
pair with some sequenceb. The name is in honor of Golay [7],
who introduced this condition for the caseH = 2 in 1949.

This paper is concerned with Golay sequences of length2m

over ZH . Mostly we are interested in the caseH = 2h for
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integerh ≥ 1, and especially in thebinarycaseH = 2 and the
quaternarycaseH = 4. In 1999 Davis and Jedwab [4] gave an
explicit algebraic normal form form! ·2h(m+2) ordered Golay
pairs(a, b) of length2m over Z2h , involving m!/2 · 2h(m+1)

Golay sequences. These pairs are obtained by takingH = 2h

in (1) (see Section II). We will call Golay pairs and sequences
of the form (1)standard.

It was believed for several years that there are no non-
standard Golay sequences of length2m overZ2h , but in 2005
Li and Chu [11] unexpectedly found 1024 length 16 non-
standard quaternary Golay sequences by computer search. Li
and Kao [12] showed that these new sequences arise from
concatenation or interleaving of quaternary length 8 Golay
pairs. In 2006 Fiedler and Jedwab [5] gave a full explanation
of the structure of the new sequences by showing that their
existence depends on a “shared autocorrelation property” of
certain standard quaternary length 8 Golay sequences. This
property had previously been observed in [4] but its signif-
icance had been overlooked. (In hindsight the papers [10]
and [3], which use computer search to determine the number
of non-standard quaternary ordered Golay pairs of length 8
and 16 as 512 and 8192 respectively, also contain clues as to
the existence of the new length 16 Golay sequences; see [5]
for further discussion.) Currently the only known examples
of Golay sequences of length2m over Z2h having the shared
autocorrelation property are those described in [5].

Golay’s foundational paper [8] shows how to construct a bi-
nary Golay pair of length2n by interleaving or concatenating
the sequence elements of a binary Golay pair of lengthn.
The paper [8] also constructs a binary Golay sequence of
length 2m directly using a generalized Boolean sum con-
struction. Budišin [2] showed that this generalized Boolean
sum construction can be realized by iterated interleaving and
concatenation of an initial trivial binary Golay pair of length
1, provided that “gaps” (meaning zero elements) are allowed
in the constructed sequence at intermediate steps. Budišin’s
construction [2] also applies to non-binary Golay pairs of
length 2m, in particular Golay pairs overZ2h . Paterson [14]
showed that the standard Golay sequences havingH = 2h,
that were presented explicitly in [4] as an extension of Go-
lay’s generalized Boolean sum construction, can be obtained
iteratively using Budišin’s construction.

It is then natural to ask: what quaternary Golay sequences
and pairs are obtained when Budišin’s iterative construction is
applied to the 512 non-standard length 8 quaternary ordered
Golay pairs? We know from [5] that the Golay sequences and
pairs of length16, 32, 64, . . . spawned in this way are non-
standard, and that the number of Golay sequences and pairs of
length 16 spawned is 1024 and 8192 respectively (matching
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the counts in [11] and [3] obtained by exhaustive search).
But [5] could not determine the number of quaternary Golay
sequences and pairs of length2m spawned form > 4, even
when the iterative construction is restricted to just interleaving
and concatenation (not allowing gaps in intermediate steps).

The principal objective of this paper is to determine the
number of quaternary Golay sequences and pairs of length2m

(m ≥ 4) obtained by applying Budišin’s iterative construction
to the 512 non-standard length 8 quaternary ordered Golay
pairs, and moreover to find the algebraic normal form of
the constructed sequences and pairs explicitly. Although the
algebraic normal forms appear rather complex when written
out, they completely describe the constructed sequences.

A second objective of the paper is to identify, from the many
known explicit and iterative constructions, a framework from
which all known Golay sequences and pairs of length2m over
Z2h can be obtained in explicit algebraic normal form. The
explicit constructions include Golay’s generalized Boolean
sum construction [8, (13)] and its extension to generalized
Boolean functions by Davis and Jedwab [4]. The iterative
constructions include: Golay’s concatenation and interleaving
of a binary Golay pair [8, (9), (10)]; Golay’s block-interleaving
of two binary Golay pairs [8, (11), (12)]; Budišin’s iterative
construction using permutations and roots of unity [2]; and
Turyn’s product construction for producing a binary Golay
pair from two shorter binary Golay pairs [16, Lemma 5]. We
shall see that, once the standard Golay pairs (1) are given, the
key construction among all of these is Turyn’s, together with
several variations that we shall derive. These variations allow
us to construct directly and explicitly the Golay sequences
and pairs of length2m over Z2h that would be obtained by
applying Budišin’s construction iteratively.

A third objective of this paper is to demonstrate that the
framework described is powerful enough to produce further
Golay sequences and pairs of length2m overZ2h that cannot
be obtained by applying Budišin’s construction iteratively to
a non-standard length 8 quaternary Golay pair.

The rest of the paper is organized in the following way.
Section II introduces further notation and definitions, particu-
larly for algebraic normal form and the shared autocorrelation
property. Section III reviews Turyn’s construction in somede-
tail, because of its importance in our constructive framework.
Section IV develops variations on Turyn’s construction, in
which Golay pairs are used to control the iterative interleaving
and concatenation of other Golay pairs. Section V uses the
constructive framework to determine which Golay sequences
and pairs are spawned by an initial ordered Golay pair(a, b)
of length 2r, and applies this result to the 512 non-standard
quaternary ordered Golay pairs of length 8. Section VI sum-
marizes the results of the paper, clarifies the relationshipto
other work, and lists some open questions.

Figure 1 is a Venn diagram illustrating the intersections of
the constructions described in this paper. For each lemma in
the diagram, the annotations describe restrictions on its use.
Figure 2 is a flowchart showing how the constructed sets of
quaternary Golay sequences are obtained. Table I gives counts
of the number of standard and non-standard quaternary Golay
sequences and quaternary ordered Golay pairs of length2m.

All currently known quaternary Golay sequences and pairs
included in these counts can be obtained via the flowchart
shown in Figure 2.

II. N OTATION AND DEFINITIONS

In this section we introduce some notation and definitions,
particularly for algebraic normal form and the shared auto-
correlation property. Throughout,H will be an even positive
integer andξ will be a primitive H-th root of unity.

As before, a sequence of lengthn overZH is a sequence of
valuesa = (a0, a1, . . . , an−1), where eachai ∈ ZH . In phase
shift keying withH phases, the sequence elementsai represent
data to be communicated, and the sequencea corresponds
to the complex modulated sequence(ξa0 , ξa1 , . . . , ξan−1) of
roots of unity. Thegenerating function associated witha is
the polynomial

A(x) :=

n−1
∑

i=0

ξaixi.

Straightforward manipulation shows that

A(x)A(x−1) = n +

n−1
∑

u=1

Ca(u)x−u +

n−1
∑

u=1

Ca(u)xu,

where bar represents complex conjugation. It follows that if
a, b form a Golay pair of lengthn and A(x), B(x) are the
associated generating functions then

A(x)A(x−1) + B(x)B(x−1) = 2n.

In this case we call(A(x), B(x)) a complementary function
pair. (The converse, that the sequences associated with a com-
plementary function pair form a Golay pair, is true provided
that we work with complex modulated sequencesa, b of arbi-
trary complex numbers, and use the complex modulated defini-
tions Ca(u) :=

∑n−1−u

i=0 aiai+u andA(x) :=
∑n−1

i=0 aix
i for

the aperiodic autocorrelation function and generating function
respectively. Such sequences do not in general correspond to
phase shift keying, and some of their elements may even be 0.
Although our primary interest in this paper is Golay pairs over
ZH , the constructions in Section IV can be generalized to these
Golay pairs of arbitrary complex numbers.)

A sequencea = (a0, . . . , a2m−1) of length 2m over ZH

can be described by means of its algebraic normal form. A
generalized Boolean functionis a functionf : Z

m
2 → ZH . Let

0 ≤ i < 2m and let(i1, . . . , im) be the binary expansion ofi,
wherei1 is the most significant bit. Letfj(x1, . . . , xm) = xj

be the indicator function forij (which is bit j in the binary
representation ofi). The indicator functionsf1, . . . fm give
rise to2m monomials

1,

x1, x2, . . . , xm,

x1x2, x1x3, . . . , xm−1xm,

...

x1x2 · · ·xm.

Multiplication of indicator functions corresponds to the logical
AND operation, and addition corresponds to logical XOR.
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Lemma 5
matrix M is 2t × 2m−t ,

(c, d) is a standard pair

Lemma 4
matrix M is r × 1 (interleaving),

c − d is the lifting of a binary sequence toZH

Lemma 3
matrix M is 1 × s (concatenation),

c − d is the lifting of a binary sequence toZH

Lemma 7
matrix M is 2t × 2m−t ,

(c, d) is a standard pair

Turyn’s construction for
H = 2

Turyn’s construction forH = 2 and
non-standard binary pairs(c, d)

(if such pairs exist)

Fig. 1. Venn diagram for constructions of Golay pairs. Annotations describe restrictions on the use of each lemma.

Since AND and XOR generate all possible truth tables,
every Boolean function can be expressed uniquely as a linear
combination of the above monomials overZ2, and every
generalized Boolean function is a unique linear combination
of the monomials overZH . The resulting polynomial is called
the algebraic normal formof f . With the function f we
associate a sequencef by listing the valuesf(i1, i2, . . . , im)
as (i1, i2, . . . , im) ranges over its2m values in lexicographic
order. In other words, we havef = (a0, a1, . . . , a2m−1)
whereai = f(i1, i2, . . . , im). This implies that the sequence
associated with the sumf + g of two functionsf and g is
the componentwise sum of the sequencesf andg, which we
write as f + g. Similarly, the sequence associated with the
productfg is the componentwise product off andg, which

we write asfg. We will sometimes write a sequence using
a shorthand definition such asf = x1x2, to mean “f is the
sequence associated with the functionf(x1, . . . , xm) = x1x2”
(wherem will be known from context). For example, when
m = 3, we have

f1(x1, x2, x3) = x1 = (0, 0, 0, 0, 1, 1, 1, 1),

f2(x1, x2, x3) = x2 = (0, 0, 1, 1, 0, 0, 1, 1),

(f1f2)(x1, x2, x3) = x1x2= (0, 0, 0, 0, 0, 0, 1, 1).

We write  and to denote the all-one and all-zero sequence
respectively, whose length will be known from context. Note
that some authors use a different labeling convention for the
algebraic normal form.

We define astandard Golay pairof length2m over ZH to
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standard length2m Golay pairs
(Theorem 1)

non-standard length 8 Golay pairs
(Theorem 2)

(a, b) (seed pairs) (controlling pairs)(c, d)
Lemma 5 & Lemma 7

non-standard length2m Golay se-
quences and pairs

(Theorem 10)

(a, b) (seed pairs) (controlling pairs) (c, d)
Lemma 3 & Lemma 4

further non-standard length
2m Golay sequences and
pairs

(Example 6)

տ if c − d is the lifting of a binary sequence toZH

Fig. 2. Flowchart for constructing quaternary length2m Golay sequences and pairs (all inputs and outputs are quaternary)

be a pair of sequences(c, d) having algebraic normal form

c =
H

2

m−1
∑

k=1

xπ(k)xπ(k+1) +

m
∑

k=1

ekxk + e0

d =
H

2

m−1
∑

k=1

xπ(k)xπ(k+1) +

m
∑

k=1

ekxk + e′0 +
H

2
xπ(1)























(1)
for some permutation π of {1, . . . , m} and
e′0, e0, e1, . . . , em ∈ ZH , and we define astandard Golay
sequenceto be a member of a standard Golay pair.

Theorem 1. Let f = H/2 · ∑m−1
k=1 xπ(k)xπ(k+1) +

∑m

k=1 ekxk, whereπ is a permutation of{1, 2, . . . , m} and
e1, e2, . . . , em ∈ ZH . Then the sequence pair

(f + e0 ·  + H/2 · u(xπ(1) + xπ(m)),

f + H/2 · xπ(1) + e′0 ·  + H/2 · u′(xπ(1) + xπ(m)))

is a standard Golay pair of length2m overZH for anye0, e
′
0 ∈

ZH and u, u′ ∈ Z2.

The caseH = 2h of Theorem 1 was given by Davis
and Jedwab [4, Corollary 5]. Paterson [14] showed that the
construction in [4] holds without modification for general
(even)H .

Given a sequencea = (a0, a1, . . . , an−1) of lengthn over
ZH , we define

a∗ := (−an−1,−an−2, . . . ,−a0)

to be the negative reversal ofa. (For the associated complex
modulated sequenceb, the sequenceb∗ is the complex con-
jugate of the reversal ofb. If a is a binary sequence, thena∗

is just the reversal ofa since then0∗ = 0 and1∗ = 1.) Since
Ca∗(u) ≡ Ca(u) (see the proof of [5, Lemma 4]), it follows
that all sequences in the set

E(a) := {a + c ·  | c ∈ ZH} ∪ {a∗ + c ·  | c ∈ ZH}

(which hasH elements ifa∗ = a+c · for somec ∈ ZH , and
2H elements otherwise) have identical aperiodic autocorrela-
tion function. Therefore, if(a, b) is a Golay pair of lengthn
over ZH then so is every element ofE(a) × E(b).

Now, using the relations

xi
∗ = xi −  and (xixj)

∗
= −xixj + xi + xj − , (2)

it follows from (1) that a standard Golay sequencec of length
2m over ZH satisfies

c∗ = c + H/2 · (xπ(1) + xπ(m)) + e ·  for somee ∈ ZH ,

so that

E(c) =

{

H

2

m−1
∑

k=1

xπ(k)xπ(k+1) +

m
∑

k=1

ekxk + e0

+
H

2
u(xπ(1) + xπ(m)) | e0 ∈ ZH , u ∈ Z2

}

. (3)

Therefore Theorem 1 describes the setE(c)×E(d) of Golay
pairs derived from a single standard Golay pair(c, d).

It is possible that two sequencesa, a′ of lengthn overZH

have identical aperiodic autocorrelation function, even though
E(a) 6= E(a′). In this case we say that the pair(a, a′) has
the shared autocorrelation property. Suppose that(a, b) and
(a′, b′) are standard Golay pairs, whereE(a) 6= E(a′) and
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E(b) 6= E(b′). If the pair (a, a′) has the shared autocorre-
lation property, then so does the pair(b, b′); and moreover
(a, b′) and (a′, b) both form non-standard Golay pairs by a
“cross-over” of their autocorrelation functions, as illustrated
in Figure 3. The only known examples of this forH = 2h

can be summarized in Theorem 2.

Theorem 2 ([5]). For any u0, u1, u2, u3 ∈ Z2 and k0, k1 ∈
Z4, the length8 quaternary Golay sequences

a = 2(x1x2 + x2x3) + 2u0(x1 + x3) + 2u2x3

+u3(x3 + 2x2) + k0

b = 2(x1x2 + x1x3) + x2 + x3 + 2u1(x2 + x3)
+2u2x2 + u3(x3 + 2x2) + k1















form a non-standard Golay pair, by a cross-over of their
autocorrelation functions.

Theorem 2 involves2 · 23 · 4 = 64 distinct quaternary
sequences which form2 · 24 · 42 = 512 non-standard ordered
Golay pairs of length 8. [5] demonstrates that all of these
Golay pairs can be derived from a single unordered pair
of length 8 quaternary Golay sequences having the shared
autocorrelation property, for example

2(x1x2 + x2x3) and 2(x1x2 + x1x3) + 3x2 + x3. (4)

For h > 2, each quaternary Golay pair in Theorem 2
can be mapped to a Golay pair overZ2h having the same
complex modulated values, a process known aslifting (for
example, multiplication of each sequence element by 8 givesa
Golay pair overZ32). While these liftings technically provide
further examples of standard Golay sequences of length2m

forming a non-standard Golay pair by a cross-over of their
autocorrelation functions, we consider them to be essentially
the same as the examples of Theorem 2. By Corollary 2 of [5],
a Golay pair(a, b) of length n over ZH can be mapped to
another Golay pair by means of the linear transformation given
by adding the sequence(0, c, 2c, 3c, . . . (n − 1)c) to both a

and b for any c ∈ ZH , but we likewise regard these linear
transformations of the Golay pairs of Theorem 2 as giving
essentially the same pairs.

Our constructions are conveniently described using the
matrix notation of Borwein and Ferguson [1]; Paterson [14]
used an alternative notation. LetM be anr × s matrix where
each entry is a sequence of lengthn overZH . We regardM as
anr×sn matrix with entries fromZH , which we read column
by column to obtain a new sequence of lengthrsn over ZH .
Thus the new sequence is the interleaving ofr rows, where
the entries in each row are the elements in the concatenation
of the s sequences in that row. For example, let

a = (0, 1, 2, 1)

b = (0, 1, 0, 3)

be quaternary sequences. Then the length 16 quaternary se-
quence

(0, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 3, 0, 2, 3, 1)

is obtained from the matrix

M =

[

(a + ) (b + )
(a + ) (b + 2 · )

]

=

[

(0, 1, 2, 1) (0, 1, 0, 3)
(0, 1, 2, 1) (2, 3, 2, 1)

]

by reading the entries ofM column by column. We will
present all our constructions in matrix form, using this reading
convention for the constructed sequences.

III. T URYN’ S CONSTRUCTION

In this section we review Turyn’s construction [16,
Lemma 5] in some detail, because of its importance in our
constructive framework. We shall illustrate how to convertthe
construction from the form given by Turyn into the matrix
notation described in Section II.

Let V = {v(j) | 1 ≤ j ≤ k} be a set ofk orthonormal
vectors. Turyn defined ak-symbolδ code of lengthm to be
a vector sequenceS = (s0, s1, . . . , sm−1), with si ∈ V or
−si ∈ V for eachi, such that

m−1−u
∑

i=0

si • si+u = 0 for all u satisfying0 < u < m,

where • represents the dot product of vectors. A2-symbol
δ code constructed from the orthonormal “symbols”v(1) :=

1√
2

[

1
1

]

and v(2) := 1√
2

[

1
−1

]

corresponds to a complex

modulated binary Golay pair(c, d). This correspondence is
given by forming the complex modulated binary sequencec

from the first components of the symbols±v(1) and±v(2) in
the vector sequenceS, and likewise forming the sequenced
from the second components. Thus, the occurrence of±v(1)

corresponds toci = di, and the occurrence of±v(2) corre-
sponds toci 6= di. For example, the2-symbolδ code

S = (+v(1), +v(1), +v(2),−v(2))

=
1√
2

([

1
1

]

,

[

1
1

]

,

[

1
−1

]

,

[

−1
1

])

corresponds to the sequences1√
2
c, 1√

2
d, where

c = (1, 1, 1,−1),

d = (1, 1,−1, 1),

and (c, d) form a complex modulated binary Golay pair
(having symbols from{1,−1} rather than fromZ2). (The
definition of a 2-symbolδ code and its correspondence with
a complex modulated binary Golay pair was given prior
to [16] by Welti [17], using the name “quaternary code”.)
Turyn proved there exists ak-symbolδ code of lengthm1m2

for even k, provided that there exists ak-symbol δ code
of length m1 and a2-symbol δ code of lengthm2. In the
casek = 2, page 320 of [16] (after setting(a, b, c, d) =
(A,−B∗, X, Y ) and recalling thatB∗ represents the complex
conjugate of the reversal of a complex modulated sequenceB)
gives the following construction for complex modulated binary
Golay pairs. Let(a, b) and (c, d) be complex modulated
binary Golay pairs of lengthn ands respectively, and letS be
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E(b) E(b′)

E(a) E(a′)

complementary
autocorrelation

function

identical
autocorrelation

function

�
�

�
�

�
�

�
�

�
�

�
�Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q

cross-over of
autocorrelation

functions

Fig. 3. Cross-over of autocorrelation functions for Golay pairs (a, b) and (a′, b′), whereE(a) 6= E(a′) andE(b) 6= E(b′)

the 2-symbolδ code corresponding to(c, d) via the symbols
v(1) and v(2). Construct a sequenceS′ consisting of vectors

±v(3) := ± 1
a·a+b·b

[

a

−b∗

]

and±v(4) := ± 1
a·a+b·b

[

b

a∗

]

by

replacing every occurrence of±v(1) (ci = di) in S with ±v(3),
and every occurrence of±v(2) (ci 6= di) by ±v(4). ThenS′ is
a 2-symbolδ code of lengthsn. For the complex modulated
binary example above we get

S′ = (+v(3), +v(3), +v(4),−v(4))

=
1

a · a + b · b

([

a

−b∗

]

,

[

a

−b∗

]

,

[

b

a∗

]

,

[

−b

−a∗

])

.

Switching to theZ2 form for binary sequences, this example
shows that if(a, b) is a binary Golay pair of lengthn over
Z2 then

f =
[

(a + ) (a + ) (b + ) (b + 1 · )
]

forms a binary Golay pair of length4n with

g =
[

(b∗ + 1 · ) (b∗ + 1 · ) (a∗ + ) (a∗ + 1 · )
]

.

Sinceg∗ +1 · has an identical autocorrelation function tog,
this implies thatf also forms a binary Golay pair with

g∗ + 1 ·  =
[

(a + ) (a + 1 · ) (b + ) (b + )
]

.

We consider it easier to work with the pair(f , g∗ + 1 · )
than the pair(f , g) suggested by [16]. The reason is thatf

and g∗ + 1 ·  are both obtained through concatenation of
the sequences (regarded as blocks) of the binary Golay pair
(a, b). Moreover the sequencesc andd∗ of lengths over Z2

can be recognized in the forms forf and g∗ + 1 · , while
the placement ofa or b in f andg∗ + 1 ·  depends only on
the positions at whichc andd coincide. This result is a key
construction for Golay pairs which we will present in more
general form in Lemma 3.

The description on page 320 of [16] involves a non-
standard interpretation of the Kronecker product. With the
standard Kronecker product, the constructed sequencesf and
g∗+1 · involve the interleaving rather than the concatenation
of sequences. We will present this variation in more general

form in Lemma 4. We regard both interpretations (namely the
caseH = 2 of Lemmas 3 and 4) as “Turyn’s construction”.

Page 320 of [16] contains, in addition to the formula
explained above fork = 2, an algorithmic description of the
construction fork-symbolδ codes for generalk. In the cases
k > 2 these codes do not correspond to complex modulated
Golay pairs, but we found the algorithmic description useful
in determining the form of Lemmas 3 and 4 for generalH .

IV. CONSTRUCTIVE FRAMEWORK

In this section we develop variations on Turyn’s construc-
tion, in which Golay pairs(c, d) are used to control the
creation of new Golay pairs(f , g) from an arbitrary Golay
pair (a, b). The constuctions will be presented using the matrix
notation introduced in Section II. The controlling pair(c, d)
need not be binary; it is sufficient thatc−d is the lifting of a
binary sequence toZH . As throughout,H is an even positive
integer andξ is a primitiveH-th root of unity.

A. Two variations on Turyn’s construction

In this subsection we present two variations on Turyn’s
construction. We begin with the first variation, in which the
matrices determiningf andg have size1 × s so thatf and
g are each the concatenation ofs sequences.

Lemma 3. Let (a, b) be a Golay pair of lengthn over ZH .
Let c = (c0, c1, . . . , cs−1) and d = (d0, d1, . . . , ds−1) be a
Golay pair of lengths over ZH for which c− d is the lifting
of a binary sequence toZH . Define lengthn sequences

δ(i) :=

{

a + ci ·  if ci = di

b + ci ·  if ci 6= di,

δ′(i) :=

{

a + d∗i ·  if d∗i 6= c∗i
b + d∗i ·  if d∗i = c∗i ,

whered∗i := (d∗)i. Then the sequencef obtained from the
1 × s matrix

M :=
[

δ(0) δ(1) · · · δ(s − 1)
]
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forms a Golay pair of lengthsn over ZH with the sequence
g obtained from the1 × s matrix

M ′ :=
[

δ′(0) δ′(1) · · · δ′(s − 1)
]

.

Proof: f and g are clearly sequences of lengthsn
over ZH . Let A(x), B(x), C(x), D(x), C∗(x), and D∗(x)
denote the generating function associated witha, b, c, d, c∗,
and d∗, respectively. For eachi, by assumptiondi = ci or
di = ci+H/2. Therefore the coefficient ofxi in C(x)+D(x)
is 2ξci if ci = di and 0 otherwise; and the coefficient ofxi

in C(x) − D(x) is 2ξci if ci 6= di and 0 otherwise. So the
generating function associated withf is

F (x) = A(x)
C(xn) + D(xn)

2
+ B(x)

C(xn) − D(xn)

2
,

and similarly the generating function associated withg is

G(x) = A(x)
D∗(xn) − C∗(xn)

2
+ B(x)

D∗(xn) + C∗(xn)

2
.

But for any generating functionsY (x), Z(x) associated with
sequences of the same length, straightforward manipulation
shows thatY ∗(x)Z∗(x−1) = Y (x−1)Z(x). It follows that

F (x)F (x−1) + G(x)G(x−1) = 2sn,

so (f , g) form a Golay pair.
For example, the quaternary sequences

a = (0, 1, 2, 1)
b = (0, 1, 0, 3)

}

(5)

form a Golay pair, and the quaternary sequences

c = (0, 0, 0, 2)
d = (0, 0, 2, 0)

}

(6)

form a Golay pair for whichc − d = (0, 0, 2, 2) is the lifting
of a binary sequence toZ4. By Lemma 3, the sequences

f = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 3, 2, 3, 2, 1)

g = (0, 1, 2, 1, 2, 3, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3)

obtained from the respective matrices

M =
[

(a + ) (a + ) (b + ) (b + 2 · )
]

M ′ =
[

(a + ) (a + 2 · ) (b + ) (b + )
]

then form a quaternary Golay pair of length 16.
In the special cases = 2 and c = (0, H/2), d =

(0, 0) of Lemma 3, the constructed sequences aref =
[

a (b + H/2 · )
]

and g =
[

a b
]

. This is Golay’s con-
catenation construction [8, (9)].

We next present the second variation on Turyn’s construc-
tion, in which the matrices determiningf and g have size
r×1 so thatf andg are each the interleaving ofr sequences.

Lemma 4. Let (a, b) be a Golay pair of lengthn over ZH .
Let c = (c0, c1, . . . , cr−1) and d = (d0, d1, . . . , dr−1) be a

Golay pair of lengthr over ZH for which c− d is the lifting
of a binary sequence toZH . Define lengthn sequences

δ(i) :=

{

a + ci ·  if ci = di

b + ci ·  if ci 6= di,

δ′(i) :=

{

a + d∗i ·  if d∗i 6= c∗i
b + d∗i ·  if d∗i = c∗i ,

whered∗i := (d∗)i. Then the sequencef obtained from the
r × 1 matrix

M :=











δ(0)
δ(1)

...
δ(r − 1)











forms a Golay pair of lengthrn over ZH with the sequence
g obtained from ther × 1 matrix

M ′ :=











δ′(0)
δ′(1)

...
δ′(r − 1)











.

Proof: The proof is similar to that of Lemma 3. The
generating functions associated withf andg are

F (x) = A(xr)
C(x) + D(x)

2
+ B(xr)

C(x) − D(x)

2

G(x) = A(xr)
D∗(x) − C∗(x)

2
+ B(xr)

D∗(x) + C∗(x)

2
,

respectively, and these functions form a complementary pair.

For example, consider again the Golay pairs(a, b) and
(c, d) in (5) and (6) respectively. By Lemma 4, the sequences

f ′ = (0, 0, 0, 2, 1, 1, 1, 3, 2, 2, 0, 2, 1, 1, 3, 1)

g′ = (0, 2, 0, 0, 1, 3, 1, 1, 2, 0, 0, 0, 1, 3, 3, 3)

obtained from the respective matrices

M =









(a + )
(a + )
(b + )

(b + 2 · )









=









(0, 1, 2, 1)
(0, 1, 2, 1)
(0, 1, 0, 3)
(2, 3, 2, 1)









M ′ =









(a + )
(a + 2 · )
(b + )
(b + )









=









(0, 1, 2, 1)
(2, 3, 0, 3)
(0, 1, 0, 3)
(0, 1, 0, 3)









form a quaternary Golay pair of length 16.
In the special caser = 2 and c = (0, H/2), d = (0, 0)

of Lemma 4, the constructed sequencef is the elementwise
interleaving ofa andb + H/2 · , andg is the elementwise
interleaving ofa andb. This is Golay’s interleaving construc-
tion [8, (10)].

We will refer to the pair(a, b) of Lemmas 3 and 4 (and
later Lemmas 5 and 7) as theseed pair, and to(c, d) as the
controlling pair. To emphasize that Lemmas 3 and 4 are not
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restricted to Golay pairs whose length is a power of 2, for
example let(a, b) be the quaternary Golay pair of length 3
with a = (0, 0, 2) and b = (0, 1, 0), and let (c, d) be the
quaternary Golay pair of length 6 withc = (0, 0, 2, 0, 1, 0)
andd = (0, 0, 2, 2, 3, 2). Then the sequencef given by

[(a + ) (a + ) (a + 2 · ) (b + ) (b + 1 · ) (b + )]

= (0, 0, 2, 0, 0, 2, 2, 2, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0)

is a quaternary Golay sequence of length 18 by Lemma 3, and
the sequencef ′ given by
















(a + )
(a + )

(a + 2 · )
(b + )

(b + 1 · )
(b + )

















= (0, 0, 2, 0, 1, 0, 0, 0, 2, 1, 2, 1, 2, 2, 0, 0, 1, 0)

is a quaternary Golay sequence of length 18 by Lemma 4.
Since there are binary Golay pairs of length 2, 10 [8] and
26 [9], by repeated application of Lemmas 3 and 4 we can
similarly construct quaternary Golay pairs for a variety of
lengths that are not powers of 2, for example length3 ·103 ·24

or 6 · 262 · 10 · 22.
Lemma 3 can easily be modified to the case of complex

modulated sequencesa, b, c, d of arbitrary complex num-
bers, using the complex modulated definition of aperiodic
autocorrelation function and generating function mentioned in
Section II. The condition onc, d is that, for eachi, ci = di

or ci = −di. Eachδ(i) is then defined to becia if ci = di,
andcib if ci = −di; the definition ofδ′(i) is similar. The rest
of the proof resembles that of Lemma 3, and in particular the
generating functionsF (x) and G(x) are given by the same
equations. Lemma 4 can likewise be modified for sequences
of arbitrary complex numbers.

The construction of Lemmas 3 and 4 is governed by
matrices consisting of a single row and a single column
respectively. In Lemma 5 we shall present a further variation
of Turyn’s construction in which the matrices have the more
general size2t×2m−t for any integert satisfying0 ≤ t ≤ m.
In exchange for this additional freedom, the controlling Golay
pair (c, d) will be restricted to be standard (and, in particular,
of length2m).

B. Budišin’s construction

In this subsection we describe Budišin’s iterative construc-
tion for a standard Golay pair from an initial Golay pair of
length1, in preparation for the proof of Lemma 5.

Let c = (c0, c1, . . . , c2m−1) and d = (d0, d1, . . . , d2m−1)
be a standard Golay pair of length2m over ZH , sat-
isfying (1) for some permutationπ of {1, . . . , m} and
e′0, e0, e1, . . . , em ∈ ZH ; assume by suitable choice ofe′0 that
c0 = d∗0. Budišin’s construction produces the standard Golay
pair (c, d∗) of length2m iteratively from the initial Golay pair
((c0), (c0)) of length 1. At step 0, form the complementary
function pair

C(0)(x) := ξc0

D∗(0)(x) := ξc0 .

At step ℓ + 1 (for 0 ≤ ℓ < m), construct the complementary
function pair

C(ℓ+1)(x) := C(ℓ)(x) + ξeπ(ℓ+1)D∗(ℓ)(x)x2m−π(ℓ+1)

D∗(ℓ+1)(x) := C(ℓ)(x) − ξeπ(ℓ+1)D∗(ℓ)(x)x2m−π(ℓ+1)

}

.

(7)
ThenC(m)(x) andD∗(m)(x) are the generating function for
c andd∗ respectively.

We can view the sequence elements ofc and d∗ as being
filled in at stepℓ + 1 to form sequencesc(ℓ+1) and d∗(ℓ+1)

corresponding toC(ℓ+1)(x) and D∗(ℓ+1)(x) respectively. In
this process the sequence elements ofc do not change once
filled in, whereas the sequence elements ofd∗ are finalized
only at the last step. (In [2], the sequence(ξeπ(1) , . . . , ξeπ(m))
is called theW -vector, and the sequence(m−π(1), . . . , m−
π(m)) is called the permutation vectorP . We have modified
the initial complementary function pair trivially, from the pair
((1), (1)) specified in [2] to the pair((ξc0), (ξc0)).)

For example, take H = 4, m = 4,
(π(1), π(2), π(3), π(4)) = (3, 4, 1, 2), (e1, e2, e3, e4) =
(3, 0, 2, 1), and (e0, e

′
0) = (0, 2) in (1) to give the standard

length 16 quaternary Golay pair

c = 2(x3x4 + x4x1 + x1x2) + 3x1 + 2x3 + x4

= (0, 1, 2, 1, 0, 1, 2, 1, 3, 2, 1, 2, 1, 0, 3, 0)

d = 2(x3x4 + x4x1 + x1x2) + 3x1 + x4 + 2

= (2, 3, 2, 1, 2, 3, 2, 1, 1, 0, 1, 2, 3, 2, 3, 0)

that satisfiesc0 = d∗0. We shall now construct the pair
(c, d∗) using Budišin’s construction. At stepℓ + 1 we
add to (and subtract from)C(ℓ)(x) a “shift” of the term
ξeπ(ℓ+1)D∗(ℓ)(x) by x2m−π(ℓ+1)

, according to (7). Using
the values(ξeπ(1) , ξeπ(2) , ξeπ(3) , ξeπ(4)) = (ξ2, ξ1, ξ3, ξ0) and
(x2m−π(1)

, x2m−π(2)

, x2m−π(3)

, x2m−π(4)

) = (x2, x1, x8, x4),
we obtain

c(0) = (0 · · · · · · · · · · · · · · ·)
d∗(0) = (0 · · · · · · · · · · · · · · ·)
c(1) = (0 · 2 · · · · · · · · · · · · ·)

d∗(1) = (0 · 0 · · · · · · · · · · · · ·)
c(2) = (0 1 2 1 · · · · · · · · · · · ·)

d∗(2) = (0 3 2 3 · · · · · · · · · · · ·)
c(3) = (0 1 2 1 · · · · 3 2 1 2 · · · ·)

d∗(3) = (0 1 2 1 · · · · 1 0 3 0 · · · ·)
c = c(4) = (0 1 2 1 0 1 2 1 3 2 1 2 1 0 3 0)

d∗ = d∗(4) = (0 1 2 1 2 3 0 3 3 2 1 2 3 2 1 2).

C. A third variation on Turyn’s construction

In this subsection we give a third variation on Turyn’s
construction, Lemma 5, in which the matrices determining
the constructed Golay pair (f , g) have size2t × 2m−t for any
integert satisfying0 ≤ t ≤ m. To prove the correctness of this
construction we shall modify Budišin’s iterative construction
of Section IV-B, replacing the initial Golay pair((c0), (c0))
by an arbitrary Golay pair(a + c0 · , b + c0 · ). The proof
indicates that Budišin’s construction can itself be recast to
resemble Turyn’s construction. (At the end of this subsection
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we shall show that the conditions in Lemma 5 involving the
variableiπ(1) have an alternative formulation in terms of the
sequence elementsci and di, similar to those appearing in
Lemmas 3 and 4.)

We firstly illustrate the construction by means of an example
with m = 4 and t = 2, which is based on the example
given in Section IV-B. This example is intended to be read
in conjunction with the proof of Lemma 5:

M (0) =









(a + ) · · ·
· · · ·
· · · ·
· · · ·









M ′(0) =









(b + ) · · ·
· · · ·
· · · ·
· · · ·









M (1) =









(a + ) · · ·
· · · ·

(b + 2 · ) · · ·
· · · ·









M ′(1) =









(a + ) · · ·
· · · ·

(b + ) · · ·
· · · ·









M (2) =









(a + ) · · ·
(a + 1 · ) · · ·
(b + 2 · ) · · ·
(b + 1 · ) · · ·









M ′(2) =









(a + ) · · ·
(a + 3 · ) · · ·
(b + 2 · ) · · ·
(b + 3 · ) · · ·









M (3) =









(a + ) · (a + 3 · ) ·
(a + 1 · ) · (a + 2 · ) ·
(b + 2 · ) · (b + 1 · ) ·
(b + 1 · ) · (b + 2 · ) ·









M ′(3) =









(a + ) · (a + 1 · ) ·
(a + 1 · ) · (a + ) ·
(b + 2 · ) · (b + 3 · ) ·
(b + 1 · ) · (b + ) ·









M (4) =









(a + ) (a + ) (a + 3 · ) (a + 1 · )
(a + 1 · ) (a + 1 · ) (a + 2 · ) (a + )
(b + 2 · ) (b + 2 · ) (b + 1 · ) (b + 3 · )
(b + 1 · ) (b + 1 · ) (b + 2 · ) (b + )









M ′(4) =









(a + ) (a + 2 · ) (a + 3 · ) (a + 3 · )
(a + 1 · ) (a + 3 · ) (a + 2 · ) (a + 2 · )
(b + 2 · ) (b + ) (b + 1 · ) (b + 1 · )
(b + 1 · ) (b + 3 · ) (b + 2 · ) (b + 2 · )









,

andM = M (4) andM ′ = M ′(4).

Lemma 5. Let (a, b) be a Golay pair of lengthn over ZH .
Let c = (c0, c1, . . . , c2m−1) and d = (d0, d1, . . . , d2m−1) be
a standard Golay pair of length2m over ZH , satisfying(1)
for some permutationπ of {1, . . . , m}. Write (i1, i2, . . . , im)

for the binary representation of the integeri in the range0 ≤
i < 2m, and define lengthn sequences

δ(i) :=

{

a + ci ·  if iπ(1) = 0

b + ci ·  if iπ(1) = 1,

δ′(i) :=

{

a + d∗i ·  if iπ(1) = 0

b + d∗i ·  if iπ(1) = 1.

Then, for any integert satisfying0 ≤ t ≤ m, the sequencef
obtained from the2t × 2m−t matrix

M :=











δ(0) δ(2t) · · · δ(2m − 2t)
δ(1) δ(2t + 1)

...
. . .

...
δ(2t − 1) δ(2 · 2t − 1) · · · δ(2m − 1)











forms a Golay pair of length2mn overZH with the sequence
g obtained from the2t × 2m−t matrix

M ′ :=











δ′(0) δ′(2t) · · · δ′(2m − 2t)
δ′(1) δ′(2t + 1)

...
. . .

...
δ′(2t − 1) δ′(2 · 2t − 1) · · · δ′(2m − 1)











.

Proof: We may assume thatc0 = d∗0, by replacingd by
d+e · for somee ∈ ZH if necessary: the pair(c, d+e ·) is
still a standard Golay pair, and the constructed pair(f , g−e·)
is a Golay pair if and only if(f , g) is. LetA(x), B(x), F (x),
and G(x) denote the generating function associated witha,
b, f , andg, respectively. We shall construct the Golay pair
(f , g) iteratively from the initial Golay pair(a + c0 · , b +
c0 · ), by mimicking Budišin’s construction of Section IV-B
for the standard Golay pair(c, d∗) from the initial Golay pair
((c0), (c0)) of length 1.

We can view the entries of the matricesM and M ′

(corresponding to the sequencesf andg respectively) as being
filled in by reference to (7). At stepℓ+1 (for 0 ≤ ℓ < m) we
fill in all the sequencesδ(i) andδ′(i) for which the coefficient
of xi in C(ℓ+1)(x) (and therefore inD∗(ℓ+1)(x)) is nonzero,
to form matricesM (ℓ+1) and M ′(ℓ+1). The entries forM
do not change once filled in, whereas the entries forM ′

are finalized only at the last step. We shall show that the
generating functionsF (ℓ+1)(x) andG(ℓ+1)(x) corresponding
to M (ℓ+1) andM ′(ℓ+1) form a complementary function pair,
and complete the proof by showing thatF (m)(x) = F (x) and
G(m)(x) = G(x).

At step 0 we set

F (0)(x) := A(x2t

) · ξc0

G(0)(x) := B(x2t

) · ξc0 .

Since(a+c0 ·, b+c0 ·) is a Golay pair,(F (0)(x), G(0)(x))
is a complementary function pair. At step 1 we mimic the
operations that yieldedC(1)(x) andD∗(1)(x) in Section IV-B,
by adding to (and subtracting from)F (0)(x) an appropriate
“shift” of the term ξeπ(1)G(0)(x) by somexi. The resulting
functions areF (1)(x) and G(1)(x). The shift byx2m−π(1)

in
the construction ofC(1)(x) and D∗(1)(x) corresponds to a
shift to the entry in rowk and columnj of the matricesM
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andM ′ for which 2m−π(1) = 2tj + k, and the adjusted shift
for F (1)(x) and G(1)(x) is x2tnj+k since each matrix entry
contains a sequence of lengthn. By construction ofc andd∗

from (7),F (0)(x) andξeπ(1)G(0)(x)x2tnj+k have no common
support, and we obtain the two generating functions

F (1)(x) := F (0)(x) + ξeπ(1)G(0)(x)x2tnj+k

G(1)(x) := F (0)(x) − ξeπ(1)G(0)(x)x2tnj+k.

Routine calculation shows that

F (1)(x)F (1)(x−1) + G(1)(x)G(1)(x−1)

= 2
(

F (0)(x)F (0)(x−1) + G(0)(x)G(0)(x−1)
)

,

and so(F (1)(x), G(1)(x)) is a complementary function pair.
Since bitπ(1) of 0 is 0, and bitπ(1) of 2m−π(1) is 1, we have

δ(0) = a + c0 · 
δ(2m−π(1)) = b + c2m−π(1) · 

by definition of δ(i). Thus, δ(0) matchesA(x2t

) · ξc0 =
F (0)(x) in F (1)(x), andδ(2m−π(1)) matches the termB(x2t

)·
ξc

2m−π(1) = B(x2t

) · ξc0+eπ(1) = ξeπ(1)G(0)(x) in F (1)(x)
(using the caseℓ = 0 of (7) to show thatc0+eπ(1) = c2m−π(1) ).
The iterative definition ofF (1)(x) therefore coincides with that
obtained directly fromδ.

This gives the pattern for an inductive proof. The inductive
hypothesis is that, after stepℓ, F (ℓ)(x) and G(ℓ)(x) form
a complementary function pair; the iterative definition of
F (ℓ)(x) coincides with that obtained directly fromδ; and
the placement ofA(x2t

) and B(x2t

) in G(ℓ)(x) matches
the placement ofa and b respectively in the definition
of δ. Define j and k in the range0 ≤ j < 2m−t and
0 ≤ k < 2t so that2m−π(ℓ+1) = 2tj + k. Then F (ℓ)(x)
andξeπ(ℓ+1)G(ℓ)(x)x2tnj+k have no common support and

F (ℓ+1)(x) = F (ℓ)(x) + ξeπ(ℓ+1)G(ℓ)(x)x2tnj+k

G(ℓ+1)(x) = F (ℓ)(x) − ξeπ(ℓ+1)G(ℓ)(x)x2tnj+k

form a complementary function pair, by a similar argument to
that used above.

For anyi in the range0 ≤ i < 2m, supposeδ(i) has been
filled from matrix M at stepℓ + 1. Therefore, bitπ(1) in
the binary representation ofm − π(ℓ + 1) must be zero, and
m − π(1) 6= m − π(ℓ + 1). Hence(i + 2m−π(ℓ+1))π(1) =
iπ(1), and by the inductive hypothesis the iterative definition
of F (ℓ+1)(x) coincides with that obtained directly fromδ, and
the placement ofA(x2t

) andB(x2t

) in the iterative definition
of G(ℓ+1)(x) matches the placement ofa andb respectively
in the definition ofδ. This completes the induction.

The caseℓ = m − 1 then shows thatF (m)(x) = F (x)
and G(m)(x) = G(x) form a complementary function pair,
whereF (m)(x) corresponds to the complete matrixM . Since
δ′(i) = δ(i) − (ci − d∗i ) · , the placements ofA(x2t

) and
B(x2t

) in G(x) correspond to the placements ofa and b,
respectively, inδ′. And since the iterative definition ofF (x)
and G(x) is based on the iterative construction of(c, d∗),
G(x) corresponds to the complete matrixM ′.

For example, consider once again the Golay pairs(a, b)
and (c, d) in (5) and (6) respectively. The pair(c, d) can be
obtained by takingH = 4, m = 2, (π(1), π(2)) = (1, 2),
(e1, e2) = (0, 0), and (e0, e

′
0) = (0, 0) in (1). By Lemma 5

with m = 2 and t = 1, the sequences

f ′′ = (0, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 3, 0, 2, 3, 1)

g′′ = (0, 2, 1, 3, 2, 0, 1, 3, 0, 0, 1, 1, 0, 0, 3, 3)

obtained from the respective matrices

M =

[

(a + ) (b + )
(a + ) (b + 2 · )

]

=

[

(0, 1, 2, 1) (0, 1, 0, 3)
(0, 1, 2, 1) (2, 3, 2, 1)

]

M ′ =

[

(a + ) (b + )
(a + 2 · ) (b + )

]

=

[

(0, 1, 2, 1) (0, 1, 0, 3)
(2, 3, 0, 3) (0, 1, 0, 3)

]

form a quaternary Golay pair of length 16.
The intersections of Lemmas 3, 4 and 5 are shown in

Figure 1. We claim that, givene0 = e′0 in (1), Lemma 5
becomes a special case of Lemma 3 whent = 0, and a special
case of Lemma 4 whent = m. To establish this we need
to show that, for a standard Golay pair(c, d) of length 2m

over ZH , the conditions controlling the choice of sequence
elements in the three lemmas are equivalent, which follows
from the equivalence of the following statements:iπ(1) = 0,
ci = di, andd∗i 6= c∗i . Given thate0 = e′0, from (1) we have

c − d = H/2 · xπ(1). (8)

Recall from Section II thatxπ(1) is the indicator function
for iπ(1) (which is bit π(1) in the binary representation
of i), so that (xπ(1))i = iπ(1). Therefore (8) implies that
ci − di = (H/2)iπ(1), and taking negative reversals of (8)
likewise implies thatd∗i − c∗i = (H/2)(iπ(1) − 1). This gives
the required equivalences.

D. An interesting example

As described in Section I, our principal objective is to count
and to construct explicitly all quaternary Golay sequencesand
pairs of length2m obtained by applying Budišin’s iterative
construction to the non-standard Golay pairs of Theorem 2. We
will achieve this using Lemma 5 and its variation Lemma 7
(to be introduced in Section IV-E). However we note here
an interesting example obtained using Lemmas 3 and 5 that
achieves another of our objectives, by constructing length
2m quaternary Golay sequences and pairs that cannot be
obtained by iterative application of Budišin’s construction
to a non-standard Golay pair specified in Theorem 2. This
will demonstrate that Lemma 3 (and, by a similar example,
Lemma 4) is not a special case of Lemma 5, even when its
controlling pair is restricted to have length2m.

Example 6. Let a = (a0, a1, . . . , a7) andb = (b0, b1, . . . , b7)
be the non-standard length8 quaternary Golay pair

a = 2(x1x2 + x2x3)

= (0, 0, 0, 2, 0, 0, 2, 0)

b = 2(x1x2 + x1x3) + x2 + x3

= (0, 1, 1, 2, 0, 3, 3, 2),



11

specified in Theorem2. Then the length16 quaternary Golay
pair

c =
[

(a + ) (b + 2 · )
]

d =
[

(a + ) (b + )
]

,

obtained from Lemma5 (or Lemma3) using the seed pair
(a, b) and the controlling pair((0, 2), (0, 0)), is non-standard
(and the algebraic normal form of each ofc andd is a cubic
polynomial [5]). Furthermorec − d =

[

() (2 · )
]

is the
lifting of a binary sequence toZ4.

So we can apply Lemma3 with controlling pair (c, d) and
seed pair(a, b) to obtain a length16 · 8 = 128 quaternary
Golay pair

f = [(a + a0 · ) · · · (a + a7 · )

(b + (b0 + 2) · ) · · · (b + (b7 + 2) · )]

g = [(a − b7 · ) · · · (a − b0 · )

(b − a7 · ) · · · (b − a0 · )],

(and the algebraic normal form of each off andg is a cubic
polynomial,) and the elements of the sequence

f − g = [((a0 + b7) · ) · · · ((a7 + b0) · )

((a7 + b0 + 2) · ) · · · ((a0 + b7 + 2) · )]

take all four values inZ4.

Now suppose, for a contradiction, that the Golay pair(f , g)
of Example 6 is the output of Lemma 5 for some seed pair
(a, b) and standard controlling pair(c, d). In the notation
of that lemma, all elements off − g must then belong to
sequencesδ(i) − δ′(i) = (c − d∗)i ·  for varying i. Since
(c, d) is a standard Golay pair, the relations (2) show that

c − d∗ = H/2 · xπ(m) + e ·  for somee ∈ ZH . (9)

Therefore the elements off − g take values only in{e, e +
H/2} for somee ∈ ZH . This contradicts the conclusion of
Example 6.

Therefore the Golay pair(f , g) of Example 6 is not just
non-standard: it cannot be the output of Lemma 5, nor of
Lemma 7 by a similar argument, nor of any other published
construction for Golay sequences of which we are aware. (It
is also easily verified by computer that there is no length
128 quaternary sequenceg′ forming a Golay pair with the
sequencef of Example 6 such thatf − g′ is a two-valued
sequence.)

Example 6 can be generalized in several ways to give
further examples of quaternary Golay pairs(f , g) for which
the elements off−g take more than two values. Lemma 4 can
be used instead of Lemma 3. The seed pair(a, b) used in the
final application of Lemma 3 can be replaced by a different
non-standard pair specified in Theorem 2, by the output of
Theorem 10, or even by these further examples themselves.
The controlling pair(c, d) used in the final application of
Lemma 3 can be of length2m ·16 for anym ≥ 0, by applying
Lemma 5 iteratively with controlling pair((0, 2), (0, 0)) and
initial seed pair(a, b). In this way we obtain quaternary Golay
pairs of length2m · 16 · 8 = 2m+7 for all m ≥ 0, and these
pairs cannot be produced using any other known constructions.
Figure 2 illustrates these generalizations of Example 6.

E. Negative reversals

In this subsection we complete the framework of construc-
tions by modifying Lemma 5 to use the negative reversalsa∗

andb∗ of the seed pair sequences, as well as the sequencesa

andb themselves. This allows the construction of Golay pairs
that cannot be obtained with Lemma 5.

We then indicate by example that this modification corre-
sponds to replacing some intermediate sequence in the iterative
proof of Lemma 5 by its negative reversal. Since the aperiodic
autocorrelation function of a sequence does not change under
negative reversal, the remaining iterations of the construction
still produce a Golay pair. This modification of Lemma 5,
presented as Lemma 7, is not needed to produce the standard
Golay pairs of length2m over ZH , but will be required to
construct additional families of non-standard quaternaryGolay
pairs of length2m in Section V.

Lemma 7. Let (a, b) be a Golay pair of lengthn over ZH .
Let c = (c0, c1, . . . , c2m−1) andd = (d0, d1, . . . , d2m−1) be a
standard Golay pair of length2m over ZH , satisfying(1) for
some permutationπ of {1, . . . , m} and e′0, e0, e1, . . . , em ∈
ZH . Write (i1, i2, . . . , im) for the binary representation of the
integer i in the range0 ≤ i < 2m, and letℓ be an integer in
the range2 ≤ ℓ ≤ m. Define lengthn sequences

δ(i) :=



















a + ci ·  if iπ(ℓ−1) = 0 and iπ(ℓ) = 0

b + ci ·  if iπ(ℓ−1) = 1 and iπ(ℓ) = 0

b∗ + ci ·  if iπ(ℓ−1) = 0 and iπ(ℓ) = 1

a∗ + ci ·  if iπ(ℓ−1) = 1 and iπ(ℓ) = 1,

δ′(i) :=



















a + d∗i ·  if iπ(ℓ−1) = 0 and iπ(ℓ) = 0

b + d∗i ·  if iπ(ℓ−1) = 1 and iπ(ℓ) = 0

b∗ + d∗i ·  if iπ(ℓ−1) = 0 and iπ(ℓ) = 1

a∗ + d∗i ·  if iπ(ℓ−1) = 1 and iπ(ℓ) = 1.

Then, for any integert satisfying0 ≤ t ≤ m, the sequencef
obtained from the2t × 2m−t matrix

M :=











δ(0) δ(2t) · · · δ(2m − 2t)
δ(1) δ(2t + 1)

...
. . .

...
δ(2t − 1) δ(2 · 2t − 1) · · · δ(2m − 1)











forms a Golay pair of length2mn overZH with the sequenceg
obtained from the2t × 2m−t matrix

M ′ :=











δ′(0) δ′(2t) · · · δ′(2m − 2t)
δ′(1) δ′(2t + 1)

...
. . .

...
δ′(2t − 1) δ′(2 · 2t − 1) · · · δ′(2m − 1)











.

Proof: The proof is similar to that of Lemma 5.
For example, take H = 4, m = 4,

(π(1), π(2), π(3), π(4)) = (4, 3, 1, 2), (e1, e2, e3, e4) =
(0, 0, 2, 1), and (e0, e

′
0) = (0, 1) in (1) to give the standard

length 16 quaternary Golay pair

c = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 3, 2, 3, 2, 1)

d = (1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 2, 3, 2, 3, 0),
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and use this standard pair in Lemma 7 withℓ = 3 andt = 2 to
obtain the sequencesf , g of a Golay pair from the respective
matrices

M =









(a + ) (a + ) (b∗ + ) (b∗ + 2 · )
(a + 1 · ) (a + 1 · ) (b∗ + 1 · ) (b∗ + 3 · )
(b + 2 · ) (b + 2 · ) (a∗ + ) (a∗ + 2 · )
(b + 1 · ) (b + 1 · ) (a∗ + 3 · ) (a∗ + 1 · )









M ′=









(a + ) (a + 2 · ) (b∗ + ) (b∗ + )
(a + 1 · ) (a + 3 · ) (b∗ + 1 · ) (b∗ + 1 · )
(b + 2 · ) (b + ) (a∗ + ) (a∗ + )
(b + 1 · ) (b + 3 · ) (a∗ + 3 · ) (a∗ + 3 · )









.

We now show that the same Golay pair(f , g) can alterna-
tively be obtained from the iterative construction given inthe
proof of Lemma 5 (using a different permutatioñπ), by re-
placing the intermediate sequence corresponding to the matrix
M ′(2) in that construction by its negative reversal. TakeH =
4, m = 4, andt = 2 again, and let(π̃(1), π̃(2), π̃(3), π̃(4)) =
(3, 4, 1, 2), (ẽ1, ẽ2, ẽ3, ẽ4) = (3, 0, 2, 1), and(ẽ0, ẽ0

′) = (0, 2).
This produces the standard length 16 quaternary Golay pair
(c, d) previously given as an example in Section IV-B and, as
seen in Section IV-C, steps 1 and 2 of the iterative construction
lead to the intermediate matrices

M (2) =









(a + ) · · ·
(a + 1 · ) · · ·
(b + 2 · ) · · ·
(b + 1 · ) · · ·









M ′(2) =









(a + ) · · ·
(a + 3 · ) · · ·
(b + 2 · ) · · ·
(b + 3 · ) · · ·









.

We now replace the sequence corresponding toM ′(2) by its
negative reversal, so thatM ′(2) is replaced by









(b∗ + 1 · ) · · ·
(b∗ + 2 · ) · · ·
(a∗ + 1 · ) · · ·
(a∗ + ) · · ·









.

Proceeding with the iterative construction, we now find at step
3 that

M (3) =









(a + ) · (b∗ + ) ·
(a + 1 · ) · (b∗ + 1 · ) ·
(b + 2 · ) · (a∗ + ) ·
(b + 1 · ) · (a∗ + 3 · ) ·









M ′(3) =









(a + ) · (b∗ + 2 · ) ·
(a + 1 · ) · (b∗ + 3 · ) ·
(b + 2 · ) · (a∗ + 2 · ) ·
(b + 1 · ) · (a∗ + 1 · ) ·









,

and at step 4 we obtainM (4) = M and M ′(4) = M ′ as
claimed.

For given H , m and t, suppose the permutationπ and
constantse0, e1, . . . , em are used in Lemma 7 with the valueℓ.
Define the permutationσ by

σ = (1, ℓ − 1)(2, ℓ − 2) · · · (⌊(ℓ − 1)/2⌋, ⌈(ℓ + 1)/2⌉).

Then we can show that in general the resulting Golay pair
(f , g) can also be obtained from Lemma 5 using the permu-
tation π̃(i) := π(σ(i)) and constants̃e0, ẽ1, . . . , ẽm, where

ẽπ̃(i) = eπ̃(i) for i 6= ℓ

ẽπ̃(ℓ) = cP

ℓ
i=1 2m−π(i) − c2m−π(ℓ)

ẽ0 = e0,

by replacing the sequenceG(ℓ−1)(x) corresponding to
M ′(ℓ−1) by its negative reversal prior to stepℓ (in which
F (ℓ)(x) andG(ℓ)(x) are determined). We can also show that at
most one negative reversal is sufficient for construction pur-
poses: introducing further negative reversals of intermediate
sequences in the iterative construction does not lead to any
more Golay pairs. These two statements imply that Lemma 7
encapsulates the effect of taking arbitrary negative reversals of
intermediate sequences in the iterative construction described
in the proof of Lemma 5. We omit the proofs as they are rather
involved, and are not required in the construction of families
of Golay sequences and pairs in Section V.

For a fixed value ofm, the sequences obtained from
Lemma 5 are identical to those obtained from Lemma 7 in
some cases (for example when(a, b) varies over all standard
pairs of a given length and(c, d) varies over all standard
pairs of length2m), but are disjoint in others (for example
the sequences constructed in Theorem 10, which arise from
certain non-standard pairs(a, b)).

V. SPAWNED SEQUENCES AND PAIRS

In this section we determine explicitly the algebraic normal
form of the Golay sequences and pairs of length2m+r (m ≥
1) that are spawned by an arbitrary seed pair(a, b) of length
2r under either of Lemmas 5 and 7. We then apply this result to
the non-standard quaternary Golay pairs given in Theorem 2.

Throughout this section we take the seed pair(a, b) to have
length2r. We begin by determining the algebraic normal form
of the Golay pairs(f , g) that can be constructed from the case
t = 0 of Lemma 5 or 7.

Lemma 8. Let (a, b) be a Golay pair of length2r over ZH

and letc be a standard Golay sequence of length2m overZH

satisfying (1) for some permutationπ of {1, 2, . . . , m). Let
a(x1, x2, . . . , xr), b(x1, x2, . . . , xr), c(x1, x2, . . . , xm) be the
algebraic normal form ofa, b, c respectively, and letℓ be an
integer in the range2 ≤ ℓ ≤ m. Then, for anye ∈ ZH , the
sequence pair







f(x1, x2, . . . , xm+r)

f(x1, x2, . . . , xm+r) +
H

2
xπ(m) + e

is a Golay pair of length2m+r over ZH , where

f(x1, x2, . . . , xm+r) :=

a(xm+1, xm+2, . . . , xm+r) · (1 − xπ(1))

+ b(xm+1, xm+2, . . . , xm+r) · xπ(1)

+ c(x1, x2, . . . , xm)
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is produced by the caset = 0 of Lemma5, or alternatively

f(x1, x2, . . . , xm+r) :=

a(xm+1, xm+2, . . . , xm+r) · (1 − xπ(ℓ−1)) · (1 − xπ(ℓ))

+ b(xm+1, xm+2, . . . , xm+r) · xπ(ℓ−1) · (1 − xπ(ℓ))

+ b∗(xm+1, xm+2, . . . , xm+r) · (1 − xπ(ℓ−1)) · xπ(ℓ)

+ a∗(xm+1, xm+2, . . . , xm+r) · xπ(ℓ−1) · xπ(ℓ)

+ c(x1, x2, . . . , xm)

is produced by the caset = 0 of Lemma7.

Proof: We give the proof for the caset = 0 of Lemma 5;
the proof for Lemma7 is similar. For anye′0 ∈ ZH , the
sequencec forms a standard Golay pair with a sequence
d satisfying (1). By (9), we can choosee′0 so that the
algebraic normal form ofd∗ is given byd∗(x1, x2, . . . , xm) =
c(x1, x2, . . . , xm) + (H/2)xπ(m) + e. We then apply the case
t = 0 of Lemma 5, using(a, b) as the seed pair and(c, d) as
the controlling pair, to produce the Golay pair(f , g).

Let (i1, i2, . . . , im) be the binary representation of the
integer i in the range0 ≤ i < 2m. The sequencef is
formed by placing a copy ofa wheneveriπ(1) = 0 and
a copy of b whenever iπ(1) = 1, and then adding the
sequence(c0 ·, c1 ·, . . . , c2m−1 ·). Sincexj is the indicator
function for ij , this gives the claimed algebraic normal form
f(x1, x2, . . . , xm+r) of f .

The same analysis holds forg, except that the sequence
(d∗0 · , d∗1 · , . . . , d∗2m−1 · ) is added instead of(c0 · , c1 ·
, . . . , c2m−1 · ).

We next relate the algebraic normal form of the Golay pairs
(f , g) that can be constructed from Lemma 5 or 7 for generalt
(satisfying 0 ≤ t ≤ m) to the form for the caset = 0
determined in Lemma 8.

Lemma 9. Let (f(x1, x2, . . . , xm+r), g(x1, x2, . . . , xm+r))
be a Golay pair of length2m+r produced by the caset = 0
of Lemma5 or 7, using a seed pair(a, b) of length 2r

over ZH and a controlling pair(c, d) of length2m over ZH

satisfying(1). Let (f ′, g′) be the Golay pair produced under
the same conditions, but for generalt satisfying0 ≤ t ≤ m.
Then the algebraic normal form off ′, g′ is respectively

f(xφ(1), xφ(2), . . . , xφ(m+r)),

g(xφ(1), xφ(2), . . . , xφ(m+r)),

whereφ is the permutation of{1, 2, . . . , m + r} given by

φ(i) =











i if 1 ≤ i ≤ m − t

i + r if m − t + 1 ≤ i ≤ m

i − t if m + 1 ≤ i ≤ m + r.

(10)

Proof: We give the proof forf ′; the proof forg′ is very
similar. There is nothing to prove fort = 0 so fix t > 0,
and fix integersk, ℓ, p satisfying0 ≤ k < 2t, 0 ≤ ℓ < 2m−t,
0 ≤ p < 2r.

Let Mf be the 1 × 2m matrix corresponding tof and
let Mf ′ be the 2t × 2m−t matrix corresponding tof ′, as
in Lemma5 or 7. The sequencesf and f ′ are obtained by
reading the entries of these matrices column by column, and
so the sequenceδ(2tℓ+k) occurs in row 0 and column2tℓ+k

of Mf , and in row k and columnℓ of Mf ′. Since each
sequenceδ(i) has length2r, it follows that entryp of the
sequenceδ(2tℓ + k) occurs in

position i := (2tℓ + k)2r + p of f (11)

and in

position i′ := (2tℓ)2r + (2t)p + k of f ′. (12)

Let (i1, i2, . . . , im+r) be the binary representation ofi =
∑m+r

j=1 2m+r−jij, which by (11) we can depict in block form
as:

ℓ

(m − t) bits

?

i1

k

t bits

?

im−t+1

p

r bits

?

im+1

?

im+r

Similarly, by (12) we can depict the binary representation
of i′ as:

ℓ

(m − t) bits

?

i′1

p

r bits

?

i′m−t+1

k

t bits

?

i′m−t+r+1

?

i′m+r

in which the two rightmost blocks of bits ofi have been
interchanged.

Since xj is the indicator function forij and i′j, and
f(x1, x2, . . . , xm+r) is the algebraic normal form off , it
follows that the algebraic normal form off ′ is

f(xφ(1), xφ(2), . . . , xφ(m+r))

(so, for example, each occurrence of bitm − t + 1 in i is
replaced by bitm − t + r + 1 in i′).

For example, consider again the constructed Golay pairs
(f , g), (f ′, g′), and(f ′′, g′′) given directly after the proof of
Lemmas 3, 4 and 5 respectively, all of which can be obtained
from Lemma5 with m = r = 2 and with t = 0, t = 1, and
t = 2 respectively. The caset = 0 is given by

f = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 0, 3, 2, 3, 2, 1),

so that

f(x1, x2, x3, x4) = 2(x1x2 + x1x3 + x3x4) + 2x3 + x4.

The caset = 1 is given by

f ′′ = (0, 0, 1, 1, 2, 2, 1, 1, 0, 2, 1, 3, 0, 2, 3, 1)

= 2(x1x4 + x1x2 + x2x3) + 2x2 + x3

= f(x1, x4, x2, x3),

and the caset = 2 is given by

f ′ = (0, 0, 0, 2, 1, 1, 1, 3, 2, 2, 0, 2, 1, 1, 3, 1)

= 2(x3x4 + x3x1 + x1x2) + 2x1 + x2

= f(x3, x4, x1, x2),
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in accordance with Lemma 9. Similarly we have
g(x1, x2, x3, x4) = f(x1, x2, x3, x4) + 2x2 and
g′′ = g(x1, x4, x2, x3), g′ = g(x3, x4, x1, x2).

We have now assembled all the ingredients needed to
achieve our principal objective, namely to determine explicitly
the quaternary Golay sequences and pairs of length2m+3

(m ≥ 1) obtained by applying Lemmas5 and 7 to the 512
non-standard quaternary ordered Golay seed pairs(a, b) of
length 8 described in Theorem 2.

Theorem 10. Let m ≥ 1 be an integer, and lett and ℓ be
integers in the range0 ≤ t ≤ m and 2 ≤ ℓ ≤ m. Let τ be a
bijection between{1, . . . , m} and {1, . . . , m + 3} \ {m− t +
1, m− t + 2, m− t +3}. Then, for anye, e0, e1, . . . , em ∈ Z4

and u0, u1, u2, u3 ∈ Z2, the sequence pair

{

f(x1, x2, . . . , xm+3)

f(x1, x2, . . . , xm+3) + 2xτ(m) + e

is a non-standard quaternary Golay pair of length2m+3,
wheref(x1, x2, . . . , xm+3) takes any one of the four forms:

f1(x1, x2, . . . , xm+3) + 2xm−t+2xm−t+3

+ 2u0xm−t+1 + 2u3xm−t+2 + (2u0 + 2u2 + u3)xm−t+3;
(13)

f1(x1, x2, . . . , xm+3) + 2xm−t+1xm−t+3 + 2xm−t+2xτ(1)

+ 2xm−t+3xτ(1) + (2u1 + 2u2 + 2u3 + 1)xm−t+2

+ (2u1 + u3 + 1)xm−t+3; (14)

f2(x1, x2, . . . , xm+3) + 2xm−t+2xm−t+3

+ 2u0xm−t+1 + 2u3xm−t+2 + (2u0 + 2u2 + u3)xm−t+3;
(15)

f2(x1, x2, . . . , xm+3) + 2xm−t+1xm−t+3 + 2xm−t+2xτ(ℓ−1)

+ 2xm−t+3xτ(ℓ−1) + 2xm−t+1xτ(ℓ) + 2xm−t+3xτ(ℓ)

+ (2u1 + 2u2 + 2u3 + 1)xm−t+2 + (2u1 + u3 + 1)xm−t+3,
(16)

where

f1(x1, x2, . . . , xm+3) :=

2xm−t+1xm−t+3xτ(1) + 2xm−t+2xm−t+3xτ(1)

+ 2xm−t+1xm−t+2 + 2u0xm−t+1xτ(1)

+ (2u1 + 2u2 + 1)xm−t+2xτ(1)

+ (2u0 + 2u1 + 2u2 + 1)xm−t+3xτ(1)

+ 2

m−1
∑

k=1

xτ(k)xτ(k+1) +

m
∑

k=1

ekxτ(k) + e0

and

f2(x1, x2, . . . , xm+3) :=

2xm−t+1xm−t+3xτ(ℓ−1) + 2xm−t+2xm−t+3xτ(ℓ−1)

+ 2xm−t+1xm−t+3xτ(ℓ) + 2xm−t+2xm−t+3xτ(ℓ)

+ 2xm−t+1xτ(ℓ−1)xτ(ℓ) + 2xm−t+3xτ(ℓ−1)xτ(ℓ)

+ 2xm−t+1xm−t+2 + 2u0xm−t+1xτ(ℓ−1)

+ (2u1 + 2u2 + 1)xm−t+2xτ(ℓ−1)

+ (2u0 + 2u1 + 2u2 + 1)xm−t+3xτ(ℓ−1)

+ 2u0xm−t+1xτ(ℓ) + (2u1 + 2u2 + 3)xm−t+2xτ(ℓ)

+ (2u0 + 2u1 + 2u2 + 3)xm−t+3xτ(ℓ)

+ 2

m−1
∑

k=1
k 6=ℓ−1

xτ(k)xτ(k+1) +

m
∑

k=1

ekxτ(k) + e0.

Proof: Fix e, e0, e1, . . . , em ∈ Z4 and u0, u1, u2, u3 ∈
Z2. Let (a, b) be the non-standard quaternary Golay pair of
length 8 given by

a(x1, x2, x3) = 2x1x2 + 2x2x3 + 2u0x1 + 2u3x2

+(2u0 + 2u2 + u3)x3,

b(x1, x2, x3) = 2x1x2 + 2x1x3

+(2u1 + 2u2 + 2u3 + 1)x2

+(2u1 + u3 + 1)x3























(17)
respectively, which is the casek0 = k1 = 0 of Theorem 2.
Define the mappingπ(i) := φ−1(τ(i)), where φ is the
permutation of{1, 2, . . . , m + 3} given by the caser = 3
of (10). This mappingπ is a permutation of{1, 2, . . . , m}, so
by (1) there is a standard Golay pair(c, d) for which c has
the form

c(x1, x2, . . . , xm) = 2

m−1
∑

k=1

xπ(k)xπ(k+1) +

m
∑

k=1

ekxπ(k) + e0

(18)
(settingek in (1) to be the fixed valueeπ−1(k) for 1 ≤ k ≤ m).
The form (13) forf(x1, x2, . . . , xm+3) arises from application
of Lemma 5 with seed pair(a, b); the form (14) from
Lemma 5 with seed pair(b, a); the form (15) from Lemma7
with seed pair(a, b); and the form (16) from Lemma7 with
seed pair(b, a). In all four cases the controlling pair used is
(c, d). We give the proof for the form (13) in detail; the proof
for the form (14) is very similar.

We wish to construct a quaternary Golay pair(f , g) of
length 2m+3 from Lemma 5, using seed pair(a, b) and
controlling pair (c, d). When t = 0, by Lemma 8 this pair
(f , g) is given by

f ′(x1, x2, . . . , xm+3) :=

a(xm+1, xm+2, xm+3) · (1 − xπ(1))

+ b(xm+1, xm+2, xm+3) · xπ(1)

+ c(x1, x2, . . . , xm),

g′(x1, x2, . . . , xm+3) :=

f ′(x1, x2, . . . , xm+3) + 2xπ(m) + e

respectively. Therefore, for generalt in the range0 ≤ t ≤ m,
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by Lemma 9 the pair(f , g) is given by

f ′(xφ(1), xφ(2), . . . , xφ(m+3)) =

a(xm−t+1, xm−t+2, xm−t+3) · (1 − xφ(π(1)))

+ b(xm−t+1, xm−t+2, xm−t+3) · xφ(π(1))

+ c(xφ(1), xφ(2), . . . , xφ(m)),

g′(xφ(1), xφ(2), . . . , xφ(m+3)) =

f ′(xφ(1), xφ(2), . . . , xφ(m+3)) + 2xφ(π(m)) + e.

Set f(x1, x2, . . . , xm+3) := f ′(xφ(1), xφ(2), . . . , xφ(m+3))
and g(x1, x2, . . . , xm+3) := g′(xφ(1), xφ(2), . . . , xφ(m+3)).
Substitute from (17) and (18), and use the definition ofπ,
to show that

f(x1, x2, . . . , xm+3) =

[2xm−t+1xm−t+2 + 2xm−t+2xm−t+3

+ 2u0xm−t+1 + 2u3xm−t+2

+ (2u0 + 2u2 + u3)xm−t+3] · (1 − xτ(1))

+ [2xm−t+1xm−t+2 + 2xm−t+1xm−t+3

+ (2u1 + 2u2 + 2u3 + 1)xm−t+2

+ (2u1 + u3 + 1)xm−t+3] · xτ(1)

+ 2

m−1
∑

k=1

xτ(k)xτ(k+1) +

m
∑

k=1

ekxτ(k) + e0,

g(x1, x2, . . . , xm+3) =

f(x1, x2, . . . , xm+3) + 2xτ(m) + e.

The claimed form (13) for the constructed sequence pair(f , g)
is given by collecting terms. The algebraic normal forms
contain cubic terms and so both constructed sequences are
non-standard.

The proof for the forms (15) and (16) is similar, noting from
(2) that

a∗(x1, x2, x3) = a(x1, x2, x3) + 2x1 + 2x3 + 2u2 + u3,

b∗(x1, x2, x3) = b(x1, x2, x3) + 2x2 + 2x3 + 2u2 + u3 + 2.

(The calculated forms for (15) and (16) initially contain terms
(2u2 +u3 +2)xτ(ℓ) and(2u2 +u3)xτ(ℓ) respectively but these
terms have been absorbed into the linear sum

∑m

k=1 ekxτ(k),
which corresponds in each case to an adjustment of the
constanteℓ.)

The quaternary Golay sequences and pairs constructed in
Theorem 10 use the seed pair(a, b) given by the case
(k0, k1) = (0, 0) of Theorem 2, as stated in (17). We do not
obtain further quaternary Golay sequences or pairs by using
the seed pair given by any case(k0, k1) 6= (0, 0) of Theorem 2.
For example, application of Lemma 5 to the resulting seed pair
(a+k0·, b+k1·) instead of to(a, b) replaces the constructed
pair (f , f +2xτ(m)+e ·) by the pair(f ′, f ′+2xτ(m)+e ·)
wheref ′ := f +(k1−k0)xτ(1)+k0 ·, but this pair is already
included in the first form of Theorem 10.

We now count the number of quaternary sequences and pairs
constructed in Theorem 10.

Corollary 11. For each integerm ≥ 1 there are at least
(m + 1)!(m + 1) · 4m+1 · 16 non-standard quaternary Golay
sequences of length2m+3 and at least2(m + 1)!(m + 1) ·

4m+2 · 16 non-standard quaternary ordered Golay pairs of
length2m+3.

Proof: Each form (13), (14), (15), (16) gives rise to a
set of sequences as the parameterst, ℓ, τ , e0, e1, . . . , em,
u0, u1, u2, u3 vary over their ranges. By comparison of cubic
terms, all sequences in the sets arising from (13) and (14) are
distinct from those in the sets arising from (15) and (16). By
comparison of quadratic terms, all sequences in the set arising
from (13) are distinct from those arising from (14), and those
arising from (15) are distinct from those arising from (16).

We firstly count the sequences in the sets arising from
(13) and (14). There arem! choices forτ ; m + 1 choices
for t; 4m+1 choices fore0, e1, . . . , em; and 24 choices for
u0, u1, u2, u3. Sinceτ is a bijection between{1, . . . , m} and
{1, . . . , m + 3} \ {m − t + 1, m − t + 2, m − t + 3}, each
choice of parameters yields a distinct sequence (for example,
we can consider{u0, 2u1 + 2u2 + 1, u3, 2u0 + 2u2 + u3}
and{u0, 2u1 + 2u2 + 3, 2u1 + 2u2 + 2u3 + 1, 2u1 + u3 + 1}
to form a linearly independent set when considering (13)
and (14) respectively). We therefore obtain exactlym!(m +
1) · 4m+1 · 24 · 2 distinct sequences from (13) and (14). No
further sequences are obtained by considering the sequence
f(x1, x2, . . . , xm+3) + 2xτ(m) + e that forms a Golay pair
with the sequencef(x1, x2, . . . , xm+3).

We next count the sequences in the sets arising from (15)
and (16). Each sequence in the set arising from (15) is counted
exactly twice as the parameters vary: the mappingℓ 7→ m +
2 − ℓ; u1 7→ u1 + 1; τ 7→ τ ′, whereτ ′(i) := τ(m + 1 − i),
leaves

∑m−1
k=1 xτ(k)xτ(k+1) invariant but interchangesτ(ℓ−1)

andτ(ℓ), and interchanges2u1+1 and2u1+3. Similarly each
sequence in the set arising from (16) is counted exactly twice,
by considering the mappingℓ 7→ m + 2 − ℓ; u0 7→ u0 + 1;
τ 7→ τ ′. Since there arem − 1 choices forℓ, we therefore
obtain exactlym!(m + 1)(m − 1) · 4m+1 · 24 · 2/2 distinct
sequences from (15) and (16), and no further sequences by
consideringf(x1, x2, . . . , xm+3) + 2xτ(m) + e.

Summing the two counts gives the stated minimum number
of non-standard quaternary Golay sequences of length2m+3.

We finally count the minimum number of Golay pairs
formed from these sequences. Inspection of the algebraic
normal forms shows, for each constructed sequencef , that
f∗ 6= f + c ·  for any c ∈ Z4. Therefore we can partition
the constructed sequences into sets of the formE(f)∪E(g),
each such set involving2 · 8 = 16 sequences, such that
E(f)×E(g) comprises82 ·2 = 128 ordered Golay pairs (see
Section II). The minimum number of Golay pairs formed from
the constructed sequences is therefore given by multiplying
the sequence count by 8 (and the true number will exceed this
minimum if two constructed sequences at smaller lengths have
the shared autocorrelation property).

Table I lists the known number of standard and non-standard
length 2m quaternary Golay sequences and pairs, using the
counts from Corollary 11. The minimum values given for
m ≥ 7 are both strict minima, because of the generalization
of Example 6 described at the end of Section IV. The values
given for m ≤ 4 are exact counts, by exhaustive computer
search. But we do not currently know whether the minimum
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# quaternary Golay sequences # quaternary ordered Golay pairs
Length standard non-standard standard non-standard

4 64 0 512 0
8 768 0 6,144 512

16 12,288 1,024 98,304 8,192
32 245,760 ≥ 18,432 1,966,080 ≥ 147,456
64 5,898,240 ≥ 393,216 47,185,920 ≥ 3,145,728

2m (m ≥ 7) m!/2 · 4m+1 > (m − 2)!(m − 2) · 4m m! · 4m+2 > 2(m − 2)!(m − 2) · 4m+1

TABLE I
NUMBER OF LENGTH2m QUATERNARY GOLAY SEQUENCES AND ORDEREDGOLAY PAIRS

values given for lengths 32 and 64 are exact counts. While
we know that no two standard quaternary Golay sequences
of length 32 have the shared autocorrelation property [5], it
is possible that one of the non-standard quaternary Golay
sequences of length 32 constructed in Theorem 10 has the
shared autocorrelation property with a standard quaternary Go-
lay sequence or with another non-standard quaternary Golay
sequence constructed in Theorem 10. In that case we could
construct further non-standard quaternary Golay sequences
and pairs of length 64 and higher via the resulting cross-over of
autocorrelation functions (see Figure 3). It is also possible that
there are non-standard quaternary Golay sequences of length
32 or 64 that are not contained in Theorem 10.

For h > 2, the non-standard Golay sequences and pairs
constructed in Theorem 10 and Example 6 (and its gen-
eralizations) give non-standard Golay sequences and pairs
over Z2h under lifting and linear transformation (see the end
of Section II).

VI. CONCLUSION

In this section we summarize the main results of the paper,
clarify the relationship to other work, and list some open
questions.

We firstly summarize the main results of the paper. In
Theorem 10 and Corollary 11 we have determined explicitly
and counted the quaternary Golay sequences and pairs of
length 2m (m ≥ 4) obtained by applying Lemmas5 and 7
to the 512 non-standard quaternary ordered Golay seed pairs
(a, b) of length 8 described in Theorem 2. These lemmas are
equivalent to the iterative use of Budišin’s construction, with
arbitrary negative reversals of intermediate sequences allowed.

In Figure 2 we have identified a framework of constructions
from which all known Golay sequences and pairs of length2m

over Z2h can be obtained explicitly, and have shown the
key importance of Turyn’s construction and its variations.
In Example 6 and its generalizations we have demonstrated
that this framework is sufficiently powerful to produce further
quaternary Golay sequences and pairs of length2m (m ≥ 7)
that cannot be obtained by any other known construction.

We next describe the relationship to other work. Schmidt
[15, Theorem 7] recently gave an algebraic normal form
construction for “near-complementary sequences”, based in
part on earlier work of Parker and Tellambura [13], and
remarked [15, p. 3230] that it could be applied to the Golay
sequences of Theorem 2 “to obtain an explicit construction

for Golay sequences of length2m, wherem > 3”. However
neither [15] nor [13] gives details of the resulting sequences,
and moreover carrying out the indicated procedure would lead
only to the forms (13) and (14) of Theorem 10 (corresponding
to the application of Lemma 5) and not to the forms (15) and
(16) (corresponding to Lemma 7, in which arbitrary negative
reversals of intermediate sequences are allowed).

Borwein and Ferguson [1] considered the Golay sequences
and pairs that can be obtained from an arbitrary initial Golay
pair (a, b) by the iterative use of Budišin’s construction,
including the effect of (negative) reversal of intermediate
sequences. Indeed, we have adopted their matrix notation to
describe constructed sequences. However [1] deals exclusively
with binary sequences, and the only known binary length2m

Golay pairs are standard pairs. In that case (negative) reversal
of intermediate sequences does not produce any additional
Golay sequences or pairs, as noted at the start of Section IV-E.
Theorem 4.6 of [1] counts the number of binary ordered Golay
pairs of length2mn that can be derived from an initial binary
Golay pair of lengthn, but does not give an explicit algebraic
normal form for the casen = 2r and once again deals only
with the binary case, which is considerably less complex than
the quaternary case considered here. (Strictly, the count of [1,
Theorem 4.6] is an upper bound since it is not proved there
that the counted sequences or pairs are distinct.)

After submission of the original manuscript we were able
to obtain more detailed results on the generalizations of
Example 6 discussed in Section IV-D. These are reported
in [6].

We conclude with some open questions:

1) Are the minimum counts of non-standard length 32 and
64 quaternary Golay sequences and pairs in Table I exact
(see the discussion at the end of Section V)?

2) What underlies the shared autocorrelation property of
the quaternary Golay sequences (4)? Are there further
examples of Golay sequences of length2m over Z2h

having the shared autocorrelation property (apart from
trivial liftings and linear transformations of (4))? If so,
this would allow the construction of further infinite
families of non-standard Golay sequences and pairs via
a new cross-over of autocorrelation functions (see the
procedure of Section V).

3) Are there any non-standard binary length2m Golay
pairs, arising either from a shared autocorrelation prop-
erty of standard binary Golay sequences or in some other
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way?
4) The algebraic normal forms for non-standard Golay

sequences derived in Theorem 10 are rather complex,
in contrast to those for standard Golay sequences in (1).
Is there a better way to describe non-standard Golay
pairs than by using the algebraic normal form?
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