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Abstract Orbits of graphs under the operationedge local complementation(ELC)
are defined. We show that the ELC orbit of abipartitegraph corresponds to the equiv-
alence class of abinary linear code. Theinformation setsand theminimum distance
of a code can be derived from the corresponding ELC orbit. By extending earlier re-
sults onlocal complementation(LC) orbits, we classify the ELC orbits of all graphs
on up to 12 vertices. We also give a new method for classifyingbinary linear codes,
with running time comparable to the best known algorithm.
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1 Introduction

In this section we first give some definitions from graph theory, in particular we de-
scribe the two graph operationslocal complementation(LC) andedge local comple-
mentation(ELC), the latter also known as thepivot operation. We then give some
definitions related tobinary linear codes. Of particular interest is the concept ofcode
equivalence. Östergård [22] represented codes as graphs, and devised analgorithm
for classifying codes up to equivalence. In Section 2, we show a different way of
representing a binary linear code as abipartite graph. We prove that ELC on this
graph provides a simple way of jumping between equivalent codes, and that the orbit
of a bipartite graph under ELC corresponds to the complete equivalence class of the
corresponding code. We also show how ELC on a bipartite graphgenerates allinfor-
mation setsof the corresponding code. Finally, we show that theminimum distanceof
a code is related to the minimum vertex degree over the corresponding ELC orbit. In
Section 3 we describe our algorithm for classifying ELC orbits, which we have used
to generate all ELC orbits of graphs on up to 12 vertices. Although ELC orbits of
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Fig. 1 Example of Local Complementation. Left: The GraphG. Right: The GraphG∗1.

non-bipartite graphs do not have any obvious applications to classical coding theory,
they are of interest in other contexts, such asinterlace polynomials[1, 3] andquan-
tum graph states[17] which are related toquantum error correcting codes. From the
ELC orbits of bipartite graphs a classification of binary linear codes can be derived.
Binary linear codes have previously been classified up to length 14 [15,22]. We have
generated the bipartite ELC orbits of graphs on up to 14 vertices, and this classifica-
tion can be extended to at least 15 vertices [Sang-il Oum, personal communication],
showing that our method is comparable to the best known algorithm. However, the
main result of this paper is not a classification of codes, buta new way of representing
equivalence classes of codes, and a classification of all ELCorbits of length up to 12.

1.1 Graph Theory

A graph is a pairG = (V,E) whereV is a set ofvertices, andE ⊆ V ×V is a set of
edges. A graph withn vertices can be represented by ann×n adjacency matrixΓ ,
whereγi j = 1 if {i, j} ∈ E, andγi j = 0 otherwise. We will only considersimple undi-
rectedgraphs whose adjacency matrices are symmetric with all diagonal elements
being 0, i.e., all edges are bidirectional and no vertex can be adjacent to itself. The
neighbourhoodof v ∈ V, denotedNv ⊂ V, is the set of vertices connected tov by
an edge. The number of vertices adjacent tov is called thedegreeof v. The induced
subgraphof G onW ⊆V contains verticesW and all edges fromE whose endpoints
are both inW. Thecomplementof G is found by replacingE with V ×V −E, i.e.,
the edges inE are changed to non-edges, and the non-edges to edges. Two graphs
G = (V,E) andG′ = (V,E′) areisomorphicif and only if there exists a permutation
π on V such that{u,v} ∈ E if and only if {π(u),π(v)} ∈ E′. A path is a sequence
of vertices,(v1,v2, . . . ,vi), such that{v1,v2},{v2,v3}, . . . ,{vi−1,vi} ∈ E. A graph is
connectedif there is a path from any vertex to any other vertex in the graph. A graph
is bipartite if its set of vertices can be decomposed into two disjoint sets such that no
two vertices within the same set are adjacent. We call a graph(a,b)-bipartite if its
vertices can be decomposed into sets of sizea andb.

Definition 1 [4,10,11]Given a graphG = (V,E) and a vertexv∈V, let Nv ⊂V be
the neighbourhood ofv. Local complementation(LC) onv transformsG into G∗v by
replacing the induced subgraph ofG onNv by its complement.

Definition 2 [4] Given a graphG = (V,E) and an edge{u,v} ∈ E, edge local com-
plementation(ELC) on{u,v} transformsG into G(uv) = G∗u∗ v∗u= G∗ v∗u∗ v.
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Fig. 2 Visualization of the ELC Operation

Definition 3 [4] ELC on{u,v} can equivalently be defined as follows. Decompose
V \ {u,v} into the following four disjoint sets, as visualized in Fig.2.

A Vertices adjacent tou, but not tov.
B Vertices adjacent tov, but not tou.
C Vertices adjacent to bothu andv.
D Vertices adjacent to neitheru norv.

To obtainG(uv), perform the following procedure. For any pair of vertices{x,y},
wherex belongs to classA, B, or C, andy belongs to a different classA, B, or C,
“toggle” the pair{x,y}, i.e., if {x,y} ∈ E, delete the edge, and if{x,y} 6∈ E, add the
edge{x,y} to E. Finally, swap the labels of verticesu andv.

Definition 4 TheLC orbit of a graphG is the set of all graphs that can be obtained
by performing any sequence of LC operations onG. Similarly, theELC orbit of
G comprises all graphs that can be obtained by performing any sequence of ELC
operations onG. (Usually we consider LC and ELC orbits of unlabeled graphs.In the
cases where we consider orbits of labeled graphs, this will be noted.)

The LC operation was first defined by de Fraysseix [11], and later studied by Fon-
der-Flaas [10] and Bouchet [4]. Bouchet defined ELC as “complementation along
an edge” [4], but this operation is also known aspivoting on a graph [3, 20]. LC
orbits of graphs have been used to studyquantum graph states[13,14,18], which are
equivalent toself-dual additive codes overGF(4) [5]. We have previously used LC
orbits to classify such codes [8,9]. ELC orbits have also been studied in the context of
quantum graph states [17,20].Interlace polynomialsof graphs have been defined with
respect to both ELC [3] and LC [1]. These polynomials encode properties of the graph
orbits, and were originally used to study a problem related to DNA sequencing [2].

Proposition 1 If G = (V,E) is a connected graph, then, for any vertex v∈ V, G∗ v
must also be connected. Likewise, for any edge{u,v} ∈ E, G(uv) must be connected.
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Proof If the edge{x,y} is deleted as part of an LC operation onv, bothx andy must
be, and will remain, connected tov. Similarly, if by performing ELC on the edge
{u,v}, the edge{x,y} is deleted, bothx andy will remain connected to eitheru, v, or
both, andu andv will remain connected. ⊓⊔

Proposition 2 [20] If G is an (a,b)-bipartite graph, then, for any edge{u,v} ∈ E,
G(uv) must also be(a,b)-bipartite.

Proof A bipartite graph with an edge{u,v} can not contain any vertex that is con-
nected to bothu andv. Using the terminology of Definition 3, the setC will always
be empty when we perform ELC on a bipartite graph. Moreover, all vertices in the
setA must belong to the same bipartition asu, and all vertices inB must belong to
the same bipartition asv. All edges that are added or deleted have one endpoint inA
and one inB, and it follows that bipartiteness is preserved. ⊓⊔

Proposition 3 Let G be a bipartite graph, and let{u,v} ∈ E. Then G(uv) can be
obtained by “toggling” all edges between the sets Nu\{v} and Nv\{u}, followed by
a swapping of vertices u and v.

1.2 Coding Theory

A binary linear code,C , is a linear subspace of GF(2)n of dimensionk, where
0 ≤ k ≤ n. C is called an[n,k] code, and the 2k elements ofC are calledcode-
words. TheHamming weightof u∈GF(2)n, denoted wt(u), is the number of nonzero
components ofu. TheHamming distancebetweenu,v ∈ GF(2)n is wt(u− v). The
minimum distanceof the codeC is the minimal Hamming distance between any
two codewords ofC . SinceC is a linear code, the minimum distance is also given
by the smallest weight of any codeword inC . A code with minimum distanced
is called an[n,k,d] code. A code isdecomposableif it can be written as thedi-
rect sumof two smaller codes. For example, letC be an[n,k,d] code andC ′ an
[n′,k′,d′] code. The direct sum,C ⊕C ′ = {u||v | u ∈ C ,v ∈ C ′}, where|| means
concatenation, is an[n+ n′,k+ k′,min{d,d′}] code. Two codes,C andC ′, are con-
sidered to beequivalentif one can be obtained from the other by some permutation
of the coordinates, or equivalently, a permutation of the columns of a generator ma-
trix. We define thedual of the codeC with respect to the standard inner product,
C⊥ = {u ∈ GF(2)n | u · c = 0 for all c ∈ C }. C is calledself-dualif C = C ⊥, and
isodualif C is equivalent toC ⊥. Self-dual and isodual codes must have even length
n, and dimensionk = n

2. The codeC can be defined by ak× n generator matrix,
C, whose rows spanC . A set of k linearly independent columns ofC is called an
information setof C . We can permute the columns ofC such that an information set
makes up the firstk columns. By elementary row operations, this matrix can thenbe
transformed into a matrix of the formC′ = (I | P), whereI is ak×k identity matrix,
andP is somek× (n−k) matrix. The matrixC′, which is said to be ofstandard form,
generates a codeC ′ which is equivalent toC . Every code is equivalent to a code
with a generator matrix of standard form. The matrixH ′ = (PT | I), whereI is an
(n−k)× (n−k) identity matrix is called theparity check matrixof C ′. Observe that
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G′H ′T = 0, where 0 is the all-zero vector. It follows thatH ′ must be the generator
matrix ofC ′⊥.

2 ELC and Code Equivalence

As mentioned earlier, LC orbits of graphs correspond to equivalence classes of self-
dual quantum codes. We have previously classified all such codes of length up to 12 [9],
by classifying LC orbits of simple undirected graphs. In this paper, we show that ELC
orbits of bipartite graphs correspond to the equivalence classes of binary linear codes.
First we explain how a binary linear code can be represented by a graph.

Definition 5 [6, 19] Let C be a binary linear[n,k] code with generator matrixC =
(I | P). Then the codeC corresponds to the(k,n− k)-bipartite graph onn vertices
with adjacency matrix

Γ =

(

0k×k P
PT 0(n−k)×(n−k)

)

,

where 0 denote all-zero matrices of the specified dimensions.

Theorem 1 Let G= (V,E) be the(k,n−k)-bipartite graph derived from a standard
form generator matrix C= (I | P) of the[n,k] codeC . Let G′ be the graph obtained
by performing ELC on the edge{u,v} ∈ E, followed by a swapping of vertices u and
v. Then the codeC ′ generated by C′ = (I | P′) corresponding to G′ is equivalent to
C , and can be obtained by interchanging coordinates u and v ofC .

Proof Assume, without loss of generality, thatu ≤ k andv > k. C′ can be obtained
from C by adding rowu to all rows inNv \ {u} and then swapping columnsu and
v, whereNv denotes the neighbourhood ofv in G. These operations preserve the
equivalence of linear codes. As described in Proposition 3,the bipartite graphG is
transformed intoG′ by “toggling” all pairs of vertices{x,y}, wherex∈ Nu \ {v} and
y∈ Nv\ {u}. This action on the submatrixP is implemented by the row additions on
C described above. However, this also “toggles” the pairs{v,y}, wherey∈ Nv\ {u},
transforming columnv of C into a vector with 0 in all coordinates exceptu. But
columnu of C now contains the original columnv, and thus swapping columnsu and
v restores the neighbourhood ofv, giving the desired submatrixP. ⊓⊔

Corollary 1 Applying any sequence of ELC operations to a graph G corresponding
to a codeC will produce a graph corresponding to a code equivalent toC .

Instead of mapping the generator matrixC = (I | P) to the adjacency matrix of
a bipartite graph in order to perform ELC on the edge{u,v}, we can work directly
with the submatrixP. Let the rows ofP be labeled 1,2, . . . ,k and the columns ofP
be labeledk+1,k+2, . . . ,n. Assume thatu indicates a row ofP and thatv indicates
a column ofP. The elementPi j is then replaced by 1−Pi j if i 6= u, j 6= v, andPu j =
Piv = 1.
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Fig. 3 Two Representations of the[7,4,3] Hamming Code. Left: The GraphG. Right: The GraphG(27).

Example 1The[7,4,3] Hamming code has a generator matrix

C =









1 0 0 00 1 1
0 1 0 01 0 1
0 0 1 01 1 0
0 0 0 11 1 1









,

which corresponds to the graph shown on the left side of Fig. 3. ELC on the edge
{2,7} produces the graph shown on the right side of Fig. 3, which corresponds to the
generator matrix

C′ =









1 0 0 01 1 1
0 1 0 01 0 1
0 0 1 01 1 0
0 0 0 10 1 1









.

The code generated byC′ is also obtained by swapping coordinates 2 and 7 of the
code generated byC.

Consider a codeC . As described in Section 1.2, it is possible to go from a genera-
tor matrix of standard form,C = (I |P), to another generator matrix of standard form,
C′, of a code equivalent toC by one of then! possible permutations of the columns
of C, followed by elementary row operations. More precisely, wecan get fromC to
C′ via a combination of the following operations.

1. Permuting the columns ofP.
2. Permuting the columns ofI , followed by the same permutation on the rows ofC,

to restore standard form.
3. Swapping columns fromI with columns fromP, such that the firstk columns

still is an information set, followed by some elementary rowoperations to restore
standard form.

Theorem 2 LetC andC ′ be equivalent codes. Let C and C′ be matrices of standard
form generatingC andC ′. Let G and G′ be the bipartite graphs corresponding to C
and C′. G′ is isomorphic to a graph obtained by performing some sequence of ELC
operations on G.
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Proof C andC ′ must be related by a combination of the operations 1, 2, and 3 listed
above. It is easy to see that operations 1 and 2 applied toG produce an isomorphic
graph. It remains to prove that operation 3 always corresponds to some sequence of
ELC operations. We know from Theorem 1 that swapping columnsu and v of C,
whereu is part ofI andv is part ofP, corresponds to ELC on the edge{u,v} of G,
followed by a swapping of the verticesu andv. When{u,v} is not an edge ofG, we
can not swap columnsu andv of C via ELC. In this case, coordinatev of columnu
is 0, and columnu has 1 in coordinateu and 0 elsewhere. Swapping these columns
would result in a generator matrix where the firstk columns all have 0 at coordinate
u. These columns can not correspond to an information set. It follows that if{u,v} is
not an edge ofG, swapping columnsu andv is not a valid operation of type 3 in the
above list. Thus ELC and graph isomorphism cover all possible operations that map
standard form generator matrices of equivalent codes to each other. ⊓⊔

Let us for a moment consider ELC orbits oflabeledgraphs, i.e., where we do
not take isomorphism into consideration. LetG= (V,E) be the bipartite graph repre-
senting the codeC , andG(uv) be the graph obtained by ELC on the edge{u,v} ∈ E.
Since we perform ELC on{u,v} without swappingu and v afterwards, the adja-
cency matrix ofG(uv) will not be of the type we saw in Definition 5. We can think
of G as a graph corresponding to the information set{1,2, . . . ,k} of C . Assume that
u ≤ k and v > k. G(uv) will then represent another information set ofC , namely
{1,2, . . . ,k}\{u}∪{v}. With this interpretation, the next corollary follows fromThe-
orem 2.

Corollary 2 Let G be a bipartite graph representing the codeC . Each labeled graph
in the ELC orbit of G corresponds to an information set ofC . Moreover, the number
of information sets ofC equals the number of labeled graphs in the ELC orbit of G.

Note that the distinction between ELC with or without a final swapping of vertices
is only significant when we want to find information sets. For other applications,
where we consider graphs up to isomorphism, this distinction is not of importance.

Theorem 3 The minimum distance, d, of a binary linear[n,k,d] codeC , is equal to
δ + 1, whereδ is the smallest vertex degree over all graphs in the associated ELC
orbit.

Proof A vertex with degreed− 1 in the ELC orbit corresponds to a codeword of
weight d. We need to show that such a vertex always exists. LetC be a generator
matrix of standard form, where all rows have weight greater thand, that generates
a code equivalent toC . Find a codewordc of weightd, generated byC, and let the
i-th row ofC be one of the rows thatc is linearly dependent on. Permute the columns
of C to obtainC′ where the firstk columns is still an information set, and wherec
is mapped toc′ with 1 in coordinatei, with the rest of thek first coordinates being
0. (This will always be possible, since thei-th row of C has weight greater thand.)
Replace thei-th row ofC′ by c′ to getC′′. We can transformC′′ into a matrix of the
form (I | P) by elementary row operations. Rowi of this final matrix has weightd,
and thus the corresponding bipartite graph has a vertex withdegreed−1. ⊓⊔
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Table 1 Numbers of LC Orbits

n 1 2 3 4 5 6 7 8 9 10 11 12

iLC
n 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068

tLC
n 1 2 3 6 11 26 59 182 675 3,990 45,144 1,323,363

3 Classification of ELC Orbits

We have previously classified all self-dual additive codes over GF(4) of length up
to 12 [7, 9], by classifying orbits of simple undirected graphs with respect to lo-
cal complementation and graph isomorphism. In Table 1, the sequence(iLC

n ) gives
the number of LC orbits of connected graphs onn vertices, while(tLC

n ) gives the
total number of LC orbits of graphs onn vertices. A database containing one rep-
resentative from each LC orbit is available athttp://www.ii.uib.no/~larsed/

vncorbits/.
By recursively applying ELC operations to all edges of a graph, whilst checking

for graph isomorphism using the programnauty[16], we can find all members of the
ELC orbit. LetGn be the set of all unlabeled simple undirected connected graphs on
n vertices. Let the set of all distinct ELC orbits of connectedgraphs onn vertices be a
partitioning ofGn into iELC

n disjoint sets. Our previous classification of the LC orbits
of all graphs of up to 12 vertices helps us to classify ELC orbits, since it follows from
Definition 2 that each LC orbit can be partitioned into a set ofdisjoint ELC orbits.
We have used this fact to classify all ELC orbits of graphs on up to 12 vertices, a
computation that required approximately one month of running time on a parallel
cluster computer. In Table 2, the sequence(iELC

n ) gives the number of ELC orbits of
connected graphs onn vertices, while(tELC

n ) gives the total number of ELC orbits of
graphs onn vertices. Note that the value oftn can be derived easily once the sequence
(im) is known for 1≤ m≤ n, using theEuler transform[21],

cn = ∑
d|n

did,

t1 = c1,

tn =
1
n

(

cn +
n−1

∑
k=1

cktn−k

)

.

A database containing one representative from each ELC orbit can be found athttp:
//www.ii.uib.no/~larsed/pivot/.

We are particularly interested in bipartite graphs, because of their connection to
binary linear codes. For the classification of the orbits of bipartite graphs with respect
to ELC and graph isomorphism, the following technique is helpful. If G is an(a,b)-
bipartite graph, it has 2a + 2b− 2 possibleextensions. Each extension is formed by
adding a new vertex and joining it to all possible combinations of at least one of
the old vertices. LetPn be a set containing one representative from each ELC orbit
of all connected bipartite graphs onn vertices. The setEn is formed by making all
possible extensions of all graphs inPn−1. It can then be shown thatPn ⊂ En, i.e., that
the setEn will contain at least one representative from each ELC orbitof connected
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Table 2 Numbers of ELC Orbits and Binary Linear Codes

n iELC
n tELC

n iELC,B
n tELC,B

n iCn iCiso
n

1 1 1 1 1 1 -
2 1 2 1 2 1 1
3 2 4 1 3 2 -
4 4 9 2 6 3 1
5 10 21 3 10 6 -
6 35 64 8 22 13 3
7 134 218 15 43 30 -
8 777 1,068 43 104 76 10
9 6,702 8,038 110 250 220 -

10 104,825 114,188 370 720 700 40
11 3,370,317 3,493,965 1,260 2,229 2,520 -
12 231,557,290 235,176,097 5,366 8,361 10,503 229
13 ? ? 25,684 36,441 51,368 -
14 154,104 199,610 306,328 1,880
15 1,156,716 1,395,326 2,313,432 -
16 ? ? 23,069,977 ?
17 157,302,628 ? 314,605,256 -

bipartite graphs onn vertices. The setEn will be much smaller thanGn, so it will be
more efficient to search for a set of ELC orbit representatives within En. A similar
technique was used by Glynn, et al. [13] to classify LC orbits.

In Table 2, the sequence(iELC,B
n ) gives the number of ELC orbits of connected

bipartite graphs onn vertices, and(tELC,B
n ) gives the total number of ELC orbits of

bipartite graphs onn vertices. A database containing one representative from each of
these orbits can be found athttp://www.ii.uib.no/~larsed/pivot/.

Theorem 4 Let k 6= n
2. Then the number of inequivalent binary linear[n,k] codes,

which is also the number of inequivalent[n,n− k] codes, is equal to the number of
ELC orbits of(n−k,k)-bipartite graphs.

When n is even and k= n
2, the number of inequivalent binary linear[n,k] codes is

equal to twice the number of ELC orbits of(k,k)-bipartite graphs minus the number
of isodual codes of length n.

Proof We recall that if a codeC is generated by(I | P), then its dual,C⊥, is gener-
ated by(PT | I). Also note thatC⊥ is equivalent to the code generated by(I | PT).
The bipartite graphs corresponding to the codes generated by (I | P) and(I | PT) are
isomorphic. It follows that the ELC orbit associated with an[n,k] codeC is simul-
taneously the orbit associated with the dual[n,n− k] codeC

⊥. In the case where
k = n

2, each ELC orbit corresponds to two non-equivalent[n,k] codes, except in the
case whereC is isodual. ⊓⊔

Corollary 3 The total number of binary linear codes of length n is equal totwice the
number of ELC orbits of bipartite graphs on n vertices, minusthe number of isodual
codes of length n.

Note that if we only consider connected graphs onn vertices, we get the num-
ber of indecomposable codes of lengthn, iCn , i.e., the codes that can not be written
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as the direct sum of two smaller codes. The total number of codes can easily be
derived from the values of(iCn ). Table 2 gives the number of ELC orbits of con-
nected bipartite graphs onn vertices,iELC,B

n , the number of indecomposable binary
linear codes of lengthn, iCn , and the number of indecomposable isodual codes of
length n, iCiso

n . A method for counting the number of binary linear codes by us-
ing computer algebra tools was devised by Fripertinger and Kerber [12]. A table
enumerating binary linear codes of length up to 25 is available online athttp:
//www.mathe2.uni-bayreuth.de/frib/codes/tables_2.html. The numbers
in italics in Table 2 are taken from this webpage. Note however that this approach
only gives the number of inequivalent codes, and does not produce the codes them-
selves. Classification of all binary linear codes of length up to 14 and with distance at
least 3 was carried out bÿOstergård [22]. He also used a graph-based algorithm, but
one quite different from the method described in this paper.In a recent book by Kaski
andÖstergård [15], it is proposed as a research problem to extend this classification
to lengths higher than 14. Sang-il Oum [personal communication] demonstrated that
the 1,395,326 ELC orbits of bipartite graphs on 15 vertices can be generated in about
58 hours. This indicates that classification of codes by ELC orbits is comparable to
the currently best known algorithm. It may also be possible that our method will be
more efficient than existing algorithms for classifying special types of codes. For in-
stance, matrices of the form(I | P), whereP is symmetric, generate a subset of the
isodual codes. The bipartite graphs corresponding to thesecodes, which were also
studied by Curtis [6], should be well suited to our method, since any graph of this
type must arise as an extension of a graph of the same type.
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