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Abstract Orbits of graphs under the operatiedge local complementatidiLC)
are defined. We show that the ELC orbit dfipartite graph corresponds to the equiv-
alence class of hinary linear code Theinformation set@and theminimum distance
of a code can be derived from the corresponding ELC orbit. Bgreding earlier re-
sults onlocal complementatio(LC) orbits, we classify the ELC orbits of all graphs
on up to 12 vertices. We also give a new method for classifpingry linear codes,
with running time comparable to the best known algorithm.
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1 Introduction

In this section we first give some definitions from graph tlyeor particular we de-
scribe the two graph operatiotecal complementatio(LC) andedge local comple-
mentation(ELC), the latter also known as ttgvot operation. We then give some
definitions related tdinary linear codesOf particular interest is the conceptafde
equivalenceOstergard [22] represented codes as graphs, and devisalda@ithm
for classifying codes up to equivalence. In Section 2, weashdifferent way of
representing a binary linear code abipartite graph. We prove that ELC on this
graph provides a simple way of jumping between equivaledéspand that the orbit
of a bipartite graph under ELC corresponds to the completévatpnce class of the
corresponding code. We also show how ELC on a bipartite ggapierates alhfor-
mation set®f the corresponding code. Finally, we show thatrtfieimum distancef

a code is related to the minimum vertex degree over the quoreding ELC orbit. In
Section 3 we describe our algorithm for classifying ELC &hivhich we have used
to generate all ELC orbits of graphs on up to 12 vertices. &ltih ELC orbits of
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Fig. 1 Example of Local Complementation. Left: The GraphRight: The GraptG 1.

non-bipartite graphs do not have any obvious applicatiortdassical coding theory,
they are of interest in other contexts, suchrasrlace polynomial$l, 3] andquan-
tum graph stategl7] which are related tguantum error correcting codesrom the
ELC orbits of bipartite graphs a classification of binaryelam codes can be derived.
Binary linear codes have previously been classified up tgtlreth4 [15,22]. We have
generated the bipartite ELC orbits of graphs on up to 14 eestiand this classifica-
tion can be extended to at least 15 vertices [Sang-il Ounsgoedt communication],
showing that our method is comparable to the best known idfgr However, the
main result of this paper is not a classification of codesameaw way of representing
equivalence classes of codes, and a classification of all&his of length up to 12.

1.1 Graph Theory

A graphis a pairG = (V,E) whereV is a set ofvertices andE CV xV is a set of
edgesA graph withn vertices can be represented byrar n adjacency matrix,
wherey; = 1if {i, j} € E, andy; = 0 otherwise. We will only considesimple undi-
rectedgraphs whose adjacency matrices are symmetric with allogiagelements
being 0, i.e., all edges are bidirectional and no vertex eaadjacent to itself. The
neighbourhoodf v € V, denoted\, C V, is the set of vertices connectedvdy
an edge. The number of vertices adjacent ig called thedegreeof v. Theinduced
subgraphof G onW C V contains vertice®V and all edges frork whose endpoints
are both inW. The complemenbf G is found by replacindge with V xV —E, i.e.,
the edges irE are changed to non-edges, and the non-edges to edges. Tpltsgra
G = (V,E) andG = (V,E’) areisomorphicif and only if there exists a permutation
rmonV such that{u,v} € E if and only if {m(u), m(v)} € E’. A pathis a sequence
of vertices,(v,Vy, ..., Vi), such thafvi,vo},{vo,v3}, ..., {vi_1,vi} € E. A graph is
connectedf there is a path from any vertex to any other vertex in thepraA graph
is bipartiteif its set of vertices can be decomposed into two disjoirg sath that no
two vertices within the same set are adjacent. We call a gfag)-bipartite if its
vertices can be decomposed into sets of aiaedb.

Definition 1 [4,10,11]Given a graptG = (V,E) and a vertew € V, letN, C V be
the neighbourhood of. Local complementatiofl.C) onv transformsG into G*v by
replacing the induced subgraph®fon N, by its complement.

Definition 2 [4] Given a graplG = (V,E) and an edgégu, v} € E, edge local com-
plementatior(ELC) on{u,v} transformsG into GI"Y) = Gxus v« U= GV UxV.



Fig. 2 Visualization of the ELC Operation

Definition 3 [4] ELC on{u,v} can equivalently be defined as follows. Decompose
V '\ {u, v} into the following four disjoint sets, as visualized in F&j.

A \Vertices adjacent ta, but not tov.
B Vertices adjacent tg, but not tou.
C Vertices adjacent to botlhandv.

D Vertices adjacent to neithermorv.

To obtainG("Y), perform the following procedure. For any pair of verticesy?},

wherex belongs to clas#, B, or C, andy belongs to a different clasa, B, or C,

“toggle” the pair{x,y}, i.e., if {X,y} € E, delete the edge, and{k,y} ¢ E, add the
edge{x,y} to E. Finally, swap the labels of verticesandv.

Definition 4 TheLC orbit of a graphG is the set of all graphs that can be obtained
by performing any sequence of LC operations ®nSimilarly, the ELC orbit of

G comprises all graphs that can be obtained by performing agyence of ELC
operations ot. (Usually we consider LC and ELC orbits of unlabeled grapghe
cases where we consider orbits of labeled graphs, this wilidied.)

The LC operation was first defined by de Fraysseix [11], aret Bttidied by Fon-
der-Flaas [10] and Bouchet [4]. Bouchet defined ELC as “cemgintation along
an edge” [4], but this operation is also known @goting on a graph [3, 20]. LC
orbits of graphs have been used to stadgntum graph statd4 3, 14, 18], which are
equivalent toself-dual additive codes ov&F4) [5]. We have previously used LC
orbits to classify such codes [8,9]. ELC orbits have alsatstedied in the context of
guantum graph states [17,20iterlace polynomialsf graphs have been defined with
respectto both ELC [3]and LC [1]. These polynomials encadgerties of the graph
orbits, and were originally used to study a problem relateBMNA sequencing [2].

Proposition 1 If G = (V,E) is a connected graph, then, for any vertex V', Gx v
must also be connected. Likewise, for any efige} < E, G must be connected.



Proof If the edge{x,y} is deleted as part of an LC operationwgrbothx andy must
be, and will remain, connected to Similarly, if by performing ELC on the edge
{u,v}, the edg€x,y} is deleted, bottx andy will remain connected to either, v, or
both, andu andv will remain connected. O

Proposition 2 [20]If G is an (a, b)-bipartite graph, then, for any edgei, v} € E,
GW) must also béa, b)-bipartite.

Proof A bipartite graph with an edgéu, v} can not contain any vertex that is con-
nected to botlu andv. Using the terminology of Definition 3, the s&twill always
be empty when we perform ELC on a bipartite graph. Moreouéxeatices in the
setA must belong to the same bipartition asand all vertices irB must belong to
the same bipartition as All edges that are added or deleted have one endpoit in
and one irB, and it follows that bipartiteness is preserved. O

Proposition 3 Let G be a bipartite graph, and lefu,v} € E. Then ¢") can be
obtained by “toggling” all edges between the sets\Nv} and N, \ {u}, followed by
a swapping of vertices u and v.

1.2 Coding Theory

A binary linear code®, is a linear subspace of GB" of dimensionk, where
0<k<n. ¥ is called an[n,k] code, and the 2elements of¢ are calledcode-
words TheHamming weighof u € GF(2)", denoted w(u), is the number of nonzero
components ofi. The Hamming distancdetweenu,v € GF(2)" is wt(u —v). The
minimum distancef the code? is the minimal Hamming distance between any
two codewords ofs’. Since% is a linear code, the minimum distance is also given
by the smallest weight of any codeword #i. A code with minimum distance

is called an[n,k,d] code. A code igdlecomposabléf it can be written as theli-
rect sumof two smaller codes. For example, Iét be an[n,k,d] code ands” an
[",K',d’] code. The direct sum¢ & ¢’ = {u||[v|u € €,v e ¢}, where|| means
concatenation, is am+ n’.k+ k', min{d,d’}] code. Two codes¢ and%”, are con-
sidered to beequivalentif one can be obtained from the other by some permutation
of the coordinates, or equivalently, a permutation of theiecms of a generator ma-
trix. We define thedual of the code®” with respect to the standard inner product,
¢+ ={ue GF2)"|u-c=0forallce ¢}. ¥ is calledself-dualif € = ¢, and
isodualif ¢ is equivalent tas*. Self-dual and isodual codes must have even length
n, and dimensiork = . The code?’ can be defined by & x n generator matrix

C, whose rows spaf#’. A set ofk linearly independent columns @f is called an
information sebf ¥". We can permute the columns©fsuch that an information set
makes up the firdt columns. By elementary row operations, this matrix can then
transformed into a matrix of the for@ = (I | P), wherel is ak x k identity matrix,
andP is somek x (n— k) matrix. The matrixC’, which is said to be oftandard form
generates a cod&’ which is equivalent to¢. Every code is equivalent to a code
with a generator matrix of standard form. The matdk= (PT | I), wherel is an
(n—Kk) x (n—Kk) identity matrix is called th@arity check matri>of ¥”. Observe that
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G'H'T = 0, where 0 is the all-zero vector. It follows theit must be the generator
matrix of "+

2 ELC and Code Equivalence

As mentioned earlier, LC orbits of graphs correspond toejance classes of self-
dual quantum codes. We have previously classified all sudbsof length up to 12 [9],
by classifying LC orbits of simple undirected graphs. Irsthaper, we show that ELC
orbits of bipartite graphs correspond to the equivalenassgs of binary linear codes.
First we explain how a binary linear code can be representeddraph.

Definition 5 [6,19] Let ¢ be a binary lineafn,k] code with generator matri€ =
(I'| P). Then the codé& corresponds to thék, n — k)-bipartite graph om vertices

with adjacency matrix
Okxk P )
= ,
(PT Otk (n—k)

where 0 denote all-zero matrices of the specified dimensions

Theorem 1 Let G= (V,E) be the(k,n— k)-bipartite graph derived from a standard
form generator matrix G= (I | P) of the[n,k] code@. Let G be the graph obtained
by performing ELC on the edde, v} € E, followed by a swapping of vertices u and
v. Then the cod&” generated by C= (I | P') corresponding to Gis equivalent to
%, and can be obtained by interchanging coordinates u and#.of

Proof Assume, without loss of generality, that< k andv > k. C’ can be obtained
from C by adding rowu to all rows inNy \ {u} and then swapping columnsand

v, whereN, denotes the neighbourhood ofin G. These operations preserve the
equivalence of linear codes. As described in Propositiaing bipartite grapl@ is
transformed intdG’ by “toggling” all pairs of verticeq x,y}, wherex € N, \ {v} and

y € Ny \ {u}. This action on the submatriRis implemented by the row additions on
C described above. However, this also “toggles” the pairg}, wherey € N, \ {u},
transforming columrv of C into a vector with 0 in all coordinates except But
columnu of C now contains the original column and thus swapping columaosand

v restores the neighbourhoodwgfgiving the desired submatriR. O

Corollary 1 Applying any sequence of ELC operations to a graph G cormedipg
to a codez” will produce a graph corresponding to a code equivalerttto

Instead of mapping the generator mai@ix= (I | P) to the adjacency matrix of
a bipartite graph in order to perform ELC on the edgev}, we can work directly
with the submatrix¥P. Let the rows ofP be labeled 12,...,k and the columns of
be labelek+ 1,k+ 2, ...,n. Assume thati indicates a row oP and thatv indicates
a column ofP. The elemenR; is then replaced by £ Rj if i #u, j # Vv, andR,j =
Rv=1.
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Fig. 3 Two Representations of t&, 4,3] Hamming Code. Left: The GrapB. Right: The GraptG@7),

Example 1The|[7,4,3] Hamming code has a generator matrix

1000011
c_|o1o0qgio01
“|oo1d110]

0001111

which corresponds to the graph shown on the left side of FigeLE on the edge
{2,7} produces the graph shown on the right side of Fig. 3, whichesponds to the
generator matrix

1000111
0100101
00140110
0001011

C =

The code generated Iy is also obtained by swapping coordinates 2 and 7 of the
code generated by.

Consider a cod®’. As described in Section 1.2, itis possible to go from a gener
tor matrix of standard fornC = (I | P), to another generator matrix of standard form,
C/, of a code equivalent t@ by one of then! possible permutations of the columns
of C, followed by elementary row operations. More precisely,caa get fronC to
C' via a combination of the following operations.

1. Permuting the columns &f

2. Permuting the columns of followed by the same permutation on the row<of
to restore standard form.

3. Swapping columns frorh with columns fromP, such that the firsk columns
still is an information set, followed by some elementary mperations to restore
standard form.

Theorem 2 Let% and%” be equivalent codes. Let C andi@ matrices of standard
form generatingg’ and%”. Let G and Gbe the bipartite graphs corresponding to C
and C. G is isomorphic to a graph obtained by performing some seqeiefi&LC
operations on G.



Proof ¢ and%”’ must be related by a combination of the operations 1, 2, aistegil
above. It is easy to see that operations 1 and 2 appli€@lgooduce an isomorphic
graph. It remains to prove that operation 3 always corredpodm some sequence of
ELC operations. We know from Theorem 1 that swapping columasdv of C,
whereu is part of| andv is part ofP, corresponds to ELC on the edde,v} of G,
followed by a swapping of the verticesandv. When{u,v} is not an edge o6, we
can not swap columngsandv of C via ELC. In this case, coordinateof columnu

is 0, and columru has 1 in coordinate and O elsewhere. Swapping these columns
would result in a generator matrix where the fikstolumns all have 0 at coordinate
u. These columns can not correspond to an information sedlliét¥s that if {u, v} is
not an edge o6, swapping columna andv is not a valid operation of type 3 in the
above list. Thus ELC and graph isomorphism cover all possiplerations that map
standard form generator matrices of equivalent codes to ether. O

Let us for a moment consider ELC orbits lafoeledgraphs, i.e., where we do
not take isomorphism into consideration. It (V, E) be the bipartite graph repre-
senting the cod&’, andG("Y) be the graph obtained by ELC on the edgev} € E.
Since we perform ELC odu,v} without swappingu andv afterwards, the adja-
cency matrix ofG("Y will not be of the type we saw in Definition 5. We can think
of G as a graph corresponding to the information{sk®, ..., k} of €. Assume that
u <k andv > k. G will then represent another information set @t namely
{1,2,...,k}\ {u} U{v}. With this interpretation, the next corollary follows frofine-
orem 2.

Corollary 2 Let G be a bipartite graph representing the cafleEach labeled graph
in the ELC orbit of G corresponds to an information se#zfMoreover, the number
of information sets o¥% equals the number of labeled graphs in the ELC orbit of G.

Note that the distinction between ELC with or without a finabpping of vertices
is only significant when we want to find information sets. Ftimey applications,
where we consider graphs up to isomorphism, this distindsanot of importance.

Theorem 3 The minimum distance, d, of a binary lindark,d] code%, is equal to
0+ 1, whered is the smallest vertex degree over all graphs in the assedi&l_C
orbit.

Proof A vertex with degreed — 1 in the ELC orbit corresponds to a codeword of
weightd. We need to show that such a vertex always existsd_bt a generator
matrix of standard form, where all rows have weight gredtantd, that generates
a code equivalent t&’. Find a codewora of weightd, generated b, and let the
i-th row of C be one of the rows thatis linearly dependent on. Permute the columns
of C to obtainC’ where the firsk columns is still an information set, and where
is mapped ta’ with 1 in coordinatd, with the rest of thek first coordinates being
0. (This will always be possible, since th#h row of C has weight greater thash)
Replace thé-th row of C’' by ¢’ to getC”. We can transforn€” into a matrix of the
form (I | P) by elementary row operations. Ravef this final matrix has weighd,
and thus the corresponding bipartite graph has a vertexdeitineed — 1. O



Table 1 Numbers of LC Orbits

n 1 2 3 4 5 6 7 8 9 10 11 12

ik 1 1 1 2 4 11 26 101 440 3,132 40,457 1,274,068
tt 1 2 3 6 11 26 59 182 675 3,990 45144 1,323,363

3 Classification of ELC Orbits

We have previously classified all self-dual additive codesrdsH4) of length up

to 12 [7, 9], by classifying orbits of simple undirected gnapwith respect to lo-
cal complementation and graph isomorphism. In Table 1, #ypisnce(i-°) gives
the number of LC orbits of connected graphsronertices, while(ti¢) gives the
total number of LC orbits of graphs amvertices. A database containing one rep-
resentative from each LC orbit is availabletattp: //www.ii.uib.no/~larsed/
vncorbits/.

By recursively applying ELC operations to all edges of a graphilst checking
for graph isomorphism using the prograrauty[16], we can find all members of the
ELC orbit. LetGp be the set of all unlabeled simple undirected connectechgrap
nvertices. Let the set of all distinct ELC orbits of conneogedphs om vertices be a
partitioning of Gy, into iEC disjoint sets. Our previous classification of the LC orbits
of all graphs of up to 12 vertices helps us to classify ELCtstlsince it follows from
Definition 2 that each LC orbit can be partitioned into a setligfjoint ELC orbits.
We have used this fact to classify all ELC orbits of graphs prtai12 vertices, a
computation that required approximately one month of rogrtime on a parallel
cluster computer. In Table 2, the sequefi§é®) gives the number of ELC orbits of
connected graphs anvertices, while(t5-C) gives the total number of ELC orbits of
graphs om vertices. Note that the value fcan be derived easily once the sequence
(im) is known for 1< m < n, using theEuler transform{21],

Ch = did7
djn

t1 = ¢y,

1 n-1
th=-1(¢ Ctn_k | -
n=g n+kzlknk

A database containing one representative from each ELECaabibe found aittp:
//www.ii.uib.no/~larsed/pivot/.

We are particularly interested in bipartite graphs, beeaafgheir connection to
binary linear codes. For the classification of the orbitsipltite graphs with respect
to ELC and graph isomorphism, the following technique iphdl If Gis an(a,b)-
bipartite graph, it has®+ 2° — 2 possibleextensionsEach extension is formed by
adding a new vertex and joining it to all possible combinagiof at least one of
the old vertices. LeP, be a set containing one representative from each ELC orbit
of all connected bipartite graphs arvertices. The sefE,, is formed by making all
possible extensions of all graphsRp_;. It can then be shown th&, C E,, i.e., that
the setE,, will contain at least one representative from each ELC avbitonnected



Table 2 Numbers of ELC Orbits and Binary Linear Codes

n i5Le t5Le i 8 o8 iS g

1 1 1 1 1 1 -
2 1 2 1 2 1 1
3 2 4 1 3 2 -
4 4 9 2 6 3 1
5 10 21 3 10 6 -
6 35 64 8 22 13 3
7 134 218 15 43 30 -

8 777 1,068 43 104 76 10
9 6,702 8,038 110 250 220 -
10 104,825 114,188 370 720 700 40
11 3370317 3,493,965 1,260 2,229 2,520 -
12 231,557,290 235,176,097 5,366 8,361 10,503 229

13 ? ? 25684 36441 51,368

14 154,104 199,610 306,328 1,880
15 1,156,716 1395326 2,313,432 -
16 ? ? 23,069,977 ?
17 157,302,628 ? 314,605,256

bipartite graphs on vertices. The se, will be much smaller tha®,, so it will be
more efficient to search for a set of ELC orbit representativéhin E,,. A similar
technique was used by Glynn, et al. [13] to classify LC orbits

In Table 2, the sequendé "C’B) gives the number of ELC orbits of connected
bipartite graphs om vertices, anc{tELc'B) gives the total number of ELC orbits of
bipartite graphs on vertices. A database containing one representative frain ef
these orbits can be found&attp://www.ii.uib.no/~larsed/pivot/.

Theorem 4 Let k# 5. Then the number of inequivalent binary lingark] codes,
which is also the number of inequivaldntn — k] codes, is equal to the number of
ELC orbits of(n— k, k)-bipartite graphs.

When n is even and* 3, the number of inequivalent binary linefr, k| codes is

equal to twice the number of ELC orbits @& k)-bipartite graphs minus the number
of isodual codes of length n.

Proof We recall that if a cod& is generated byl | P), then its dualg™*, is gener-
ated by(PT | I). Also note thats* is equivalent to the code generated (by PT).
The bipartite graphs corresponding to the codes generatéd|tP) and(l | PT) are
isomorphic. It follows that the ELC orbit associated with [ark] code¥’ is simul-
taneously the orbit associated with the d{rah — k] code%*. In the case where

k=3, each ELC orbit corresponds to two non-equivalgnk] codes, except in the
case wheré&’ is isodual. O

Corollary 3 The total number of binary linear codes of length n is equaéhtice the

number of ELC orbits of bipartite graphs on n vertices, mithesnumber of isodual
codes of length n.

Note that if we only consider connected graphsrovertices, we get the num-
ber of indecomposable codes of length§, i.e., the codes that can not be written
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as the direct sum of two smaller codes. The total number otsarhn easily be
derived from the values ofi$). Table 2 gives the number of ELC orbits of con-

nected bipartite graphs anvertices,i5*“B, the number of indecomposable binary

linear codes of lengthm, i$, and the number of indecomposable isodual codes of
length n, i7°. A method for counting the number of binary linear codes by us
ing computer algebra tools was devised by Fripertinger arch&r [12]. A table
enumerating binary linear codes of length up to 25 is avilamline athttp:
//www.mathe2.uni-bayreuth.de/frib/codes/tables_2.html. The numbers

in italics in Table 2 are taken from this webpage. Note howdat this approach
only gives the number of inequivalent codes, and does natyz®the codes them-
selves. Classification of all binary linear codes of lengthiau14 and with distance at
least 3 was carried out bystergard [22]. He also used a graph-based algorithm, but
one quite different from the method described in this papea.recent book by Kaski
andOstergard [15], it is proposed as a research problem taextes classification

to lengths higher than 14. Sang-il Oum [personal commuitichtiemonstrated that
the 1,395,326 ELC orbits of bipartite graphs on 15 vertia@sloe generated in about
58 hours. This indicates that classification of codes by EHSit®is comparable to
the currently best known algorithm. It may also be possib& bur method will be
more efficient than existing algorithms for classifying sip¢types of codes. For in-
stance, matrices of the forh | P), whereP is symmetric, generate a subset of the
isodual codes. The bipartite graphs corresponding to tbhedes, which were also
studied by Curtis [6], should be well suited to our methodgcsiany graph of this
type must arise as an extension of a graph of the same type.
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