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Abstract It is shown how a half-rate length n binary linear block code

can always be used to generate a pair of bipolar Bent sequences of length 2n,

for n even. The technique uses the length 2n Walsh-Hadamard Transform in

conjunction with multidimensional cyclic shifts and multidimensional phase

shifts. The technique is also used to generate Almost Bent sequences when

n is odd.

Note: This paper remains unpublished because (as pointed about by

a referee), it rediscovers the completed Maiorana-McFarland class of bent

functions. So the result is well-known:

Given a binary [n, n/2]-linear code C, i.e. an n/2-dimensional vector sub-

space of F n
2 , the set of all cosets of C and the set of all cosets of C⊥ both

have size 2n/2. There exist 2n/2! bijections between these two sets. By

applying a linear isomorphism, we can assume that C = F
n/2
2 × {0} and

C⊥ = {0} × F
n/2
2 . The sequences introduced in this paper then correspond

to Boolean functions belonging to the Maiorana-McFarland class.

In the case of a binary [n, (n + 1)/2]-linear code, a similar construction

leads to almost bent sequences.

1 Introduction

It is well-known that the dual of a length n binary linear block code can

be obtained using the Walsh-Hadamard Transform (HT) of length 2n [2].

Using a length 2n vector (indicator) representation for a half-rate length n

binary linear block code, C, this paper shows how a length 2n vector which

represents the modified disjoint sum of all cosets of C has an HT which is a

1This work was funded by NFR Project Number 119390/431
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vector representing a modified disjoint sum of all cosets of C⊥. When C is

half-rate (n even) the two vectors are bipolar and therefore form a pair of

bipolar Bent sequences [3], (i.e. they are HTs of each other, and therefore

both have ’flat’ HT spectrums). When C is rate n+1
2n , (n odd), one of the

vectors is bipolar and Almost Bent. Central to the argument of this paper

is the equivalence between multidimensional ’phase twist’ of a vector and

the multidimensional cyclic shift of its HT.

2 The Hadamard Transform (HT)

The HT here refers to the length 2n transform represented by the 2n × 2n

matrix formed from the nth tensor product of

(

1 1

1 −1

)

. In the following,

unless required, we implicitly normalise all HT output vectors.

2.1 Cyclic Shift and Phase Twist Properties of the HT

Let i =
∑n−1

p=0 ip2
p and j =

∑n−1
p=0 jp2

p. Let V = (V0, V1, . . . , V2n−1). Let

v = (v0, v1, . . . , v2n−1) be the HT of V. Then the multidimensional ’phase

twist’ of vector V, σ, is defined as follows,

σ(V, j) = (. . . , Vi(−1)i·j , . . .)

where · is the ’dot’ (inner) product of i and j when viewed as vectors. The

multidimensional cyclic shift of v, ς = HT(σ), is defined as follows,

ς(v, j) = HT(σ(V, j)) = (v0⊕j , v1⊕j , . . . , v(2n−1)⊕j)

where i ⊕ j ≡ (i0 ⊕ j0, i1 ⊕ j1, . . . , i2n−1 ⊕ j2n−1) mod 2. In other words

the length 2n vectors, v and V, can be viewed as vectors in n dimensions,

and multidimensional phase twist in one domain becomes multidimensional

cyclic shift in the HT domain.

3 A Vector (Indicator) Representation of a Linear

Block Code and its Dual

Consider a binary linear (n, k, d) block code, C. Consider the length 2n

binary vector (indicator) representation of C, V = (V0, V1, . . . , V2n−1), Vi ∈

{0, 1}. Then Vi = 1 iff the length n binary representation of i is a codeword
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of C. Otherwise Vi = 0. If C is a linear code, then the HT of V, v, is the

length 2n binary vector representation of the dual code of C, C⊥ 2. C⊥

is an (n, n − k, d′) binary linear code. If C = C⊥ then C is defined to be

Self-Dual. In this paper we do not focus on the distance, d, of the code.

We simply require that the code is linear. Moreover, for the construction of

Bent sequences we use C with k = n
2 .

3.1 Example 1

Consider the (4, 2, 2) code, C = {0000, 0111, 1110, 1001}. This can be rep-

resented using the indicator vector, (reading left to right),

V = (1000000101000010)

where Vi = 1 if the binary representation of i is in C. The HT of V is given

by,

v = HT(V) = (1000001000010100)

Therefore C⊥ = {0000, 0110, 1011, 1101}.

4 Constructing a Bent Bipolar Vector from the

Union of all Cosets of the Code, C

Let v be the vector representation of a length 2n binary linear (n, n− k, d′)

code, C⊥, as explained previously. Let vj be the vector representation of

the coset of this linear code given by C⊥
j = C⊥⊕ j. In other words vj is the

multidimensional cyclic shift of v by j, given by,

vj = ς(v, j)

Let D be a (non-unique) maximum size set of length n binary vectors such

that j′ 6∈ C⊥
j ∀ j, j′ ∈ D, j 6= j′. Then |D| = 2k. Moreover,

Zn
2 =

⋃

j∈D

C⊥
j

i.e. the union of all cosets of C⊥
j , (which are disjoint), is the set of all binary

vectors of length n. This can be rewritten as,

1 =
∑

j∈D

vj

2A good test of linearity of a code is to take the HT of its indicator vector. If the

non-zero output points do not all have the same magnitude then the code is not linear.
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where 1 = (1, 1, . . . , 1) is the All One Vector of length 2n. If the HT of Vj

is vj then,

δ =
∑

j∈D

Vj

where δ = (1, 0, 0, . . . , 0) is the length 2n ’delta’ function.

So we have formed the All One Vector (AOV) in the Hadamard domain

from the union of all cosets of the dual code, C⊥ and, of course, the inverse

HT of the AOV is the delta function. In this paper, we aim to have the

vector V and its HT, v, to be both bipolar vectors (i.e. a pair of Bent

sequences), i.e. we do not want the delta function. Instead we want an

All Magnitude One Vector whose inverse HT is also an All One Magnitude

Vector. To achieve this we must simultaneously cyclically shift in both

transform domains, and this is the subject of the following argument.

Define the vector vj,m as follows,

vj,m = σ(vj,m)

In other words, vj,m is the multidimensional cyclic shift of v by j (which

performs a multidimensional phase twist of V), followed by the multidimen-

sional phase twist of vj (which performs a multidimensional cyclic shift of

Vj by m).

Let Dv be the set of coset leaders for v, and DV be the set of coset

leaders for V. Define the index pair (j,m) ∈ Dv ⊗DV.

Definition 1 S is a (non-unique) maximum size set of index pairs (j,m),

j ∈ Dv, m ∈ DV, such that, if (j,m), (j ′ ,m′) ∈ S, then j 6= j ′, m 6= m′.

Then |S| = 2k and there are (2k)! distinct choices for S.

Each of the index pairs in S specifies a distinct length 2n Bent bipolar

sequence, Vj,m. Let the HT of Vj,m be vj,m. We are now in a position to

state the main theorem,

Theorem 1 Let,

wS =
∑

(j,m)∈S

vj,m = HT(WS)

where WS =
∑

(j,m)∈S Vj,m. Then both wS and WS are flat bipolar se-

quences. Consequently, wS and WS are a pair of length 2n Bent bipolar

sequences.
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The reasoning for Theorem 1 follows from the fact that the constituent

vector, v, undergoes 2k cyclic shifts in both transform domains. Therefore,

as the union of the 2k cosets of C covers the complete length 2n binary

vector space, the union of these 2k cyclic shifts ’fills in’ all the zeroes in the

vectors in both transform domains with 1’s or −1’s according to the phase

twists.

Corollary 1 Theorem 1 allows the construction of (2k)! Bent sequence ’pairs’

comprising (2k)! distinct length 2n Bent sequences, wS.

The binary form of each of these (2k)! Bent sequences can be shown to be a

coset leader for a Reed-Muller RM(1, n) coset code, such that each member

of the bipolar form of the RM(1, n) coset is Bent. However these cosets are

not completely disjoint as we see from the following argument. Let r be a

length 2n vector from RM(1, n) which is also in the subspace RM(1, n
2 ) which

covers the same space as that generated by linear combinations of members

of Dv. In this subspace r is referred to as r′. Then vj,m is in the same

RM(1, n) coset as vj⊕r,m. Moreover there exists wS = vj0,m0
⊕vj1,m1

⊕. . .⊕

vj
2k

−1
,m

2k
−1

and wS ⊕ r = vj0⊕r′,m0
⊕vj1⊕r′,m1

⊕. . .⊕vj
2k

−1
⊕r′,m

2k
−1

which

are distinct and exist in the same coset of RM(1, n) with coset leader wS.

To ensure the union of RM(1, n) cosets is disjoint we modify the generation

of wS of Theorem 1 by replacing S with T,

Definition 2 T is a (non-unique) maximum size set of index pairs (j,m),

j ∈ Dv, m ∈ DV, such that, if (j,m), (j ′,m′) ∈ T, then j 6= j ′, m 6= m′.

Moreover, if j = hv then m = hV and vice versa, where hv is a pre-chosen

element from Dv, and hV is a pre-chosen element from Dv. Then |T| =

2k − 1 and there are (2k − 1)! distinct choices for T.

We now replace Theorem 1 with the following,

Theorem 2 Let,

wT =
∑

(j,m)∈T

vj,m = HT(WT)

where WT =
∑

(j,m)∈T Vj,m. Then both wT and WT are flat bipolar se-

quences. Consequently, wT and WT are a pair of length 2n Bent bipolar

sequences. Moreover, the set of wT belong to distinct cosets of RM(1, n).

Noting that RM(1, n) is of size 2n+1, we state the following,
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Corollary 2 The union of all RM(1, n) cosets of sequences whose bipolar

form is constructed using Theorem 2 has size (2k − 1)!2n+1.

It appears that we cannot construct all possible Bent sequences of a given

length by using Theorem 1, and this goal is the subject of ongoing research.

4.1 Example 1 (continued)

For C⊥ as defined in Example 1, we choose Dv = DV = {0000, 0001, 0010, 0011},

therefore j,m ∈ {0, 1, 2, 3}. Let us choose, say, to restrict such that, ∀ T,

(j = 0) ⇔ (m = 0). Then we have 3! = 6 choices for T. For instance, we

will generate wT for T = {(0, 0), (1, 2), (2, 1), (3, 3)}. In the following, ’+’

means 1 and ’−’ means −1. We have,

v0 = +00000 + 0000 + 0 + 00, v0,0 = +00000 + 0000 + 0 + 00,

v1 = 0 + 00000 + 00 + 0 + 000, v1,2 = 0 + 00000 − 00 − 0 + 000,

v2 = 00 + 0 + 0000 + 00000+, v2,1 = 00 + 0 + 0000 − 00000−,

v3 = 000 + 0 + 00 + 00000 + 0, v3,3 = 000 + 0 − 00 + 00000 − 0,

Therefore wT = v0,0⊕v1,2⊕v2,1⊕v3,3 = +++++−+−+−−+++−−. wT

is Bent and has a HT given by WT = +++++−−+++−−+−+−. The

binary form of wT has Algebraic Normal Form wT (x) = x0x2 +x0x3 +x1x3.

Moreover the RM(1, 4) coset having wT (x) as a coset leader will be Bent.

5 Constructing an Almost Bent Bipolar Vector

Using the Same Technique

Consider the (n, k, d) code C⊥ where n is odd and k = n+1
2 . Then its

indicator vector, v, will have weight 2k, and the indicator vector for C

will have weight 2k−1. Therefore the set of index pairs, S, now satisfies

|S| = 2k−1. We once more apply Theorem 2, but now the disjoint sum

of the vectors, vj,m, is only sufficient to make wS a bipolar vector. In

contrast, the vector, WS will be two-valued in magnitude, with half it’s

elements 0. As ws is a bipolar sequence, it therefore fits the description of

an Almost Bent sequence [1]. Using similar arguments as above, there are

now (2k−1)!
2k−1!

distinct choices for T, each choice identifying a distinct Almost

Bent sequence, wT, from a distinct coset of RM(1, n). These Almost Bent

sequences allow us to identify (2k−1)!
2k−1!

2n+1 distinct Almost Bent sequences.
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5.1 Example 2

Let C = {000, 111}. Therefore V = (10000001). Therefore v = HT(V) =

(10010110). Therefore C⊥ = {000, 011, 101, 110}. We choose Dv = {000, 001}

and DV = {000, 001, 010, 100}. Let us choose, say, to restrict such that, ∀

T, (j = 0) ⇔ (m = 0). We therefore have 3!
2! = 3 choices for T. For instance,

we will generate wT for T = {(0, 0), (1, 4)}. We have,

v0 = +00 + 0 + +0, v0,0 = +00 + 0 + +0,

v1 = 0 + +0 + 00+, v1,4 = 0 + +0 − 00−,

Therefore wT = v0,0 ⊕ v1,4 = + + + + − + +−. wS is Almost Bent and

has a HT given by WT = +00 + −00+. The binary form of wT has Alge-

braic Normal Form wT (x) = x0x2 +x1x2 +x2. Moreover the RM(1, 3) coset

having wT (x) as a coset leader will be Almost Bent.

6 Conclusion

We have presented a technique for constructing Bent and Almost Bent bipo-

lar sequences from Linear Block Codes, by using properties of the Hadamard

Transform. Ongoing research will seek to identify those Bent and Almost

Bent sequences which cannot be constructed by the technique of this paper

(if any).
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