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Abstract. We show that (n, 2n, d) additive codes over GF(4) can be
represented as directed graphs. This generalizes earlier results on self-dual
additive codes over GF(4), which correspond to undirected graphs. Graph
representation greatly reduces the complexity of code classification, and
enables us to classify additive (n, 2n, d) codes over GF(4) of length up
to 7. From this we also derive classifications of isodual and formally
self-dual codes. We introduce new constructions of circulant and bordered
circulant directed graph codes, and show that these codes will always be
isodual. A computer search of all such codes of length up to 26 reveals
that these constructions produce many codes of high minimum distance.
In particular, we find new near-extremal formally self-dual codes of length
11 and 13, and isodual codes of length 24, 25, and 26 with better minimum
distance than the best known self-dual codes.

1 Introduction

An additive code, C, over GF(4) of length n is an additive subgroup of GF(4)n.
We denote GF(4) = {0, 1, ω, ω2}, where ω2 = ω + 1. C contains 2k codewords for
some 0 ≤ k ≤ 2n, and can be defined by a k × n generator matrix, with entries
from GF(4), whose rows span C additively. C is called an (n, 2k) code. In this
paper we will only consider (n, 2n), or half-rate, codes.

The Hamming weight of u ∈ GF(4)n, denoted wt(u), is the number of nonzero
components of u. The Hamming distance between u and v is wt(u − v). The
minimum distance of the code C is the minimal Hamming distance between any
two distinct codewords of C. Since C is an additive code, the minimum distance
is also given by the smallest nonzero weight of any codeword in C. A code with
minimum distance d is called an (n, 2k, d) code. The weight distribution of the
code C is the sequence (A0, A1, . . . , An), where Ai is the number of codewords of
weight i. The weight enumerator of C is the polynomial

WC(x, y) =
n∑

i=0

Aix
n−iyi (1)

Two additive codes over GF(4), C and C′, are equivalent [1] if and only if the
codewords of C can be mapped onto the codewords of C′ by a map that consists
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of a permutation of coordinates (or columns of the generator matrix), followed
by multiplication of coordinates by nonzero elements from GF(4), followed by
possible conjugation of coordinates. Conjugation of x ∈ GF(4) is defined by
x = x2. For a code of length n, there is a total of 6nn! such maps. The 6 possible
transformations given by scaling and conjugation of a coordinate are equivalent
to the 6 permutations of the elements {1, ω, ω2} in the coordinate.

The trace map, Tr : GF(4) → GF(2), is defined by Tr(x) = x + x. The
Hermitian trace inner product of two vectors over GF(4) of length n, u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn), is given by

u ∗ v = Tr(u · v) =
n∑

i=1

Tr(uivi) =
n∑

i=1

(uiv
2
i + u2

i vi) (mod 2). (2)

We define the dual of the code C with respect to the Hermitian trace inner product,
C⊥ = {u ∈ GF(4)n | u ∗ c = 0 for all c ∈ C}. If C = C⊥, then C is self-dual and
must be an (n, 2n) code. C is formally self-dual [2] if WC(x, y) = WC⊥(x, y), and
isodual if C is equivalent to C⊥. All self-dual codes are isodual, all isodual codes
are formally self-dual, and all formally self-dual codes are half-rate codes. The
set of linear half-rate codes over GF(4) is a small subset of the additive half-rate
codes of even length. Optimal linear half-rate codes over GF(4) of length n ≤ 18
were classified by Gulliver, Österg̊ard, and Senkevitch [3]. The set of half-rate
additive codes contains all self-dual, isodual, and formally self-dual additive codes,
as well as all half-rate linear codes.

It follows from the Singleton bound [4] that any half-rate additive code over
GF(4) must satisfy

d ≤
⌊n

2

⌋
+ 1. (3)

C is called extremal if it attains the minimum distance d given by the Singleton
bound, and near-extremal if it has minimum distance d− 1. If a code has highest
possible minimum distance, but is not extremal, it is called optimal. Han and
Kim [2,5] showed that there are no extremal formally self-dual codes of length
n ≥ 8, and no near-extremal formally self-dual codes of length n = 16, n = 18,
or n ≥ 20. Tighter bounds on the minimum distance of self-dual additive codes
over GF(4) were given by Rains and Sloane [6, Theorem 33].

One of the motivations for studying self-dual additive codes over GF(4) has
been the connection to quantum error-correcting codes [7]. Non-self-dual additive
codes cannot be applied as quantum codes in the same way, but are interesting
for other reasons. Han and Kim [2,5] studied formally self-dual additive codes
over GF(4), and showed that some of these codes have higher minimum distance
than the best self-dual codes of the same length. Additive codes may also be
better than the best linear codes of the same length. It is known that some strong
binary codes can be projected onto additive codes over GF(4) [8]. A connection
between formally self-dual codes over GF(4) and lattices has also been shown [9].
We have previously studied the connection between self-dual additive codes over
GF (q2), for any prime power q, and weighted graphs [10]. Such generalizations



could also be considered for additive codes in general, but will not be discussed
in this paper.

Let tn be the number of inequivalent codes of length n. To find one code
from each of the tn equivalence classes, i.e., to classify the codes of length n,
is a hard problem. We have previously classified all self-dual additive codes
over GF(4) of length up to 12 [11], by using the fact that all such codes can
be represented as undirected graphs [12–16], and that an operation called local
complementation (LC) generates orbits of graphs that correspond to equivalence
classes of codes [12,15,16].

The main result of this paper is to show that all additive (n, 2n, d) codes over
GF(4), except for a few special cases, have representations as directed graphs.
This basically transforms the problem of classifying such quaternary codes to a
binary problem, with greatly reduced complexity. We show that an algorithm by
Österg̊ard [17] for checking equivalence of linear codes also works for additive
codes over GF(4). By using this algorithm, and the fact that codes correspond to
directed graphs, we are able to classify all additive (n, 2n, d) codes over GF(4) of
length up to 7. We find that there are more than two million inequivalent codes
of length 7. We have also checked which codes are formally self-dual, isodual,
or self-dual, and give details of this enumeration. We introduce circulant and
bordered circulant directed graph codes, and a computer search of all such codes
up to length 26 reveals this subclass of additive half-rate codes to contain many
codes with high minimum distance. Due to the structure of the generator matrices,
codes from these constructions will always be isodual, and hence also formally
self-dual. We construct new near-extremal formally self-dual codes of length 11
and 13, which were previously unknown [2]. This also answers the open question
of the existence of an additive (13, 213, 6) code [18]. Finally, we find isodual codes
of length 24, 25, and 26 with minimum distance 9. The best known self-dual
codes of these lengths have distance 8.

2 Directed Graph Representation

A directed graph is a pair G = (V,E) where V is a set of vertices, and E ⊆ V ×V
is a set of ordered pairs called edges. A graph with n vertices can be represented
by an n × n adjacency matrix Γ , where γij = 1 if (i, j) ∈ E, i.e., if there is a
directed edge from i to j, and γij = 0 otherwise. We will only consider simple
graphs, where all diagonal elements of the adjacency matrix are 0. The special
case where we always have an edge (j, i) ∈ E whenever there is an edge (i, j) ∈ E,
i.e., the adjacency matrix is symmetric, is called an undirected graph. The in-
neighbourhood of v ∈ V , denoted NIv ⊂ V , is the set of vertices i such that there
is a directed edge (i, v) ∈ E. Similarly, NOv ⊂ V is the out-neighbourhood of v,
i.e., the set of vertices i such that there is a directed edge (v, i) in E. |NIv| is
the indegree of v, and |NOv| is the outdegree of v. Two graphs G = (V,E) and
G′ = (V,E′) are isomorphic if and only if there exists a permutation π of V such
that (u, v) ∈ E ⇐⇒ (π(u), π(v)) ∈ E′. A directed graph is connected, (also
known as weakly connected), if we can reach any vertex starting from any other



vertex by traversing edges in some direction, i.e., not necessarily in the direction
they point.

Definition 1. A directed graph code is an additive (n, 2n) code over GF(4) that
has a generator matrix of the form C = Γ +ωI, where Γ is the adjacency matrix
of a simple directed graph and I is the identity matrix.

Proposition 1. Given a directed graph code C with generator matrix C = Γ+ωI,
its dual C⊥ is generated by CT .

Proof. We must show that for any c ∈ C and any c′ ∈ C⊥, the trace inner product
c ∗ c′ = Tr(c · c′) = 0. Let c = aC and c′ = bCT , with a, b ∈ GF(2)n. Then
c∗c′ = (aC)∗(bCT ) = Tr((aC) ·(bCT )) = Tr((aC)(bC

T
)T ) = Tr(aCCbT ), which

must be 0 if all elements of CC are from GF(2). This is clearly the case, since
CC = (Γ + ωI)(Γ + ω2I) = Γ 2 + Γ + I. ut

Theorem 1. Given an additive (n, 2n) code C over GF(4) whose generator
matrix, C, contains no all-zero column and no set of linearly dependent binary
columns (up to multiplication and conjugation), there always exists a directed
graph code equivalent to C.

Proof. We can write C = A+ ωB, with (A | B) a binary n× 2n matrix. From
the fact that the rows of C additively span a vector space of dimension n, it
follows that (A | B) has full rank. If the n×n submatrix B also has full rank, we
simply perform the basis change B−1(A | B) = (Γ ′|I). Any non-zero elements
on the diagonal of Γ ′ can simply be set to zero, effected by conjugating the
corresponding coordinates of Γ ′ + ωI, to obtain an equivalent directed graph
code generated by Γ + ωI.

In the case that B does not have full rank, we must show that there is a code
C′, equivalent to C, generated by A′ + ωB′ where B′ does have full rank. Then
we can apply the method described in the first part of this proof to obtain the
graph form. Let the columns of A be denoted (a1, a2, . . . , an) and the columns
of B be denoted (b1, b2, . . . , bn). Observe that multiplying column i of C by ω2,
followed by conjugation of the same column, has the effect of swapping columns
ai and bi in (A | B). If A has full rank, we can simply let (A′ | B′) = (B | A), by
applying these operations to all columns of C.

In the case that neither A nor B has full rank, it is sufficient to show that there
is a set of n columns from the 2n possible choices ({a1, b1}, {a2, b2}, . . . , {an, bn})
that span a vector space of dimension n. We must exclude matrices C with
all-zero columns, since with a pair {ai, bi} = {0,0} this would clearly not be
possible. When all columns of C are non-zero, the only case left to exclude is when
there is a minimal set of m pairs ({ai, bi}, {ai+1, bi+1}, . . . , {ai+m−1, bi+m−1})
such that all 2m possible combinations form a linearly dependent set of m vectors.
Assuming that all columns of C are non-zero, we can assure that all these 2m
vectors are non-zero by multiplication and conjugation of columns of C. Then
the only case where linear dependence of all combinations is possible is when
ai = bi, ai+1 = bi+1, . . ., ai+m−1 = bi+m−1, and (ai, ai+1, . . . , ai+m−1) are



linearly dependent. This means that the corresponding m columns in C can be
turned into linearly dependent binary vectors by multiplication and conjugation.

It follows that in all other cases, we can find a matrix (A′ | B′) where B′ has
full rank, and thereby obtain a graph code. ut

It follows from Prop. 1 that a directed graph code is self-dual if and only if
its generator matrix is symmetric, i.e., it is in fact an undirected graph code. The
fact that all self-dual additive codes over GF(4) can be represented as undirected
graphs is well known [12–16], and was used to classify all self-dual additive codes
up to length 12 [11]. Theorem 1 is a generalization of this result to the much
larger classes of directed graphs and half-rate additive codes over GF(4).

Example 1. We consider an additive (7, 27, 4) code, C, generated by

C =



ω2 0 0 1 0 ω ω
1 0 0 0 1 1 1
0 0 ω 0 ω2 ω2 ω
0 0 1 1 ω2 ω ω2

1 ω 0 1 ω2 ω2 0
1 1 1 1 ω2 1 1
0 0 1 ω 1 ω2 1


= A+ ωB,

(A | B) =



1 0 0 1 0 0 0 1 0 0 0 0 1 1
1 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 1 1 1
0 0 1 1 1 0 1 0 0 0 0 1 1 1
1 0 0 1 1 1 0 0 1 0 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0 1 0 0
0 0 1 0 1 1 1 0 0 0 1 0 1 0


.

We swap column a6 with b6 and column a7 with b7 to get the matrix

(A′ | B′) =



1 0 0 1 0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0 1 0 1 1 0
0 0 1 1 1 1 1 0 0 0 0 1 0 1
1 0 0 1 1 1 0 0 1 0 0 1 1 0
1 1 1 1 1 0 0 0 0 0 0 1 1 1
0 0 1 0 1 1 0 0 0 0 1 0 1 1


,

where B′ has full rank. We can then obtain the matrix

(Γ ′ | I) = B′
−1(A′ | B′) =



1 0 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0 0 0 0 0
1 0 1 1 1 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 0 0 0 1 0
0 1 0 0 1 1 1 0 0 0 0 0 0 1


.



By setting the diagonal of Γ ′ to zero, we get the adjacency matrix of a simple
directed graph,

Γ =



0 0 0 1 0 1 1
0 0 1 0 1 0 1
1 0 0 1 1 0 0
1 0 1 0 0 1 0
0 1 1 1 0 0 0
1 1 0 0 0 0 1
0 1 0 0 1 1 0


.

This graph is shown in Fig. 1. Γ + ωI generates a (7, 27, 4) directed graph code
equivalent to C.

Fig. 1: Directed Graph Representation of a (7, 27, 4) Code

3 Classification

Since we have shown in Theorem 1 that, except for a few special cases, additive
codes over GF(4) can be represented as directed graphs, it follows that to
classify codes, we only need to consider directed graph codes. All non-isomorphic
connected directed graphs on up to 7 vertices can be generated in a few hours by
using tools provided with the software package nauty [19]. For an enumeration
of these graphs, see sequence A003085 in The On-Line Encyclopedia of Integer
Sequences [20].

Connected graphs correspond to indecomposable codes. A code is decompos-
able if it can be written as the direct sum of two smaller codes. For example, let C
be an (n, 2n, d) code and C′ an (n′, 2n′ , d′) code. The direct sum, C ⊕ C′ = {u||v |
u ∈ C, v ∈ C′}, where || means concatenation, is an (n+ n′, 2n+n′ ,min{d, d′})
code. It follows that all decomposable codes of length n can be classified easily



once all indecomposable codes of length less than n are known. The total number
of codes of length n, tn, is easily derived from the numbers in of indecomposable
codes by using the Euler transform [21],

cn =
∑
d|n

did

t1 = c1

tn =
1
n

(
cn +

n−1∑
k=1

cktn−k

)
.

To check whether two additive codes over GF(4) are equivalent, we use a
modified version of an algorithm originally devised by Österg̊ard [17] for checking
equivalence of linear codes. We show that this method also works for additive
codes. An additive code over GF(4) is mapped to an undirected colored graph in
the following way. (Note that this representation is not related to the directed
graph representation defined previously.) First, we find a set of vectors that
generate the code. Often, the set of all vectors of minimum weight d will suffice,
otherwise, we add all vectors of weight d+ 1, and then all vectors of d+ 2, . . ., as
necessary. For each vector ci in the resulting set, add a vertex vi to the graph. Also
add n sets of three vertices, where n is the length of the code. The three vertices
represent the non-zero elements {1, ω, ω2} ∈ GF(4). In every set, each of the three
vertices is connected to each of the two other by undirected edges, to form a cycle.
(This corresponds to the fact that any permutation of the symbols {1, ω, ω2} in
each coordinate of the code gives an equivalent code.) Let the vertices vi have one
color, and the 3n other vertices another color. Add edges between vertex vi and
the n 3-cycles corresponding to the codeword ci. E.g., if ci has ω in coordinate j,
then there is an edge between vi and the element labelled ω in the jth 3-cycle. As
an example, Fig. 2 shows the case where c1 = (ω, ω, . . . , ω). The resulting graph
is then canonized, i.e., relabelled, but with coloring preserved, using the nauty
software [19]. If two graphs are isomorphic, their canonical representations are
guaranteed to be the same. Hence, if two codes are equivalent, their canonical
graphs will be identical.

To classify codes of length up to 7, we take all non-isomorphic connected
directed graphs, map them to codes, and canonize the corresponding code graphs
as described above. All duplicates are removed to obtain one representative from
each equivalence class. The special form of the generator matrix of a directed
graph code makes it easier to find all codewords of small weight. If C is generated
by C = Γ + ωI, then any codeword formed by adding i rows of C must have
weight at least i. This means that we can find all codewords of weight i by only
considering sums of at most i rows of C. This property also helps when we want
to find the minimum distance of a code. Furthermore, if we wanted to exclude
codes with minimum distance one from our classification, it would suffice to
exclude graphs where some vertex has outdegree zero, since this would imply
that there is a row in the generator matrix with weight one. Another special
property of directed graph codes is advantageous in computer programs if Z4
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Fig. 2: Example of Code Graph for Checking Equivalence

arithmetic is faster and simpler to implement than GF(4) arithmetic: Given a
directed graph code, C, with generator matrix Γ + ωI, it can be verified that the
additive code over Z4 given by 2Γ + I always has the same weight distribution
as C. We may therefore replace the elements from GF(4) with elements from Z4

by the mapping 0 7→ 0, 1 7→ 2, ω 7→ 1, ω2 7→ 3. (This correspondence between
additive codes over GF(4) and Z4 may also be of theoretical interest.)

Table 1 gives the number of half-rate additive codes over GF(4) by length and
distance. Note that only indecomposable codes are counted, and that the special
cases excluded by Theorem 1, that do not have a directed graph representation,
are not included. A database containing one representative from each equivalence
class is available at http://www.ii.uib.no/~larsed/directed/. Table 2 and
Table 3 give the numbers of formally self-dual and isodual codes. (Note that
the 240 formally self-dual (6, 26, 3)-codes and 3 formally self-dual (7, 27, 4)-codes
were also found by Han and Kim [2].) For completeness, we include in Table 4
the number of self-dual codes, although we have previously classified these up to
length 12 [11].

4 Circulant Directed Graph Codes

Since it is infeasible to study all half-rate additive codes of lengths much higher
than those classified in the previous section, we restrict our search space to codes
corresponding to graphs with circulant adjacency matrices. A matrix is circulant
if the ith row is equal to the first row, cyclically shifted i− 1 times to the right.
The generator matrix of a directed graph code is obtained by setting all diagonal
elements of the circulant adjacency matrix to ω. There are 2n−1 such codes of

http://www.ii.uib.no/~larsed/directed/


Table 1: Number of Half-Rate Additive Codes over GF(4)

d\n 2 3 4 5 6 7

1 1 4 27 322 8509 686,531
2 1 3 21 262 9653 1,279,641
3 1 9 644 253,635
4 1 3

Total 2 7 49 593 18,807 2,219,810

Table 2: Number of Formally Self-Dual Additive Codes over GF(4)

d\n 2 3 4 5 6 7

1 1 1 10 55 1082 36,129
2 1 2 12 79 2348 192,201
3 1 5 240 55,711
4 1 3

Total 2 3 23 139 3671 284,044

Table 3: Number of Isodual Additive Codes over GF(4)

d\n 2 3 4 5 6 7

1 1 1 8 27 344 3243
2 1 2 10 45 598 8517
3 1 5 124 3299
4 1 3

Total 2 3 19 77 1067 15,062

Table 4: Number of Self-Dual Additive Codes over GF(4)

d\n 2 3 4 5 6 7

2 1 1 2 3 9 22
3 1 1 4
4 1

Total 1 1 2 4 11 26



length n, some of which may be equivalent. We also consider bordered circulant
adjacency matrices: Given a length n circulant graph code with generator matrix
C, we obtain a code of length n+ 1 with generator matrix

ω 1 · · · 1
1
... C
1

 .

There are 2n−2 such codes of length n. For each n up to 26, we have counted,
up to equivalence, all circulant and bordered circulant directed graph codes of
the highest found minimum distance. The result of this search is summarized in
Table 5. A database of all these codes is available at http://www.ii.uib.no/
~larsed/directed/.

Table 5: Number of Circulant and Bordered Circulant Directed Graph Codes

n Max d # Codes # Self-dual

2 2 1 1
3 2 2 1
4 3 1 0
5 3 3 1
6 4 1 1
7 4 2 0
8 4 11 1
9 4 22 2
10 5 4 0
11 5 21 0
12 6 2 1
13 6 2 0
14 6 54 3
15 6 325 3
16 7 1 0
17 7 9 1
18 8 1 1
19 7 1366 4
20 8 4 3
21 8 42 0
22 8 1328 17
23 8 8027 2
24 9 1 0
25 9 25 0
26 9 1877 0

Proposition 2. A circulant or bordered circulant directed graph code will always
be isodual.

http://www.ii.uib.no/~larsed/directed/
http://www.ii.uib.no/~larsed/directed/


Proof. A circulant directed graph code of length n has generator matrix

C =


ω a1 a2 · · · an

an ω a1 · · · an−1

an−1 an ω · · · an−2

...
...

...
. . .

...
a1 a2 a3 · · · ω

 ,

where (a1, a2, . . . , an) is any binary sequence of length n − 1. It follows from
Prop. 1 that the dual code is generated by

CT =


ω an an−1 · · · a1

a1 ω an · · · a2

a2 a1 ω · · · a3

...
...

...
. . .

...
an an−1 an−2 · · · ω

 .

We can obtain CT from C by reversing the order of the columns, and then
reversing the order of the rows. Permuting rows has no effect on the code,
and permuting columns produces an equivalent code. Hence the code must be
equivalent to its dual. The same argument holds for bordered circulant codes,
except that the first row and column remain fixed. ut

With our method, we are able to find new codes, since the existence of near-
extremal formally self-dual codes of lengths 11 and 13 was previously an open
problem [2]. Bierbrauer et al. [18] found an additive (11, 211, 5) code, but posed as
an open question the existence of an additive (13, 213, 6) code, which we are here
able to answer in the positive. There are at least 21 formally self-dual (11, 211, 5)
codes, and we find codes with five different weight enumerators:

W11,1(1, y) = 1 + 55y5 + 242y6 + 275y7 + 495y8 + 605y9 + 286y10 + 89y11,

W11,2(1, y) = 1 + 66y5 + 198y6 + 330y7 + 495y8 + 550y9 + 330y10 + 78y11,

W11,3(1, y) = 1 + 70y5 + 182y6 + 350y7 + 495y8 + 530y9 + 346y10 + 74y11,

W11,4(1, y) = 1 + 75y5 + 162y6 + 375y7 + 495y8 + 505y9 + 366y10 + 69y11,

W11,5(1, y) = 1 + 77y5 + 154y6 + 385y7 + 495y8 + 495y9 + 374y10 + 67y11.

We have found two formally self-dual (13, 213, 6) codes, with the same weight
enumerator:

W13(1, y) = 1 + 247y6 + 481y7 + 936y8 + 1625y9 + 2197y10 + 1755y11+

715y12 + 235y13.

The existence of a formally self-dual (14, 214, 7) code is still an open problem.
Note that for several lengths, there are no self-dual codes among the circulant

and bordered circulant codes with highest minimum distance. The best known



self-dual codes of length 24, 25, and 26 have distance 8. We find a single isodual
(24, 224, 9) code with weight enumerator

W24(1, y) = 1 + 1752y9 + 8748y10 + 26064y11 + 81408y12 + 232776y13+

573516y14 + 1119264y15 + 1869777y16 + 2676456y17 + 3096804y18+

2959056y19 + 2204568y20 + 1255416y21 + 520740y22 + 134208y23+

16662y24.

We also find 25 isodual (25, 225, 9) codes with 25 different weight enumerators,
and 1877 isodual (26, 226, 9) codes with 1865 different weight enumerators.

We have previously studied circulant undirected graph codes [10]. There are
only 2d

n−1
2 e such codes of length n, due to the fact that the generator matrix

must be symmetric. Gulliver and Kim [22] also performed a computer search of
circulant self-dual additive codes over GF(4), but their search was not restricted
to graph codes.

A particularly interesting type of circulant code is the quadratic residue
code [4]. The length of such a code must be a prime p. When p ≡ 1 (mod 4),
the quadratic residue code will be self-dual, and the corresponding undirected
graph is known as a Paley graph. When p ≡ 3 (mod 4), the code will only be
isodual. The first row of the generator matrix of the code is (ω, l1, . . . , lp−1),
where li = 1 if i is a quadratic residue modulo p, i.e., if x2 ≡ i (mod p) has a
solution x ∈ GF (p). Otherwise, li = 0. Many codes with high minimum distance
can be obtained from this construction. For instance, by bordering quadratic
residue codes, as described above, we obtain self-dual (6, 26, 4), (14, 214, 6), and
(30, 230, 12) codes, and isodual (4, 24, 3), (8, 28, 4), and (12, 212, 6) codes.
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