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Abstract

A construction based on Legendre sequences is presented for a

doubly-extended binary linear code of length 2p + 2 and dimension

p+1. This code has a double circulant structure. For p = 4k +3, we

obtain a doubly-even self-dual code. Another construction is given

for a class of triply extended rate 1/3 codes of length 3p + 3 and

dimension p + 1. For p = 4k + 1, these codes are doubly-even self-

orthogonal.

1 Introduction

A binary [n,K] code C is a K-dimensional vector subspace of Fn
2 , where F2

is the field of two elements. The parameter n is called the length of C. The
elements of a code C are called codewords and the weight of a codeword is
the number of non-zero coordinates. Denote the weight of a codeword c as
wt(c). The minimum weight of C is the smallest weight among all non-zero
codewords of C. An [n,K, d] code is an [n,K] code with minimum weight
d. Two codes are equivalent if one can be obtained from the other by a
permutation of coordinates.
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The dual code C⊥ of C is defined as C⊥ = {x ∈ Fn
2 | (x, y) = 0 for all y ∈

C} where (x, y) denotes the inner product. A code C is called self-dual if
C = C⊥. A self-dual code C is called doubly-even or singly-even if all
codewords have weight ≡ 0 (mod 4) or if some codeword has weight ≡ 2
(mod 4), respectively.

Let Dp and Db be codes with generator matrices of the form

In R (1)

and
0 1 · · · 1
1

In+1

... R′

1

, (2)

respectively, where I is the identity matrix of order n and R and R′ are
n × n circulant matrices. The codes Dp and Db are called pure double
circulant and bordered double circulant, respectively. The two families are
collectively called double circulant codes. Many of the known self-dual
codes are double circulant [2, 3, 5, 6, 9].

It was shown in [14] that the minimum weight d of a doubly-even self-
dual code of length n is bounded by d ≤ 4[n/24]+4. We call a doubly-even
self-dual code meeting this upper bound extremal. The largest possible
minimum weights of doubly-even self-dual codes of lengths up to 72 are
given in [2, Table I]. This work was revised and extended to lengths up to
96 in [3, Table V]. We say that a doubly-even self-dual code with the largest
possible minimum weight given in [2, Table I], [3, Table V] is extremal.
Many extremal self-dual codes are double circulant [2, 3, 5, 6, 7, 9].

In this paper we employ a Legendre sequence [16] of length p, p an
odd prime, to build a circulant matrix which is then used to construct
a bordered double circulant code of length n = 2p + 2 and dimension
K = p + 1. We show that these codes have good distance, in particular
when 2 is a quadratic nonresidue, mod p. For p = 4k + 3, we show that
these codes are self-dual. Another construction based on these sequences is
used to obtain a class of triply extended rate 1/3 codes of length 3p+3 and
dimension p+1. For p = 4k+1, these codes are doubly-even self-orthogonal.



2 The Construction

2.1 Legendre Sequences

Let a be a primitive integer root, mod p, where p is an odd prime. Let
A = {a2i} be the set of even powers of a, mod p, and B = {a2i+1} be the
set of odd powers of a, mod p.

Definition 1. The binary Legendre sequence, s, of length p (see e.g. [1,
10]), satisfies

s = (s0, s1, . . . , sp−1) | s0 = 0, st = 1 if t ∈ A, st = 0 if t ∈ B.

We have chosen in this case to assign s0 = 0, but we retain the possibility
to assign 0 or 1 to s0.

Definition 2. The alternative Legendre sequence s̃, has s̃0 = 1, and s̃t =
st if t 6= 0.

Define u = (u0, u1, . . . , up−1) as the cyclic autocorrelation of s with

uj =
p−1∑
t=0

(−1)st−st+j ,

where the index of s is taken mod p. Similarly, define ũ as the cyclic
autocorrelation of s̃. The following properties of s and s̃ are well-known

Lemma 1. [16]

u0 = ũ0 = p,

uj , ũj = −1, j 6= 0, p = 4k + 3,
uj , ũj ∈ {1,−3}, j 6= 0, p = 4k + 1,
uj + ũj = −2, j 6= 0.

In the sequel we make particular use of the property that uj + ũj = −2
when j 6= 0 or p to construct, for all odd primes p, a double circulant code
of length 2p. We illustrate the code construction by means of an example.



2.2 Example

Consider the length p = 5 Legendre sequence s = 01001, where st =
1 for t ∈ A = {1, 4} and st = 0 for t ∈ B = {2, 3}. The alternative
Legendre sequence is s̃ = 11001. It follows that u = 5,−3, 1, 1,−3 and
ũ = 5, 1,−3,−3, 1, and therefore u+ ũ = 10,−2,−2,−2,−2. This suggests
that appropriate bordering of the concatenation of the circulant matrices
formed by s and s̃ by two additional columns could give a matrix with
orthogonal rows, and this proves to be the case for p = 4k + 3.

For the example above, concatenating the circulant matrices formed
from the Legendre and alternative Legendre sequences gives

D′ =

01001|11001
10100|11100
01010|01110
00101|00111
10010|10011

This is a double circulant generator matrix for a [10, 5, 3] binary linear code
(D′ always generates a cyclic code). The above matrix can be bordered by
the all-ones and all-zeroes columns, and then the all-ones row resulting in

D =

11|11111|11111
10|01001|11001
10|10100|11100
10|01010|01110
10|00101|00111
10|10010|10011

.

D can be transformed into a bordered double circulant generator matrix
for a [12, 6, 4] optimal binary linear code, as will be shown later.

We generalise this construction to any length p Legendre sequence in
the next section.

2.3 The Doubly-Extended Legendre Code Construc-

tion

Let q = s|s̃.



Lemma 2.
wt(q) = p.

Proof. ¿From the definition of s,wt(s) = (p − 1)/2 and therefore wt(s̃) =
(p− 1)/2 + 1. Thus wt(q) = 2(p− 1)/2 + 1 = p.

Define ρ = (ρ0, ρ1, . . . , ρ2p−1) as the cyclic autocorrelation of q, where

ρj =
2p−1∑
t=0

(−1)qt−qt+j ,

and the index of q is taken mod 2p.

Lemma 3.
ρj = −2, 0 < j < 2p, j 6= p.

Proof. Follows immediately from Lemma 1 as ρj = uj + ũj .
Define w = (w0, w1, . . . , wp−1) as the {0, 1}-cyclic autocorrelation of q,

where

wj =
2p−1∑
t=0

qtqt+j ,

and the index of q is taken mod 2p. Note that this is a shortened version
of the complete autocorrelation as we are only concerned with the first p
elements.

Theorem 1.

wj = 2k + 1, p = 4k + 3, 0 < j < p,

= 2k, p = 4k + 1, 0 < j < p.

Proof. We can alternatively define wj by wj = |{t|qt = qt+j = 1, 0 ≤ t <

2p}|. Define the set A = {t|qt 6= qt+j , 0 ≤ t < 2p}.
Consider the set of bit pairs {(qt, qt+j)}, 0 ≤ t < 2p. We have that

wj = |{t|(qt, qt+j) = (1, 1)}|, and wt(q) = |{t|(qt, qt+j) = (1, 0)}| =
|{t|(qt, qt+j) = (0, 1)}|. It follows that 2×wt(q) = |{t|(qt, qt+j) = (1, 0)}|+



|{t|(qt, qt+j) = (0, 1)}| = |{t|(qt, qt+j) = (1, 0) or (0, 1)}| = |A|. Therefore
it follows that

wt(q) = |{t|qt = 1}| = wj +
|A|
2
. (3)

Lemma 3 implies that |A| = p+ 1 which, together with Lemma 2 and (3),
gives wj = p−1

2 , and the theorem follows.
Let di be the ith row of D′. An immediate corollary of Theorem 1 is

Corollary 1.
wt(di + dj) = p+ 1.

Let s be a length p Legendre sequence, where p is a prime integer, and
S and S̃ be the p × p circulant matrices with s and s̃ as their first rows,
respectively. Then

D′ = S|S̃

is a length 2p double circulant binary linear code of dimension p. Let 1 be
the p× 1 all-ones vector and 0 be the p× 1 all-zeroes vector. Then

D =
111T |1T

10S |S̃

is a length 2p+2 bordered double circulant binary linear code of dimension
p+ 2.

Theorem 2. The code with generator matrix D for p = 4k+3 is a doubly-
even self-dual code.

Proof. Since 4|2p+2 when p is an odd prime, the first row of D has weight
a multiple of 4. The rows of S have weight (p − 1)/2 and the rows of S̃
have weight (p+ 1)/2. Adding these together gives 2p/2 = p. The all-ones
column adds weight 1 to each row, so all rows of D have weight p + 1.
¿From Corollary 1, the weight of the sum of any two rows of D′ is even,
and this also holds for the rows of D, so the rows are orthogonal. When
p = 4k + 3, p + 1 = 4k + 4 so the weight of all rows is divisible by 4.
Therefore from [12], the code is doubly-even self-dual.

It is obvious that the minimum distance of the code generated by D is
upperbounded by p+ 1.



2.4 Reduced Echelon Form

It is often desirable to have a code in systematic or reduced echelon form

I|P

where I is the p × p identity matrix. The double circulant form of our
construction should then be converted to the form (1). To achieve this,
it is necessary that S or S̃ be invertible. This in turn implies that s or s̃,
when viewed as polynomials, s(x) or s̃(x), should be invertible, mod xp +1,
mod 2. It turns out that, for p = 8k±1, s(x) and s̃(x) are never invertible,
for p = 8k + 3 s(x) is always invertible, and for p = 8k − 3 s̃(x) is always
invertible. These conditions reflect the fact that 2 is a quadratic residue
for p = 8k ± 1 and a quadratic nonresidue for p = 8k ± 3. Therefore a row
echelon form for the doubly-extended Legendre code, D, with the identity
in the first p+2 or last p+2 columns, can only be achieved when p = 8k±3,
i.e. neither columns 0 to p+1, or columns p+2 to 2p+3 are information
sets). Let s(x) denote that every coefficient of s(x) is negated. Then, when
p = 8k ± 3, it can be shown that

s̃(x)−1 = s̃(x)2 = s(x) mod xp + 1, mod 2, p = 8k − 3
s(x)−1 = s(x)2 = s̃(x) mod xp + 1, mod 2, p = 8k + 3
s̃(x)−1s(x) = s̃(x) mod xp + 1, mod 2, p = 8k − 3
s(x)−1s̃(x) = s(x) mod xp + 1, mod 2, p = 8k + 3.

Therefore, when 2 is a quadratic nonresidue, mod p, we obtain a p × p

circulant matrix, P, whose first row is the negation of s̃ for p = 8k−3, and
the negation of s for p = 8k + 3. In this case, we obtain a double circulant
code having the first row of the circulant matrix as defined above. When
p = 8k + 3, the codes (bordered or pure) are equivalent to those given in
[15, 13, 8, 11].



2.4.1 Example

For p = 5, s̃ = 11001 and s̃(x) = x4 + x+ 1 has multiplicative order 3 mod
x5 + 1 (mod 2). Moreover s̃(x)−1 = x3 + x2 + 1. Thus

S̃ =

11001
11100
01110
00111
10011

and S̃−1 =

10110
01011
10101
11010
01101

since S̃−1S̃ = I. Thus
S̃−1D′ = P|I

where

P =

00110
00011
10001
11000
01100

since

s̃(x)−1s(x) = (x3 + x2 + 1)(x4 + x) mod x5 + 1 = x3 + x2

The generator matrix then has the form

G =

100000|011111
010000|100011
001000|110001
000100|111000
000010|101100
000001|100110

This is a bordered double circulant generator matrix for a [12, 6, 4] binary
linear code.

3 The Double Circulant Codes

The most well-known case is p = 11 as the [24, 12, 8] Golay code is obtained.
Note that p = 7 is the first case where both S and S̃ are singular, but in this



case we obtain an extremal code. Table 1 shows the Hamming distances
for the first 40 codes (n ≤ 180) constructed from D. The extremal codes
are denoted by a ‘*’. For large n, it was not possible to find the minimum
distance, so in these cases bounds are given. Of particular interest is when
p = 8k±1, since in these cases it is not possible to obtain a bordered double
circulant code. Such primes are marked in table 1 with a ‘#’.

Table 1: Hamming Distances for the Doubly-Extended Double Circulant
Codes

p d p d p d p d p d

3 4∗ 29 12 61 20 101 20− 30 139 20− 44
5 4 31# 8 67 24∗ 103# 20 149 18− 50

7# 4∗ 37 12 71# 12 107 20− 36 151# 20
11 8∗ 41# 10 73# 14 109 20− 36 157 16− 52
13 8 43 16∗ 79# 16 113# 16 163 16− 56

17# 6 47# 12 83 24 127# 20 167# 16− 24
19 8∗ 53 20 89# 18 131 20− 44 173 16− 62

23# 8 59 20 97# 16 137# 18− 22 179 16− 60

¿From Table 1 one observes that, in general, the codes for p = 8k ± 1
have lower minimum Hamming distance than those for p = 8k±3. A lower
bound on the minimum Hamming distance of the unextended form of the
codes (given by D′), when p = 8k ± 3, can be obtained from the lower
bound on Hamming distance for double circulant codes [11]

d ≥
2(p+

√
p)

√
p+ 3

.

The corresponding bound for D (when p = 8k ± 3) is

d ≥
2p+ 3

√
p+ 3

√
p+ 3

.

However, the bounding technique of [11] cannot easily adapted to the case
when p = 8k±1. This is because in this case n(x)i = n(x) and q(x)i = q(x)



for all i where q(x) are the quadratic residues and n(x) are the quadratic
nonresidues.

4 A Construction for Rate 1/3 Codes

Now consider the [3p, p, d] codes with generator matrices

E′ = I|D′ = I|S|S̃.

These can be extended to [3p+ 3, p+ 1, d] codes with generator matrices

E =
0 0T

1 I
D =

0 0T 1 1 1T |1T

1 I 1 0 S S̃

Theorem 3. The code with generator matrix E for p = 4k+1 is a doubly-
even self-orthogonal code.

Proof. Since 4|2p+ 2 when p is an odd prime, the first row of E has weight
a multiple of 4. The rows of S have weight (p+1)/2 and the rows of S̃ have
weight (p − 1)/2. Adding these together gives 2p/2 = p. The remaining
columns in E add 3 to the weight of each of these rows, so they have weight
p + 3. ¿From Corollary 1, the weight of the sum of any two rows of D′ is
even, so the rows are orthogonal. The inner product of the first row of D′

with any other row is 1, therefore the first column makes the first row of E
orthogonal to the others. When p = 4k + 1, p + 3 = 4k + 4 so the weight
of all rows is divisible by 4. Therefore from [12], the code is doubly-even
self-orthogonal.

Deleting the first row and 3 columns in E we obtain the following.

Corollary 2. The code with generator matrix E′ for p = 4k+1 is a singly-
even self-orthogonal code.

4.1 Example

Consider as before the length p = 5 Legendre sequence. The circulant
matrices formed from the Legendre and alternative Legendre sequences



give

E′ =

10000|01001|11001
01000|10100|11100
00100|01010|01110
00010|00101|00111
00001|10010|10011

This is the generator matrix for a [15, 5, 6] self-orthogonal quasi-cyclic code.
This leads to the following extended code

E =

110|00000|11111|11111
101|10000|01001|11001
101|01000|10100|11100
101|00100|01010|01110
101|00010|00101|00111
101|00001|10010|10011

.

E is a bordered generator matrix for an [18, 6, 8] optimal self-orthogonal
binary linear code.

Table 2 gives the distances of the first few codes generated from E′,
and Table 3 gives distances and bounds for E up to p = 151. Note that
the code from E′ has distance 2 less than the corresponding code from E.
Several of these codes attain the lower bound on the maximum minimum
distance for a binary linear code [4]. For large n, it was not possible to find
the minimum distance, so in these cases bounds are given.

Table 2: Hamming Distances for Codes Generated Using E′

p d p d

5 6 17 10
7 6 19 14
11 10 29 22
13 10



Table 3: Hamming Distances for Rate 1/3 Codes Generated by E

p d p d p d p d p d

3 6 29 24 61 20 101 32− 56 139 24− 86
5 8 31 16 67 36 103 30− 40 149 24− 88
7 8 37 24 71 24 107 30− 66 151 24− 40
11 12 41 20 73 28 109 32− 64
13 12 43 28 79 32 113 28− 32
17 12 47 24 83 34− 48 127 26− 40
19 16 53 32 89 32− 36 131 28− 78
23 16 59 30 97 32 137 28− 44
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