Extended Binary Linear Codes from Legendre Sequences

T. Aaron Gulliver and Matthew G. Parker*

Abstract

A construction based on Legendre sequences is presented for a doubly-extended binary linear code of length 2p+2 and dimension p+1. This code has a double circulant structure. For p=4k+3, we obtain a doubly-even self-dual code. Another construction is given for a class of triply extended rate 1/3 codes of length 3p+3 and dimension p+1. For p=4k+1, these codes are doubly-even self-orthogonal.

1 Introduction

A binary [n, K] code C is a K-dimensional vector subspace of \mathbb{F}_2^n , where \mathbb{F}_2 is the field of two elements. The parameter n is called the length of C. The elements of a code C are called codewords and the weight of a codeword is the number of non-zero coordinates. Denote the weight of a codeword \mathbf{c} as $wt(\mathbf{c})$. The minimum weight of C is the smallest weight among all non-zero codewords of C. An [n, K, d] code is an [n, K] code with minimum weight d. Two codes are equivalent if one can be obtained from the other by a permutation of coordinates.

^{*}T.A. Gulliver is with the Dept. of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055 STN CSC, Victoria, BC V8W 3P6 Canada. agullive@ece.uvic.ca. Web: http://www.ece.uvic.ca/~agullive/ M.G. Parker is with the Selmer Centre, Inst. for Informatikk, Høyteknologisenteret i Bergen, University of Bergen, Bergen 5020, Norway. E-mail: matthew@ii.uib.no. Web: http://www.ii.uib.no/~matthew/ This work was done while the first author was visiting the Selmer Centre.

The dual code C^{\perp} of C is defined as $C^{\perp} = \{x \in \mathbb{F}_2^n | (x,y) = 0 \text{ for all } y \in C\}$ where (x,y) denotes the inner product. A code C is called *self-dual* if $C = C^{\perp}$. A self-dual code C is called *doubly-even* or *singly-even* if all codewords have weight $\equiv 0 \pmod{4}$ or if some codeword has weight $\equiv 2 \pmod{4}$, respectively.

Let D_p and D_b be codes with generator matrices of the form

$$I_n \qquad R \tag{1}$$

and

respectively, where I is the identity matrix of order n and R and R' are $n \times n$ circulant matrices. The codes D_p and D_b are called *pure double circulant* and *bordered double circulant*, respectively. The two families are collectively called double circulant codes. Many of the known self-dual codes are double circulant [2, 3, 5, 6, 9].

It was shown in [14] that the minimum weight d of a doubly-even self-dual code of length n is bounded by $d \leq 4[n/24]+4$. We call a doubly-even self-dual code meeting this upper bound extremal. The largest possible minimum weights of doubly-even self-dual codes of lengths up to 72 are given in [2, Table I]. This work was revised and extended to lengths up to 96 in [3, Table V]. We say that a doubly-even self-dual code with the largest possible minimum weight given in [2, Table I], [3, Table V] is extremal. Many extremal self-dual codes are double circulant [2, 3, 5, 6, 7, 9].

In this paper we employ a Legendre sequence [16] of length p, p an odd prime, to build a circulant matrix which is then used to construct a bordered double circulant code of length n=2p+2 and dimension K=p+1. We show that these codes have good distance, in particular when 2 is a quadratic nonresidue, mod p. For p=4k+3, we show that these codes are self-dual. Another construction based on these sequences is used to obtain a class of triply extended rate 1/3 codes of length 3p+3 and dimension p+1. For p=4k+1, these codes are doubly-even self-orthogonal.

2 The Construction

2.1 Legendre Sequences

Let a be a primitive integer root, mod p, where p is an odd prime. Let $\mathcal{A} = \{a^{2i}\}$ be the set of even powers of a, mod p, and $\mathcal{B} = \{a^{2i+1}\}$ be the set of odd powers of a, mod p.

Definition 1. The binary Legendre sequence, \mathbf{s} , of length p (see e.g. [1, 10]), satisfies

$$\mathbf{s} = (s_0, s_1, \dots, s_{p-1}) \mid s_0 = 0, s_t = 1 \text{ if } t \in \mathcal{A}, s_t = 0 \text{ if } t \in \mathcal{B}.$$

We have chosen in this case to assign $s_0 = 0$, but we retain the possibility to assign 0 or 1 to s_0 .

Definition 2. The alternative Legendre sequence $\tilde{\mathbf{s}}$, has $\tilde{s}_0 = 1$, and $\tilde{s}_t = s_t$ if $t \neq 0$.

Define $\mathbf{u} = (u_0, u_1, \dots, u_{p-1})$ as the *cyclic autocorrelation* of \mathbf{s} with

$$u_j = \sum_{t=0}^{p-1} (-1)^{s_t - s_{t+j}},$$

where the index of \mathbf{s} is taken mod p. Similarly, define $\tilde{\mathbf{u}}$ as the cyclic autocorrelation of $\tilde{\mathbf{s}}$. The following properties of \mathbf{s} and $\tilde{\mathbf{s}}$ are well-known

Lemma 1. [16]

$$\begin{split} u_0 &= \tilde{u}_0 = p, \\ u_j, \tilde{u}_j &= -1, & j \neq 0, p = 4k + 3, \\ u_j, \tilde{u}_j &\in \{1, -3\}, & j \neq 0, p = 4k + 1, \\ u_j &+ \tilde{u}_j &= -2, & j \neq 0. \end{split}$$

In the sequel we make particular use of the property that $u_j + \tilde{u}_j = -2$ when $j \neq 0$ or p to construct, for all odd primes p, a double circulant code of length 2p. We illustrate the code construction by means of an example.

2.2 Example

Consider the length p=5 Legendre sequence $\mathbf{s}=01001$, where $s_t=1$ for $t\in\mathcal{A}=\{1,4\}$ and $s_t=0$ for $t\in\mathcal{B}=\{2,3\}$. The alternative Legendre sequence is $\tilde{\mathbf{s}}=11001$. It follows that $\mathbf{u}=5,-3,1,1,-3$ and $\tilde{\mathbf{u}}=5,1,-3,-3,1$, and therefore $\mathbf{u}+\tilde{\mathbf{u}}=10,-2,-2,-2,-2$. This suggests that appropriate bordering of the concatenation of the circulant matrices formed by \mathbf{s} and $\tilde{\mathbf{s}}$ by two additional columns could give a matrix with orthogonal rows, and this proves to be the case for p=4k+3.

For the example above, concatenating the circulant matrices formed from the Legendre and alternative Legendre sequences gives

 $\mathbf{D'} = \begin{array}{c} 01001|11001 \\ 10100|11100 \\ 01010|01110 \\ 00101|00111 \\ 10010|10011 \end{array}$

This is a double circulant generator matrix for a [10, 5, 3] binary linear code (\mathbf{D}' always generates a cyclic code). The above matrix can be bordered by the all-ones and all-zeroes columns, and then the all-ones row resulting in

 $\mathbf{D} = \frac{\begin{array}{c} 11|11111|11111} \\ \hline 10|01001|11001 \\ \hline 10|10100|11100 \\ \hline 10|01010|01110 \\ \hline 10|00101|00111 \\ \hline 10|10010|10011 \end{array}.$

 \mathbf{D} can be transformed into a bordered double circulant generator matrix for a [12, 6, 4] optimal binary linear code, as will be shown later.

We generalise this construction to any length p Legendre sequence in the next section.

2.3 The Doubly-Extended Legendre Code Construction

Let $\mathbf{q} = \mathbf{s} | \tilde{\mathbf{s}}$.

Lemma 2.

$$wt(\mathbf{q}) = p.$$

Proof. ¿From the definition of \mathbf{s} , wt(\mathbf{s}) = (p-1)/2 and therefore wt($\tilde{\mathbf{s}}$) = (p-1)/2+1. Thus wt(\mathbf{q}) = 2(p-1)/2+1=p.

Define $\rho = (\rho_0, \rho_1, \dots, \rho_{2p-1})$ as the cyclic autocorrelation of \mathbf{q} , where

$$\rho_j = \sum_{t=0}^{2p-1} (-1)^{q_t - q_{t+j}},$$

and the index of q is taken mod 2p.

Lemma 3.

$$\rho_j = -2, \qquad 0 < j < 2p, \ j \neq p.$$

Proof. Follows immediately from Lemma 1 as $\rho_j = u_j + \tilde{u}_j$.

Define $\mathbf{w} = (w_0, w_1, \dots, w_{p-1})$ as the $\{0, 1\}$ -cyclic autocorrelation of \mathbf{q} , where

$$w_j = \sum_{t=0}^{2p-1} q_t q_{t+j},$$

and the index of q is taken mod 2p. Note that this is a shortened version of the complete autocorrelation as we are only concerned with the first p elements.

Theorem 1.

$$w_j = 2k + 1,$$
 $p = 4k + 3,$ $0 < j < p,$
= $2k,$ $p = 4k + 1,$ $0 < j < p.$

Proof. We can alternatively define w_j by $w_j = |\{t|q_t = q_{t+j} = 1, 0 \le t < 2p\}|$. Define the set $\mathbf{A} = \{t|q_t \ne q_{t+j}, 0 \le t < 2p\}$.

Consider the set of bit pairs $\{(q_t, q_{t+j})\}$, $0 \le t < 2p$. We have that $w_j = |\{t|(q_t, q_{t+j}) = (1, 1)\}|$, and $\operatorname{wt}(q) = |\{t|(q_t, q_{t+j}) = (1, 0)\}| = |\{t|(q_t, q_{t+j}) = (0, 1)\}|$. It follows that $2 \times \operatorname{wt}(q) = |\{t|(q_t, q_{t+j}) = (1, 0)\}| + |\{t|(q_t, q_{t+j}) = (0, 1)\}|$.

 $|\{t|(q_t, q_{t+j}) = (0, 1)\}| = |\{t|(q_t, q_{t+j}) = (1, 0) \text{ or } (0, 1)\}| = |\mathbf{A}|.$ Therefore it follows that

$$\operatorname{wt}(\mathbf{q}) = |\{t|q_t = 1\}| = w_j + \frac{|\mathbf{A}|}{2}.$$
 (3)

Lemma 3 implies that $|\mathbf{A}| = p + 1$ which, together with Lemma 2 and (3), gives $w_j = \frac{p-1}{2}$, and the theorem follows.

Let \mathbf{d}_i be the *i*th row of \mathbf{D}' . An immediate corollary of Theorem 1 is

Corollary 1.

$$wt(\mathbf{d}_i + \mathbf{d}_j) = p + 1.$$

Let **s** be a length p Legendre sequence, where p is a prime integer, and **S** and $\tilde{\mathbf{S}}$ be the $p \times p$ circulant matrices with **s** and $\tilde{\mathbf{s}}$ as their first rows, respectively. Then

$$\mathbf{D}' = \mathbf{S} | \tilde{\mathbf{S}}$$

is a length 2p double circulant binary linear code of dimension p. Let $\mathbf 1$ be the $p \times 1$ all-ones vector and $\mathbf 0$ be the $p \times 1$ all-zeroes vector. Then

$$\mathbf{D} = \begin{array}{cc} 11\mathbf{1}^T & |\mathbf{1}^T \\ \mathbf{10S} & |\tilde{\mathbf{S}} \end{array}$$

is a length 2p+2 bordered double circulant binary linear code of dimension p+2.

Theorem 2. The code with generator matrix **D** for p = 4k + 3 is a doubly-even self-dual code.

Proof. Since 4|2p+2 when p is an odd prime, the first row of \mathbf{D} has weight a multiple of 4. The rows of \mathbf{S} have weight (p-1)/2 and the rows of $\tilde{\mathbf{S}}$ have weight (p+1)/2. Adding these together gives 2p/2=p. The all-ones column adds weight 1 to each row, so all rows of \mathbf{D} have weight p+1. From Corollary 1, the weight of the sum of any two rows of \mathbf{D}' is even, and this also holds for the rows of \mathbf{D} , so the rows are orthogonal. When p=4k+3, p+1=4k+4 so the weight of all rows is divisible by 4. Therefore from [12], the code is doubly-even self-dual.

It is obvious that the minimum distance of the code generated by **D** is upperbounded by p + 1.

2.4 Reduced Echelon Form

It is often desirable to have a code in systematic or reduced echelon form

I|P

where **I** is the $p \times p$ identity matrix. The double circulant form of our construction should then be converted to the form (1). To achieve this, it is necessary that **S** or $\tilde{\mathbf{S}}$ be invertible. This in turn implies that **s** or $\tilde{\mathbf{s}}$, when viewed as polynomials, s(x) or $\tilde{s}(x)$, should be invertible, mod $x^p + 1$, mod 2. It turns out that, for $p = 8k \pm 1$, s(x) and $\tilde{s}(x)$ are never invertible, for p = 8k + 3 s(x) is always invertible, and for p = 8k - 3 $\tilde{s}(x)$ is always invertible. These conditions reflect the fact that 2 is a quadratic residue for $p = 8k \pm 1$ and a quadratic nonresidue for $p = 8k \pm 3$. Therefore a row echelon form for the doubly-extended Legendre code, **D**, with the identity in the first p+2 or last p+2 columns, can only be achieved when $p = 8k \pm 3$, i.e. neither columns 0 to p+1, or columns p+2 to 2p+3 are information sets). Let $\overline{s(x)}$ denote that every coefficient of s(x) is negated. Then, when $p = 8k \pm 3$, it can be shown that

$$\begin{split} \tilde{s}(x)^{-1} &= \tilde{s}(x)^2 = \overline{s(x)} &\mod x^p + 1, \mod 2, \quad p = 8k - 3 \\ s(x)^{-1} &= s(x)^2 = \overline{\tilde{s}(x)} &\mod x^p + 1, \mod 2, \quad p = 8k + 3 \\ \tilde{s}(x)^{-1}s(x) &= \overline{\tilde{s}(x)} &\mod x^p + 1, \mod 2, \quad p = 8k - 3 \\ s(x)^{-1}\tilde{s}(x) &= \overline{s(x)} &\mod x^p + 1, \mod 2, \quad p = 8k + 3. \end{split}$$

Therefore, when 2 is a quadratic nonresidue, mod p, we obtain a $p \times p$ circulant matrix, \mathbf{P} , whose first row is the negation of $\tilde{\mathbf{s}}$ for p = 8k - 3, and the negation of \mathbf{s} for p = 8k + 3. In this case, we obtain a double circulant code having the first row of the circulant matrix as defined above. When p = 8k + 3, the codes (bordered or pure) are equivalent to those given in [15, 13, 8, 11].

2.4.1 Example

For p=5, $\tilde{\mathbf{s}}=11001$ and $\tilde{s}(x)=x^4+x+1$ has multiplicative order 3 mod $x^5+1 \pmod{2}$. Moreover $\tilde{s}(x)^{-1}=x^3+x^2+1$. Thus

since $\tilde{\mathbf{S}}^{-1}\tilde{\mathbf{S}} = \mathbf{I}$. Thus

$$\tilde{\mathbf{S}}^{-1}\mathbf{D}' = \mathbf{P}|\mathbf{I}$$

where

$$\mathbf{P} = \begin{array}{c} 00110 \\ 00011 \\ 10001 \\ 11000 \\ 01100 \end{array}$$

since

$$\tilde{s}(x)^{-1}s(x) = (x^3 + x^2 + 1)(x^4 + x) \mod x^5 + 1 = x^3 + x^2$$

The generator matrix then has the form

$$\mathbf{G} = \begin{array}{c} 100000|011111\\ 010000|100011\\ 001000|110001\\ 000100|111000\\ 000010|101100\\ 000001|100110 \end{array}$$

This is a bordered double circulant generator matrix for a [12, 6, 4] binary linear code.

3 The Double Circulant Codes

The most well-known case is p = 11 as the [24, 12, 8] Golay code is obtained. Note that p = 7 is the first case where both **S** and $\tilde{\mathbf{S}}$ are singular, but in this case we obtain an extremal code. Table 1 shows the Hamming distances for the first 40 codes ($n \le 180$) constructed from **D**. The extremal codes are denoted by a '*'. For large n, it was not possible to find the minimum distance, so in these cases bounds are given. Of particular interest is when $p = 8k \pm 1$, since in these cases it is not possible to obtain a bordered double circulant code. Such primes are marked in table 1 with a '#'.

Table 1: Hamming Distances for the Doubly-Extended Double Circulant Codes

p	d	p	d	p	d	p	d	p	d
3	4*	29	12	61	20	101	20 - 30	139	20 - 44
5	4	31#	8	67	24*	103#	20	149	18 - 50
7#	4*	37	12	71#	12	107	20 - 36	151#	20
11	8*	41#	10	73#	14	109	20 - 36	157	16 - 52
13	8	43	16*	79#	16	113#	16	163	16 - 56
17#	6	47#	12	83	24	127#	20	167#	16 - 24
19	8*	53	20	89#	18	131	20 - 44	173	16 - 62
23#	8	59	20	97#	16	137#	18 - 22	179	16 - 60

¿From Table 1 one observes that, in general, the codes for $p = 8k \pm 1$ have lower minimum Hamming distance than those for $p = 8k \pm 3$. A lower bound on the minimum Hamming distance of the unextended form of the codes (given by \mathbf{D}'), when $p = 8k \pm 3$, can be obtained from the lower bound on Hamming distance for double circulant codes [11]

$$d \ge \frac{2(p+\sqrt{p})}{\sqrt{p}+3}.$$

The corresponding bound for **D** (when $p = 8k \pm 3$) is

$$d \ge \frac{2p + 3\sqrt{p} + 3}{\sqrt{p} + 3}.$$

However, the bounding technique of [11] cannot easily adapted to the case when $p = 8k \pm 1$. This is because in this case $n(x)^i = n(x)$ and $q(x)^i = q(x)$

for all i where q(x) are the quadratic residues and n(x) are the quadratic nonresidues.

4 A Construction for Rate 1/3 Codes

Now consider the [3p, p, d] codes with generator matrices

$$\mathbf{E}' = \mathbf{I}|\mathbf{D}' = \mathbf{I}|\mathbf{S}|\mathbf{\tilde{S}}.$$

These can be extended to [3p + 3, p + 1, d] codes with generator matrices

$$\mathbf{E} = \begin{array}{cc|c} \mathbf{0} & \mathbf{0}^T \\ \mathbf{1} & \mathbf{I} \end{array} \mathbf{D} = \begin{array}{cc|c} \mathbf{0} & \mathbf{0}^T & \mathbf{1} & \mathbf{1} & \mathbf{1}^T & \mathbf{1}^T \\ \mathbf{1} & \mathbf{I} & \mathbf{1} & \mathbf{0} & \mathbf{S} & \tilde{\mathbf{S}} \end{array}$$

Theorem 3. The code with generator matrix \mathbf{E} for p=4k+1 is a doubly-even self-orthogonal code.

Proof. Since 4|2p+2 when p is an odd prime, the first row of \mathbf{E} has weight a multiple of 4. The rows of \mathbf{S} have weight (p+1)/2 and the rows of $\tilde{\mathbf{S}}$ have weight (p-1)/2. Adding these together gives 2p/2=p. The remaining columns in \mathbf{E} add 3 to the weight of each of these rows, so they have weight p+3. ¿From Corollary 1, the weight of the sum of any two rows of \mathbf{D}' is even, so the rows are orthogonal. The inner product of the first row of \mathbf{D}' with any other row is 1, therefore the first column makes the first row of \mathbf{E} orthogonal to the others. When p=4k+1, p+3=4k+4 so the weight of all rows is divisible by 4. Therefore from [12], the code is doubly-even self-orthogonal.

Deleting the first row and 3 columns in **E** we obtain the following.

Corollary 2. The code with generator matrix \mathbf{E}' for p=4k+1 is a singly-even self-orthogonal code.

4.1 Example

Consider as before the length p=5 Legendre sequence. The circulant matrices formed from the Legendre and alternative Legendre sequences

```
\mathbf{E'} = \begin{array}{c} 10000|01001|11001 \\ 01000|10100|11100 \\ \mathbf{E'} = \begin{array}{c} 00100|01010|01110 \\ 00010|00101|00111 \\ 00001|10010|10011 \end{array}
```

This is the generator matrix for a [15,5,6] self-orthogonal quasi-cyclic code. This leads to the following extended code

	110 00000 11111 111111
$\mathbf{E} = \frac{101 10000 0100}{101 01000 1010}$	101 10000 01001 11001
E _	101 01000 10100 11100
E =	101 00100 01010 01110 .
	101 00010 00101 00111
	101 00001 10010 10011

 \mathbf{E} is a bordered generator matrix for an [18,6,8] optimal self-orthogonal binary linear code.

Table 2 gives the distances of the first few codes generated from \mathbf{E}' , and Table 3 gives distances and bounds for \mathbf{E} up to p=151. Note that the code from \mathbf{E}' has distance 2 less than the corresponding code from \mathbf{E} . Several of these codes attain the lower bound on the maximum minimum distance for a binary linear code [4]. For large n, it was not possible to find the minimum distance, so in these cases bounds are given.

Table 2: Hamming Distances for Codes Generated Using \mathbf{E}'

p	d	p	d
5	6	17	10
7	6	19	14
11	10	29	22
13	10		

Table 3: Hamming Distances for Rate 1/3 Codes Generated by E

p	d	p	d	p	d	p	d	p	d
3	6	29	24	61	20	101	32 - 56	139	24 - 86
5	8	31	16	67	36	103	30 - 40	149	24 - 88
7	8	37	24	71	24	107	30 - 66	151	24 - 40
11	12	41	20	73	28	109	32 - 64		
13	12	43	28	79	32	113	28 - 32		
17	12	47	24	83	34 - 48	127	26 - 40		
19	16	53	32	89	32 - 36	131	28 - 78		
23	16	59	30	97	32	137	28 - 44		

References

- [1] T. Beth, D. Jungnickel, and H. Lenz, *Design Theory*, Cambridge University Press, Cambridge, 2nd edition, 1999.
- [2] J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, *IEEE Trans. Inform. Theory* 36 (1990), 1319–1333.
- [3] S.T. Dougherty, T.A. Gulliver and M. Harada, Extremal binary self-dual codes, *IEEE Trans. Inform. Theory* **43** (1997), 2036–2047.
- [4] M. Grassl, Bounds on the minimum distance of linear codes, available at http://www.codetables.de/.
- [5] T.A. Gulliver and M. Harada, Weight enumerators of double circulant codes and new extremal self-dual codes, Des. Codes and Cryptogr. 11 (1997), 141–150.
- [6] T.A. Gulliver and M. Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes and Cryptogr. 13 (1998), 257–269.

- [7] T.A. Gulliver, M. Harada and J.-L. Kim, Construction of new extremal self-dual codes, *Discrete Math.* **263** (2003), 81–91.
- [8] T.A. Gulliver and N. Senkevitch, On a class of self-dual codes derived from quadratic residues, *IEEE Trans. Inform. Theory* 45 (1999), 701– 702.
- [9] M. Harada, T.A. Gulliver and H. Kaneta, Classification of extremal double circulant self-dual codes of length up to 62, *Discrete Math.* 188 (1998), 127–136.
- [10] T. Helleseth, Legendre sums and codes related to QR codes, Discr. Appl. Math. 35 (1992), 107–113.
- [11] T. Helleseth and J. F. Voloch, Double circulant quadratic residue codes, *IEEE Trans. Inform. Theory* **50** (2004), 2154–2155.
- [12] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003.
- [13] M. Karlin, New binary coding results by circulants, *IEEE Trans. Inform. Theory* **15** (1969), 81–92.
- [14] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, Inform. Control 22 (1973), 188–200, 2001
- [15] E.H. Moore, Double Circulant Codes and Related Algebraic Structures, Ph.D. dissertation, Dartmouth College, 1976.
- [16] M.R. Schroeder, Number Theory in Science and Communication, Springer-Verlag, 1993.