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A Construction for Binary Sequence Sets with Low
Peak-to-Average Power Ratio

Matthew G. Parker*and Chintha Tellambura®

21st February 2003

Abstract

A recursive construction is provided for sequence sets which possess good Ham-
ming Distance and low Peak-to-Average Power Ratio (PAR) with respect to any Lo-
cal Unitary Unimodular Transform (including all one and multi-dimensional Discrete
Fourier Transforms).

1 Introduction

Pairs of Golay Complementary Sequences (CS) have the property that the sidelobes of the
Aperiodic Autocorrelation of each sequence in the pair sum to zero [7]. Consequently
they have found application in the areas of Telecommunications and Physics for such
tasks as channel-sounding, spread-spectrum, and synchronization. It follows that the Peak-
to-Average Power Ratio (PAR) with respect to the one-dimensional continuous Discrete
Fourier Transform (DFT§®) of each sequence in the pair satisfies PAR < 2. For lengths 2™
one can generate CS pairs using Golay-Rudin-Shapiro (RuS) construction [28, 29]. How-
ever it has not yet been proved that all length 2™ CS can be constructed using RuS as
n — oo. Davis and Jedwab have shown that the RuS set comprise a union of certain binary
quadratic cosets of Reed-Muller (RM) (1,7n) when expressed in Algebraic Normal Form
(ANF)[4]. Moreover, as these sequences are a subset of RM(2, n), then the Hamming Dis-
tance, D, between sequences in the set satisfies D > 272, Although the properties of RuS
and CS pairs have been known for many years, the description of [4] brought together and
formalised much of this work in the context of Reed-Muller codes. This was in response
to the pressing demand of Orthogonal Frequency Division Multiplexing (OFDM) commu-
nications systems for error-correcting codes where each codeword also has low PAR with
respect to (wrt) DFT$°. The low PAR is required to alleviate the linearity requirements
of the amplifier at the transmitter. The question of error-correcting codes with low PAR
wrt DFT$® was highlighted by [10], prompting a great deal of research culminating in the
fundamental codeset of Davis and Jedwab (DJ set), as outlined in the papers of [4, 23]
(equation (6) of this paper), which exploit the properties of RuS. However, a communica-
tions engineer will probably point out that the major weakness of the DJ set for OFDM is
that its code rate only remains acceptably high for up to about 32 frequency carriers, the
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rate vanishing as n — 0o, and most current OFDM systems require anywhere from 256 to
8192 frequency carriers. Therefore, in practise, most engineers will implement some form
of clipping or Selected-Mapping in order to reduce spectral peaks (PAR) at the OFDM
transmitter. In other words, instead of constructing and sending a sequence, the transmit-
ter will generate an arbitrary sequence or sequences, test their PARs, then either clip their
peaks before transmission or choose to send the sequence with lowest PAR. Constructive
techniques can avoid all this testing, but a major requirement for any constructive coding
technique is that its rate remains acceptably high for large numbers of carriers. Higher
rates are certainly possible and desirable for PAR < O(n) and D large [24]. A generalisa-
tion of RuS construction to other starting seeds [16, 17] allows inclusion of more low PAR
quadratic cosets of RM(1,n) in the code, thereby improving code rate somewhat. Higher
degree cosets can also be added, marginally increasing code rate at price of distance, D,
which decreases. However the rate remains unacceptably low for more than about 32 car-
riers.

This paper provides new answers to this problem by defining constructive techniques for
low PAR error-correcting codes of blocklength > 32 with acceptable rate. For instance,
we can (almost) construct a rate é code of length 64 with distance 16 and PAR < 4.0, a
rate % code of length 64, distance 4, and PAR < 8.0, and a rate % code of length 256,
distance 4, and PAR < 16.0. We emphasise ’almost’ because, although we most certainly
identify and algebraically describe very large codesets with low PAR, our constructions are
not strictly implementable yet, due to certain edge symmetries (coding collisions) which
compromise invertibility of the encoding. It remains an open challenge to eliminate these
coding collisions, and part of the aim of this paper is to present and motivate this challenge
in a clear way.

It turns out that our construction also requires the ability to generate all distinct permutation
polynomials from Z{ — Z% of algebraic degree < d for some d, 1 < d < t. To the
best knowledge of the authors, such an algorithm only exists in the literature for the case
d = 1 (namely “Bruhat Decomposition”, or as encountered when generating all possible
binary linear error-correcting codes of maximum rank and length) and, for d = 1, there are
Hﬁ;é (2¢ — 2%) such polynomials. This paper provides strong motivation to develop further
algorithms for the cases 1 < d < t, along with the enumeration of the size of such sets as ¢
varies.

Another aim of this paper is to advertise the fact that RuS sequences, and their generalisa-
tion as described in this paper, have a much stronger property than just a low PAR upper
bound wrt the DFT$®. [13, 16, 17, 25] have all pointed out the Bent/Almost Bent properties
of the RuS set, and [16, 17] and this paper proves that the RuS set, and their generalisa-
tions satisfy PAR < 2% wrt all possible Linear Unitary Unimodular Transforms (LUUTS),
including DFT{® and Walsh-Hadamard Transform (WHT). We will define LUUTS in the
sequel. Consequently, the RuS construction and its generalisation have relevance also to
Multi-Code CDMA [16, 17, 25], Weight Hierarchy and Quantum Entanglement [18, 19],
and Cryptography [27].

To summarise, the main new contributions of this paper are as follows:

e A proposal to measure PAR wrt the infinite set of Linear Unimodular Unitary Trans-
forms (LUUTSs), whose rows comprise all possible linear unimodular sequences.
This set includes DFT{®, the Walsh-Hadamard Transform (WHT), and many other
transforms.

e A construction (Constructions 1 - 3) for large sets of sequences with tight constant
upper bound on PAR and good distance properties, where PAR is computed wrt the



infinite set of LUUTS.

Although we acknowledge that our constructions are implicitly covered in the literature
by Golay [6, 7], Turyn [34], and others [33, 5], wrt DFT{°, no mention in the literature
is given of low PAR constructions wrt to the much larger set of LUUTSs and, apart from
the special case considered by Davis and Jedwab [4] wrt DFT{®, and the case of low PAR
wrt the WHT [3, 25], no attempt has been made to express these constructions in concise
Algebraic Normal Form (ANF) or to consider the construction of such sequences, or to
consider the Hamming Distance between members of the sequence set.

Our Construction as a Generalisation of Golay-Rudin-Shapiro Construction:
Golay-Rudin-Shapiro (RuS) sequences are a special case of Golay Complementary Pairs
as first introduced by Marcel Golay [6, 22]. RuS sequence construction [7, 28, 29] exploits
the recursion,

a’'=alb

b’ = ab M

where a and b are both bipolar sequences of length N, a’ and b’ are both sequences of
length 2N, ’|” means concatenation, and b means the multiplication of elements of b by
—1. The key observation that motivates the constructions of this paper is that we can write

(1) as,
1 anT _ a b
(a',b") _E(D(a b)

1 1 . C e . .
where E = ( 1 -1 ), and ’®’ means point-multiplication of matrix elements. For

instance, if a = (1,1) and b = (1, —1), thena’' = (1,1,1,—1) and ' = (1,1, -1, 1).

This paper shows that RuS sequences satisfy PAR < 2.0 wrt all LUUTS precisely because
E is an orthogonal 2 x 2 matrix. The RuS generalisation of this paper uses sequence
recursion where successive E matrices are arbitrary Rx R Hadamard matrices, such that the
generated sequences have PAR < R. For a given canonical representation of a Hadamard
matrix, E, an arbitrary row/column permutation of E is specified by -y, for row permutation,
and @, for column permutation. In this paper we emphasise the case where E is the Walsh-
Hadamard Transform (WHT) matrix, although the basic construction still works when E
is a more general Hadamard matrix. Given that E is a WHT, the sequence construction is
then primarily specified by the permutations «y; and 8;, at each stage of the recursion. As
stated earlier, much of the difficulty relating to the construction of this paper arises from an
attempt to classify, enumerate, and generate these permutations according to their algebraic
degree, as these degrees determine the overall ANF degree of the constructed sequence,
which in turn determines the (Reed-Muller) Hamming Distance of the code. This paper
therefore gives a strong justification for future research into classification and enumeration
of permutation polynomials according to maximum polynomial degree.

Construction 1 provides a way of generating low PAR error-correcting codes of any length,
r™, and over any alphabet. As a special case, Construction 2 generates binary codesets of
length 2™ and PAR < 2¢, comprising ANFs up to degree u, where u < 2t — 2 fort > 1,
and p = 2 for t = 1. These codesets have PAR < 2! wrt all LUUTS, including one and
multi-dimensional continuous DFTs [16, 17]. As LUUTS include WHTS, then our con-
struction gives large codesets of (Near)-Bent functions [15, 3, 26]. These binary sequences
are not just (Near)-Bent but are also distant from linear sequences over all (unimodular)
alphabets, not just over Z, - a particularly strong cryptographic attribute. Construction 2 of
this paper can be viewed as a recursive generalisation of a two-sided Maiorana-McFarland
construction where our sequence set has low PAR wrt all LUUTSs, not just WHT. We also
provide an explicit generation method for the complete quadratic subset of Construction 2



using Bruhat decomposition [2, 1]. In [25], Paterson increases code rate, at the price of in-
creased PAR wrt the WHT, by replacing the inherent one-to-one permutation of Maiorana-
McFarland construction with a many-to-one map. Construction 3 of this paper similarly
generalises Construction 2 by replacing the constituent permutations with many-to-one
and/or one-to-many maps. Throughout this paper, we assume our sequences are of length
r™ for some integers, r, n, although we emphasise the case where r = 2.

2 Linear Sequences, Linear Unimodular Unitary Trans-
forms (LUUTSs) and Peak-to-Average Power Ratio (PAR)

PAR is a spectral measure. We must therefore first define the transforms over which the
spectrum is to be computed. We call these transforms LUUTs (defined below), and LUUTSs
have linear rows, so we first define linearity:

Definition 1. Ler1 = (l(), l1, -y lm_q) be a length r™ complex sequence. 1 is defined to

be unimodular if |I;| = i, unitary if S0 o " |1i|2 = 1, and r-linear i,

= ((100,601,-- ,00,r—1) ® (@1,0,01,15 .+ ,81,,-1) ® ... ® (An—=1,0,An—1,15-+,An—1,r—1)
= ®?0(a1070’2 1y-- aaiﬂ"*l)

where ® is the ’left tensor product’, such that A ® (Bg, By, ...) = (ByA, B, A,...). For
length r™ sequences where 1 is prime, r-linear is called linear.

For example,

l= \[(1 0,0,1) is a unitary sequence,
= 2(1,1,1,—1) is a unimodular unitary sequence,
=1(1,-1,1,-1)= ﬁ(l, -1)® \/5(17 1) is a linear, unimodular, unitary sequence

Definition 2. L. ,, is the infinite set of length ™ complex r-linear, unitary, unimodular
sequences.

Definition 3. A 7™ x r" matrix, U, is unitary if UU' = I, where 1 means conjugate
transpose, and Ipx is the r™ x r™ identity matrix.

Definition 4. A r™ x r™ r-Linear Unimodular Unitary Transform (r-LUUT) matrix L has
rows taken from Ly n, such that LLY = In. Whenris prime, r™ x r™ r-LUUTs are called
LUUTS. Note that the set of r™ X r™ q-LUUTs is a subset of the set of r™ x r™ r-LUUTs iff

q|r.

Example LUUTSs for » = 2: The 2" x 2" Walsh-Hadamard (WHT) and Negahadamard
(NHT) matrices are LUUTS defined by ®i":_01 H, and ®?:_01 N, respectively, where H =
L (1 4 ).N=2L%(1 I ) andi® = —1. Forinstance, forn = 2, the WHT is the

V2 V2
LUUT whose rows have the following tensor decomposition:
11 1 1 (1,1)  ® (1,1)
1 /1 1 1 /1 1 11 -1 -1 | 1] (1,-1) ® (1,1)
AR AN A ol 1 1 1 1 [Tl Ly e (1=
1 -1 -1 1 1,-1) @ (@1,-1)



Similarly, for n = 2, the NHT is the LUUT whose rows have the following tensor decom-
position:

1 i i —1 (1,9) ® (1,1)

1 /1 i 1 /1 il =i e | 1 (LS e (1,9
Al a)es( 2) = T a w6 ok
1 —i —i -1 1,-i) ® (1,-i)

where ¢4 = 1.

Definition 5. We define DFT® for length 2™ vectors to be an infinite subset of 2™ x 2"

LUUTs, the union of whose rows form a subset of Lia , such that each row factors, as in

Definition 1, into a tensor product of length-two vectors (a0, a;1) which, in turn, must
ik

satisfy a; o = %, a;1 = “’W for some fixed integer k, where w is any complex root of

unity.

For instance, for n = 2, DFT{° includes the LUUT which is the 4-point one-dimensional
Cyclic DFT whose rows have a tensor decomposition as follows:

1 1 1 1 (1,1) ® (1,1)
11 i -1 — | 1| 1) ® (1,-1)
211 -1 1 -1 ) 2| (,-1) ® (1,1)

1 —i -1 (1,—-4) ® (1,-1)

where 2 = —1.

DFT$° also includes the LUUT which is the 4-point one-dimensional NegaCyclic DFT
whose rows have a tensor decomposition as follows:

1 w W W (1Lw) ® (1,w?)
111 o W w 1 (Le®) ® (1w
21 1 o W W T2 (LW ® (1,07

1 W Wt WP (1, ® (1,w%

where w* = —1.

By taking more and more 4 x 4 LUUTs of this form, we more closely approximate DFT{°
for the case r = 2,n = 2. Itis also helpful to notice that all rows of DFT{® occur as a subset
of the rows of certain LUUTSs formed from tensor products of 2 x 2 LUUTs. For instance,
for n = 2, the rows of the 4 x 4 Cyclic DFT are contained in two rows of each of H @ H
and N ® H. Similarly, the rows of the 4 x 4 NegaCyclic DFT are contained in two rows

of each of W1 ® N and W5 ® N, where Wy = - (1 =, ),W3=\/i§( Lo )

Having defined linear unimodular sequences, we are in a position to define PAR with re-
spect to Ly n:

Definition 6. Ler s; be the ith element of a length r™ vector, s. Then r-PAR(s) is computed
by measuring the maximum possible correlation squared of s with any length r™ r-linear
unimodular sequence, 1 € Ly ,:
r"—1
r-PAR(s) = r"maxe, ,(Is - 1?) = r"mavier, (| Y sili[")
i=0
where - means ’inner product’, and * means complex conjugate. Similarly,
PA(s) = r"max(|s - 1]?)
1 taken over all rows of a fixed, specified subset of 1™ x r™ unitary transforms, U

For a length r™ sequence, the values of r-PAR and PA range from 1.0 (for an ideal spec-
trally flat sequence) to r™ (for a spectral d-function). When r is prime, r-PAR is termed
PAR.



We can compute r-PAR of s by examining the transform spectra of s wrt all »-LUUTSs
(more practically we can approximate this continuous spectrum by applying a large enough
subset of well-chosen 7-LUUTS).

Example: Lets = 2_73(1, 1,1,-1,1,-1,1,—1). Then PA(s) wrtthe LUUT, H® H® N,
is obtained by first computing the matrix-vector product:

1 1 1 1 i i i i 1
1 -1 1 -1 i —i i =i 1
1 1 -1 -1 i i - —i 1
S—(HoH®N o 2—73 1 -1 -1 1 i -8 —i i 2—73 —1
—( H® )S = 1 1 1 1 - - - i 1
1 -1 1 -1 —i i —i i -1
1 1 -1 -1 —i —i i i 1
1 -1 -1 10— i i —i -1
2
24 4i
2
— 273 -2
= 2
2— 4i
2

The largest magnitude value in S is 273(2 £ 44). It follows that PA(s) = 23(276(22 +
4%)) = 2.5 wrt H ® H ® N. This also means that PAR(s) is lower bounded by 2.5.

2.1 Complementary Sequence Sets (CS Sets)

A Complementary Sequence Set (CS ser) of R unitary sequences of length R’ conven-
tionally has the complementary property that the sum of the one-dimensional Aperiodic
Autocorrelations of each sequence in the set results in the § function of magnitude R (zero
sidelobe energy) [7, 33]. Equivalently this means that the sum of the R DFT{® power
spectra of the sequences at each spectral index is %, i.e. the DFT{® power spectral sum
of the sequences is completely flat at all spectral indices. This implies that each of the R
sequences has PA< R wrt the DFT$®. We now modify the CS definition as follows,

Definition 7. We define the Complementary Set (CS Set) fo mean a set of sequences which
is complementary wrt any specified set of unitary transforms, {T }, such that the sum of the
power spectra of the set of R sequences of length R, wrt any member of the set, T, sum to
% at each spectral index [16, 21]. Therefore, for s a member of the CS set, PAR(s) < R.

‘We formalise this as follows:

Definition 8. The rows of an R X R' matrix, A, form a complementary set of R sequences
!

wrt the set of R' X R' unitary transform matrices, T, iff, for everyld € T, b; = %Au? is

unitary, where u; is the ith row of U, and the rows of A are unitary.

Lemma 1 provides an initial starting CS set for the example of the next section and the
subsequent constructions:

Lemma 1. Let A be a R x R unitary matrix. Then the rows of A form a CS set of R
sequences wrt all R X R unitary matrices.

Proof. Let B be an R x R matrix with rows, bj, where the b; are constructed as in Def-
inition 8. Then B = AUT. Similarly Bt = #/*At, where * means conjugate. Then
BB = AUTU* Al = IR, where IR is the R x R identity matrix. Therefore B is unitary
which means all b; are unitary, and Lemma 1 follows from Definition 8. O



3 Construction Example

Before presenting the formal constructions of this paper, we first provide an example which
highlights the main points of the constructions. For clarity of exposition we usually omit
the normalisation constant for each matrix or sequence which would ensure the unitarity of
the matrix or sequence. For instance, A below should be multiplied by % We also provide

and utilise ANFs, p(zg,Z1,---,Zn—1), for the binary sequence exponent of the bipolar
sequences constructed, where the ith element, p; of the length 2" binary sequence, p, is
given by p(zg = 19,%1 = 41,---,%n_1 = in_1), Where (ig,%1,---,4n_1) is the 2-adic

1 D
0

expansion of ¢. For instance, the function p = x¢ + 1 has a truth table HE which
1
1

0 1
1 0
can be used to represent the sequence (—1)? = (=1)°110 =1 -1 -1 1.

The construction strategy is as follows:

3.0.1 Choose Unitary Matrix

Choose, for example, the unitary matrix

1 1 1 1 (-1)°

I I TS S R B I G DO

A=l 1 41 o |= (—1)*1
1 -1 -1 1 (—1)®ote

By Lemma 1 the four rows of A form a CS set wrt any 4 x 4 unitary matrix, i.e. any 4 x 4
4-LUUT. We can perform a number of operations on A to generate a length 16 bipolar
sequence with 4-PAR < 4.00 wrt any 4-LUUT (which includes any 2-LUUT).

3.0.2 Concatenate Rows:

Concatenating rows of A gives the length 16 sequence,
s=1 1111 -1 1 -1 1 1 =1 -1 1 -1 —1 1 = (=1)%=22tnas

This sequence has 4-PAR(s) < 4.0 wrt all 4-LUUTS including all 2-LUUTs. As will be
shown, the upper bound is 4.0 because A is a 4 x 4 unitary matrix whose four rows form
a CS set wrt all 4-LUUTS, which includes all 2-LUUTSs. The transform set includes all
2-LUUTSs because 2 divides 4. For example, s has PAs of 3.12, 1.00, and 4.00 wrt DFT{°,
WHT, and NHT, respectively. (Note that PA wrt DFT{® is computed approximately by
taking the PA wrt enough 16 x 16 LUUTS of the form discussed in Definition 5. In other
words we “oversample’ the one-dimensional DFT to sufficient precision).

3.0.3 Permute Rows and/or Columns Prior to Concatenation:

Choose any row/column permutation of A prior to concatenation. For example, choose the
concatenation: Row 1 | Row 3 | Row 2 | Row 0, giving,

1 -11 -11 -1 -1 111 -1 -1 1 1 1 1
— (_1)$0w3+w1w2+$1z3+w0

S

This sequence also has 4-PAR(s) < 4.0 wrt all 4-LUUTS, including all 2-LUUTs. For
example, s has PAs of 1.95, 1.00, and 1.00 under DFT{°, WHT, and NHT, respectively.



As another example, consider the column permutation: Col 3,Col 0,Col 2,Col 1, followed
by the row permutation and concatenation: Row 2 | Row 3 | Row 0 | Row 1, giving,

s = -11-1111 -1 -11111 -111 -1
— (_1)zox2+ZOZ3+m1$2+zo+z2+x3+1

This sequence also has PAR(s) < 4.0 wrt all 4-LUUTSs, including all 2-LUUTs. For
example, s has PAs of 1.999, 1.00, and 1.00 wrt DFT{®, WHT, and NHT, respectively.
(Note that for 4 x 4 matrices, a combined row and column permutation is equivalent to a
row (or column) permutation. This is not generally the case for square matrix dimension
> 4).

3.0.4 Generate Cosets

Let g be any length-4 bipolar vector. Let us express A as

A=

where the a; are length-4 bipolar vectors.

Let A® be any matrix of the form,

ag0Og
©g
As=|
a20g
az O g

where a © g = (a0go, @191, - - - ,a393), For instance, let g = (1,1,1, —1). Then,

1 1 1 -1
1 -1 1 1

g —
Af = 1 1 -1 1
1 -1 -1 -1

Then concatenation of any row/column permutation of A# also has 4-PAR < 4.0 wrt all
4-LUUTs, which includes all 2-LUUTSs. As an example, consider the column permutation
of A8: Col 0,Col 3,Col 2,Col 1, followed by the row permutation and concatenation: Row
1| Row 3 | Row 0 | Row 2, giving,

s =111 -11 -1 -1 -11 -11111 -1 1

— (_1)$0$1+$0$2+$0$3+$1$2
This sequence has 4-PAR(s) < 4.0 wrt all 4-LUUTs, including 2-LUUTs. For example, s
has PAs of 2.97, 1.00, and 2.00 wrt DFT{®, WHT, and NHT, respectively.

3.0.5 Symmetric Permutation:

Definition 9. Let w be any permutation of Z,,. Then 7, is defined to be any r-symmetric
permutation of Z.», where () = ZZ;& i,r(k)rk, and i has a radix-r decomposition as
EZ;S i, ix, € Z,, Vk. We can then write the r-symmetric permutation of s as,

T7(8) = (Sm,.(0) Smp(1)s -+ > Sy (rn—1))



Figure 1: Power Spectrums for Size-4 Complementary Set, {sg,s1,S2,S3}, wrt DFT{°
(x-axis is spectral index, y-axis is power value)

If s has 4-PAR < 4.0 wrt all 4-LUUTs, then m2(s) has PAR < 4.0 wrt all 2-LUUTs.
(Note that because 75 is a radix-2 permutation, the PAR upper bound no longer covers all
4-LUUTs). For instance, we have just stated that

s=1,1,1,-1,1,-1,-1,-1,1,-1,1,1,1,1,—-1,1 has 4-PAR < 4.0 wrt all 4-LUUTs.

Let 7 = (0)(1,2,3) be a permutation of Z4. Then 7y permutes the indices of s according
to (0)(1)(2,4,8)(3,5,9)(6,12,10)(7,13,11)(14)(15) to give,

111 -11-1111-111 -1 -1 —-11

— (_1)zoz1+zozz+moms+xzxs

S

This sequence has PAR(s) < 4.0 wrt all 2-LUUTs. For example, s has PAs of 2.56, 1.00,
and 2.00 wrt DFT$°, WHT, and NHT, respectively.

3.0.6 Form Complementary Sequence (CS) Set:

Let E be another 4 x 4 unitary matrix (it could be the same as A). For example,

1 1 1 -1

1 1 -1 1

E= 1 -1 1 1
-1 1 1 1

where the element at row ¢ and column j is e; ;. For any row and/or column permutation
of A (or A®) we can form four length-16 CS. For instance, from subsection 3.0.4, let our
constructed sequence be,

S:ag|a§|a§|a§: 17]-’17_1;1 -

,—1,-1,-1,1,—1,1,1,1,1,—1,1, where
a8=1,1,1,-1,a8=1,-1,-1,-1,a

1’ ?
£=1,-1,1,1,a§ = 1,1,—1,1. Then our size-4

CS set is:
so = eo,oagleo,1BSIEO,zﬂgleo,sag = + + 4+ - + - - - 4+ - + + - - +
s1 = el,oagle1,1aélﬁ,zaglq,sag = + + + - + - - - - 4+ - - 4+ 4+ -
s2 = 62,089|22,1aéIEZ,zsglw,sag = + + + - - + + + + - + + + + -
s3 = e3,0agle3,1a7le3,2a3le33ag = - - - + + - - - + - + + + + -

where "+’ is 1 and ’—’ is —1.

Then [sg - 1|2 + |s1 - 1|2 + |s2 - 1|? + |s3 - 1| = 4.0 for 1 4-linear. In other words, the four
sequences, si, form a size-4 CS set wrt any 4-LUUT, which includes any 2-LUUT, as the
sum of their power spectrums wrt any 4-LUUT is a constant at every point. Therefore each
sequence satisfies 4-PAR(s;) < 4.0 wrt any 4-LUUT, which includes any 2-LUUT. The
power spectrums wrt DFT{® for each sequence of the above CS set are shown in Fig 1, and
the spectrums sum to 4.0 at each spectral index. The power spectrums wrt the 16-point

+4



WHT for each of the four sequences are as follows:

Sequence | Power Spectrum

So 0400400O0O0O0400O0°©0O04
S1 0 04000040400 400°0O0
S2 4 0000400O0O0O0M4¢0040
s3 000400404 0O0O0O0400O0

The power spectrums wrt the 16-point NHT for each of the four sequences are as follows:

Sequence | Power Spectrum

So 2020020220200 2°0 2
S1 2020020220200 2°0 2
S2 020220200202 220220
S3 020220200202 220220

In all cases the power spectrums sum to 4.0 at each point. Furthermore, the sequences,
mo(si) also form a size-4 CS set wrt any 2-LUUT, for any 7r2.

3.0.7 Iterate Construction:

Let us now assign

So eo0ad eo1af epqa$ eosal
Al = S1 — el,oaﬁ 61,18% 61,285 61,3a§
S2 e2,oa§ 62,13% 62,285 62,sa§
s3 esoa esiaf esqal  essal

for any size-4 CS set of length 16 sequences, s;, as constructed using the previous subsec-
tions. Let E' be any 4 X 4 unitary matrix. For instance,

1 1 -1 -1
1 -1 1 -1
E=1y 1 1 1
1 -1 -1 1

A’ takes the place of the A matrix discussed previously. We again perform row permu-
tation or column-segment permutation of A’, with optional coset offset and symmetric
permutation to construct sequences of length 64 with 4-PAR < 4.0 wrt any 4-LUUT. (Note
that we refer to column-segment permutation because we only permute the 4 segments of
each row of A'). E' now takes the place of the E matrix discussed previously, allowing
us to construct size-4 CS sets of length 64 whose power spectrums sum to a constant wrt
any 4-LUUT. For example, we can concatenate the sequences s;, constructed in subsection
3.0.6, to get the length 64 sequence,

B T e et i s e e St S

— (_ 1)wow1+wow2+wow3+m1mz+wz T3+22T5+T3T4+TaTs

where "+ and *—’ are short for 1 and —1, respectively. This sequence has 4-PAR(s) < 4.0
wrt all 4-LUUTSs, including all 2-LUUTSs. For example, s has PAs of 3.01, 1.00, and 1.00
wrt DFT{®, WHT, and NHT, respectively. Using E’ we can construct the size-4 CS set,

B T s st e e e e e A
A+ttt — et ———t—F ettt ot —F -ttt -ttt o+ttt ottt -ttt ——— =
A+ttt — -ttt -t ———F——tt—Ftt+t— -+ttt —F-——++———F—++++—+
Attt — ettt — - ———t—F ettt ot —F———— - — ——F———— - —— 4t —— -+ttt
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which is a set of 4 length-64 sequences whose power spectrums sum to a constant wrt any
4-LUUT, which includes any 2-LUUT.

We can iterate the contruction as many times as we like to produce sequences of length 22~
for some positive integer L, where each sequence has 4-PAR < 4.0 wrt any 4-LUUT. (If
there is symmetric permutation by 7o then each sequence generally only has PAR < 4.0
wrt any 2-LUUT, not any 4-LUUT).

3.0.8 Summary of Example Construction
We summarise the construction operations as follows:

e 1. Choose a 4 x 4 unitary matrix, A.

e 2. Permute rows and/or columns of A.

e 3. Select length-4 sequence, g, to act as coset offset for A.
e 4. Choose 4 x 4 unitary matrix, E.

e 5. Concatenate the rows of (permuted coset of) A and multiply each row-segment
by the appropriate entry in E, for each row of E, to form a size-4 CS set of length 16
sequences with 4-PAR < 4.0 wrt any 4-LUUT. Define this 4-set as a 4 x 16 matrix,
A

e 6. Iterate the construction L times by looping back to step 2, where A, E and g are
replaced by A’, a new 4 x 4 unitary matrix, E’, and a new length-4 unitary vector,
g', respectively.

e 7. Finally, symmetrically permute each sequence in the size-4 CS set, using the same
permutation, 7o, for each sequence, and define this set as a 4 x 4L matrix, each row
of which has PAR < 4.0 wrt any 2-LUUT, and such that the four rows form a size-4
CS set.

Our construction can be fully specified by the sequence of 4 x 4 unitary matrices, Ej,
where A = Ay = Eg, by the row/column permutations over Z4 at each iteration, the coset
offset at each iteration, the number of iterations of the construction, and the final symmetric
permutation over Z,2c . Using this construction we can generate a vast number of sequences
with low PAR wrt any 2-LUUT. However, the difficulty with the construction arises because
the above constructive operations are not disjoint (orthogonal), so it is problematic to count
the complete sequence set, and to design hardware/software to implement the construction
without gneerating a (small) fraction of the sequences more than once. We tackle the
quadratic case in subsection 4.4.

In subsection 4 we formalise the construction and generalise to r-PAR < R, for any R by
using 2 x R matrices, Ej, to recursively construct matrices, Aj. Instead of applying the
row/column permutations and coset offset to the A j matrices, we shall, equivalently, apply
these operations to the E; matrices.

11



4 Constructions

4.1 Construction 1

Let N =", R=rt. Let Ej and A;, 0 < j < L, be a sequence of R x R and R x RI*+1
complex matrices, respectively, E; a unitary, unimodular matrix with rows em, A; with
unitary, unimodular rows, a; . Let y; and 8; permute Zg, and E' with rows €} be the

row/column permutation of E;, specified by vy; and 8;, respectzvely Let Ag = EO Then
Aj; is formed as,

ajj = (aoj-1larj-1|-..[ar-1,-1) © (1 @ ej;) 2)

where xQy = (moyo, T1Y1,- - TRi_1YRi—1), 1 is the length R? all-ones vector,'|' means
concatenation, and e j is the zth row of E’

Theorem 1. Lets be a length N = RY row of Ay,_1. Then 7,(s) satisfies r-PAR(m(s)) <
Rwrtall N x N r-LUUTs, where m, is any r-symmetric permutation of's.

Proof. Assume the rows of Aj;_; form a size-R CS set wrt any r-LUUT. Let 1; and
1 be unitary unimodular 7-linear rows of length R7*1 and R, respectively. Let b =
Rj_lAj_lljir_l. Then, by Definition 8, b is unitary. By Definitions 2,4,8, the rows of
A; must form a size-R CS set wrt any r-LUUT if b’ = R/A;(}j_1 ® 1)T is unitary
V1j_1,1. This follows because b; = kR Ol(akJ 11T D€ jkle) = kR;(Jl bre; ; il
for by, bk, e; ;. and [ the kth elements of b’, b e1 j and 1, respectively. To make b’
unitary, we require P = RY 1o L bi)? = RY S0 0(bke Gi)? =1 Letz =
VR(bolo,bily, ..., br-1lg-1)". and Z = Eiz. Then P = 1if Z is unitary, which follows
by Parseval’s Theorem if Ej is a unitary matrix, and if z is unitary. Efiz is a unitary matrix
and z is unitary because b is unitary and 1 is unitary unimodular. It follows that the rows of
A; form a size-R CS set if the rows of A;_; form a size-R CS set. The induction is com-
pleted by noting that the rows of Ao = Eg form a size-R CS set. Finally, any 7-symmetric
permutation of s is allowed because 1 and 1; are both r-linear. O

Note that, if 1; is not unimodular then Theorem 1 does not, in general, hold.

It is interesting to observe that the Hadamard matrix construction of [14] is related to the
constructions of this paper. Using the terminology of [14], their construction is,

cii+B1 ci2+B2 ... cim+Bm
H= c1+B1  c22+ B2 ... Com +Bm
cm1+B1 ¢em2+B2 ... ¢nm +Bm

where C = [¢;;], the B; are T' x T' Hadamard matrices, and their alphabet comprises {0, 1}
instead of {1, —1}, and they use "+, mod 2, instead of x. One can relate this construction
to the first iteration of Construction 1 of our paper by equating our E matrix with their C
matrix, assigning 7' = m = R, and by assigning B;1 to be derived from B; where every
column of B; is cyclically shifted round by one position. Then we pick out every Rth row
of H to form a CS set of R sequences of length R2, where every sequence has PAR < R
wrt all LUUTSs. There are R such sets. It would be interesting to develop a classification of
Hadamard matrices according to the worst-case PAR of the rows of the matrix.
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PAR < 8.0

Figure 2: Construction 2 fort = 3

4.2 Construction 2 (special case of Construction 1)

Consider Construction 1. Letr = 2 and all Ej be 2t x2 WHTs. Letx = {Zo,T1,...,Tn_1}
be n binary variables. Then's = 27 (=1)P™), where,

L—-2 L—-1
p(x) =Y 05(x3)v(x541) + Y 95(;) 3)
Jj=0 J=0

where 8; and ~y; are any permutations: Z4 — Z&,
Xj = {Tx(t5), Tr(tj+1)> - - - » Tt (j+1)—1) }» 1 = Lt, ™ permutes Zy, and g; is any function
from ZE — Zs.

To clarify (3) note that, Vj, we can define p(xj,Xj+1) = 6;(%j)v;(Xj+1) such that p
can be expanded as the function p : Z2' — Z, p(xj,%Xj41) = 6o,;(X5)70,j (Xj+1) +
01,5 (X3) 71,5 (K1) + o+ Or1,5(X5)1e-1,5(Xj41) where 6; = (60,5,01,5,- .-, 0t-1,),
vi = (Yo,5:V1,j» - - - » Ve—1,5) and all 6; j,~y; ; are balanced functions : Z4 — Zs, chosen so
that ; and y; are permutations.

Corollary 1. The length N = 2" sequences, s, of Construction 2, satisfy PAR(s) < 2t wrt
all N x N LUUTs.

Proof. Construction 2 is a special case of Construction 1 where all E; are 2¢ x 2 WHTs.
The Corollary therefore follows from Theorem 1. O

When L = 2 and when @ or 7 is the identity permutation, then Construction 2 reduces
to the Maiorana McFarland construction over 2t variables. ! It is helpful to illustrate
Construction 2 graphically, and Fig 2 illustrates the construction for ¢ = 3, where we are
also free to permute the indices, ¢, of z; using w. An example for Fig 2 could be,

p(x) = (wo)(z3 + x5) + (z1)(25) + (71 + 22)(74) + (T3 + 74)(T6 + T7 + T5)
+(x3)(26) + (x5)(27) + go(w0, T1,22) + 91 (23, T4, T5) + g2(T6, T7, T5)

where go, g1, g2 are any functions: Z3 — Z,. This example has guaranteed 8-PAR < 8.0
wrt all 8-LUUTS, which includes all 2-LUUTSs, but with index permutation of the x;, PAR
< 8.0 is only guaranteed wrt all 2-LUUTs.

Theorem 2. For fixed t, let P be the subset of p(X) of degree p or less, generated using
Construction 2. Then D > 2™, where D is the Hamming Distance between members of

Thanks to V.Rijmen for pointing out the Maiorana-McFarland connection.
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where I' = Hf;é (2t — 2%) = |GL(t,2)|, (GL is the General Linear Group), and V =
(28 = 1)1)2 = (T'? =T). (Fort = 1 the bound is exact). (Note that this paper does not give
upper bounds on the size of P for the intermediate cases where 2 < u < 2t — 2.)

Proof. The result on Hamming Distance, D, is a well-known propery of Reed-Muller codes
[13]. Let us now prove (4). When g = 2 then 8 and +y are linear permutations. In this case
the two-way permutation, X;jy(X;+1), covers the same set of permutations as 6(X;)y(Xj+1)-
So we can set § to the identity permutation. Each term, x;jv; (Xj+1), for ; linear, is isomor-
phic to GL(t, 2), where GL is the General Linear Group. Therefore we can represent the
linear permutations at each iteration by the set, GL(t, 2) of binary invertible ¢ x ¢ matrices,
where T' = |GL(t,2)| = [['—g (2" — 2¢). For L = 2 and L — 1 iterations we have I'"~!
possible combinations of permutations. There are % HiL:1 ('tt) ways of ordering a linked
line of subsets of ¢ disjoint variables out of n variables. At each iteration we can choose g;

from one of 2¢+(2) quadratic functions of ¢ variables. Over L iterations we therefore have

a choice of (2t+(2) )L combinations of functions, g;. The first part of (4) follows by noting
L it !

that [T;Z, (%) = wr-

The case p = 2t — 2 occurs when 6 and -y are permutation polynomials each up to degree

t — 1 (¢ — 1 is the maximum possible degree of a permutation polynomial from Z} — Z%).

Therefore each of 8 and  can be chosen from (22?! different polynomials to make a total

o 2
of ( (22,)! ) polynomial configurations for one iteration. > However remember that the case
of 6~ quadratic corresponds to 6 and  both linear in which case we can, without loss of
generality, make 6 the identity. Therefore instead of contributing I'? configurations, the

case of A quadratic contributes only I" configurations, so the total number of polynomial

configurations after one iterationis V = (22—1)‘ — (T2 —T). Therefore, after L — 1 iterations
we have VL~1 possible combinations of permutations. We therefore replace I in the first
line of equation (4) with V. At each iteration we can now choose g from one of 22'~1
functions of ¢ variables of degree < ¢ (ignoring constant offset). The second part of (4)
follows. O

Definition 10. A [2", k, D, W] nonlinear error-correcting code has length 2", dimension
k (log, of the number of codewords), Hamming Distance D, and each codeword has PAR
< W wrtall LUUTs.

Corollary 2. Application of Construction 2 and reference to Theorem 2 allows us to con-
struct and parameterise [27,log, (|P|), 2" #, 2¢] nonlinear error-correcting codes.

4.3 Examples for Construction 2

The WHT, NHT, and DFT$® are used as ’spot-checks’ in the following examples to validate
the PAR upper-bound. Furthermore, the PAR is lower-bounded by the maximum PAR
resulting from these three spot-checks.

2Note that we divide by 2t so as not to include all offsets of the permutation @ (or -y) by the constant *1’, i.e.
we ignore permutations which have one or more constituent elements of the form 8; ;(x;) + 1 (or ;5 (x) + 1).
These constant offsets to the permutations are implicitly included by suitable assignments to the g; polynomials
in (5).
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There are, of course, an infinite number of LUUTSs, all of which validate the PAR upper-
bound for the constructed set.

4.3.1 Example 1, Identity Permutations

Let §; and ; be identity permutations V5. Then, 8(x;) = v(x;j) = x; and Construction 2
becomes,

L—-2t-1 L—1
p(x) = Z wa(tj+l)x1r(t(j+1)+l) + Z 9i (%5) (5)
j=0 1=0 j=0

When deg(g;) < 2, V7, it is well-known that s = 2= (—1)P(*) is Bent (PA = 1 wrt the
WHT) for L even [13] and (perhaps not known) that s has PA = 2t wrt the WHT for L odd.
In general, for any g;, s has PAR < 2t wrt all LUUTS. For example, if L = 4,¢ = 3, and
p(X) = Lox3 + X124 + X225 + T3L6 + T4y + TpTg + TTg + T7T10 + T3 T11, then s has PA
= 1.0 wrt WHT and NHT, and PA = 7.09 wrt DFT$°. Similarly, let go(zo, 21, T2) = 2122,
g1 (3, 24,75) = T3x4ws, and gy(zg,27,28) = 0. Then s’ = 27 (—1)P()+gotgites
has PAs 4.0, 2.0, and 7.54 wrt WHT, NHT, and DFT{®, respectively. In all cases, PAR
<2t =18.0.

4.3.2 Example 2, PAR < 2.0,(t=1)

Let t = 1. We need only consider the identity permutations, 6;(z(;)) = V(%)) =
Tr(j)> 8 05(2x(j)) = Vi (Tx(j)) = Tx(s) + 1 is implicitly covered by g;(x;). From Con-
struction 2,

p(x) = Z][.’:_(f Tr(j)Ta(j+1) T CT5 + k, cj, k € Zy (6)

This is exactly the DJ set of binary quadratic cosets of RM(1, n), where n = L, as described
by Davis and Jedwab [4]. This set has PA < 2.0 wrt DFT$® [4]. Such sequences are Bent
for n even [13, 26] and, in [16, 17] it is shown that such a set has PA = 2.0 wrt WHT
for n odd, and also, wrt NHT, has PA = 1.0 for n # 2 mod 3 (NegaBent), and PA = 2.0
for n = 2 mod 3. More generally the DJ set has PAR < 2.0 wrt any LUUT [17], and this
agrees with Theorem 1. For example, let p(x) = zoz4 + Taz1 + T122 + T223 + 21 + 1
. Then s has PAR = 2.0 wrt the WHT, NHT, and DFT{°. The DJ set, being cosets of
R(2,n), forms a codeset with Hamming Distance, D > 2"~2. The rate of the DJ codeset
is (%2)22:+1. Therefore we can construct a [27,log,(n!) + n,2"~2,2.0] error-correcting
code. The primary drawback of this code is that its rate vanishes rapidly as n increases.

4.3.3 Example 3, PAR < 4.0, (t = 2)

[4, 24, 16, 17, 26] all propose techniques for the inclusion of further quadratic cosets,
so as to improve rate at the price of increased PAR. We here propose an improved rate
quadratic code (although still vanishing, asymptotically), where PAR < 4.0. To achieve
this we set ¢ = 2 in Construction 2. For ¢ = 2 then the algebraic degree of all sequences
is 4 = 2. Therefore, as stated in the proof of Theorem 2, we can set § to the identity
permutation. There are I' = (221)! = 6 non-trivial linear permutation polynomials, v;,
(ignoring constant offset). These polynomials map from ZZ — Z2, and comprise the set,
Y(@r, Ts5) € {(Tr, Ts), (Tr + Ts, Ts), (T, T +T5), (T, Tr), (Tr + T, T1 ), (Ts, T + T5) }-
Substituting for «y; and g; in Construction 2 gives a large set of polynomials with PAR< 4.0
wrt all LUUTs. We now list, for this construction, the p(x) arising from the 6 invertible
polynomials, vy, for one ’iteration’ of Construction 2, i.e. for L = 2, where n = Lt = 4,
and where we fix 7 to the identity.
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p(x) = xox2 + T123 + corox1 + c1z2xs + RM(1,4)
p(x) = zo(w2 + x3) + 2123 + coToz1 + c1T223 + RM(1, 4)
p(x) = zox2 + z1 (22 + T3) + corox1 + c1z2x3 + RM(1,4)
p(X) = Loz + 2122 + Coo1 + 123 + RM(1,4)
p(x) = zo(z2 + x3) + T1T2 + coTox1 + c1zazs + RM(1, 4)
p(x) = woxs + x1(x2 + ©3) + corox1 + c1z2x3 + RM(1,4)

@)

where cy,c; € Z,. The permutations, ;, above are isomorphic to a distinct invertible
boolean ¢ x t matrix, where ¢ = 2 (Section 4.4), as the permutation polynomials form
a group isomorphic to the binary General Linear Group, GL(t,2), where |GL(¢,2)| =
1425 (2t — 29) [11]. Explicitly,

GL(2,2)={(o 7):(o 1):(1 7),(% a),(1 o),(1 1)}

Note that, by inspection, any two of the quadratics in (7) are inequivalent under permuta-
tion, 7, of the indices of the four variables, e.g., p(x) = zoz2 + z1Z3 + coTor1 + C1Z223 +
RM(1,4) and p(x) = zo(z2 + x3) + T123 + covor1 + c1z223 + RM(1,4). An upper bound,
B, on |P| is given by Theorem 2. Substituting ¢ = 2 into (4),

' n
P|<B= %245 ®)

Therefore we can construct a [27, log, (|P|), 272, 4.0] error-correcting code. Exact enu-
meration and unique generation for this set remains open, due to extra symmetries, induced
by m, which occur for £ > 1. As an example of this 7w-induced symmetry, consider the two
coset leaders, zoz2 + 123 + go(zo, 1) + 91 (22, x3) and zozy + 223 + g{(zg,x2) +
g1 (z1,x3) which both contribute to the count in the above enumeration, but are equal
when go(Zo, 1) = ZoZ1, g1(T2,23) = 2223, 94(To,Z2) = ToZa, 91(T1,T3) = T1T3.
This equality leads to an overcount and such symmetries render B a strict upper bound
for all cases but ¢ = 1. We computed the exact number of quadratic coset leaders for
n = 4,6, 8, 10, by simply counting the number of distinct coset leaders, and these are com-
pared to the upper bound, B, of (8) in Table 1. They are also compared to the "7' quadratic
coset leaders in the binary DJ set (Example 2). Thus, for instance, Table 1 shows the ex-
istence of a [64,20.2,16,4.0] low PAR error-correcting code, i.e. of length 64, dimension
k = 20.2, distance D = 16, and PAR < 4.0, which can be compared with the fundamental
DJ binary codeset for n = 6, which is a [64, 15.5, 16, 2.0] low PAR error-correcting code.
We see that rate has been improved over the DJ codeset at the price of PAR, which also
increases. Thus, by assigning ¢ = 2 we have a construction for a much larger codeset than

Table 1: The Number of Quadratic Coset Leaders for Construction 2 when £ = 2

n 4 6 8 10
Theorem 2, (8),(4), B/2"+! 72 12960 4354560 2351462400
Exact Computation(3), [P[/2"+! 36 9240 4086096 2317593600
|DJ Code |/2™+! 12 360 20160 1814400
log, (B/2™*1) 6.2 13.7 22.1 31.1
log, (|P[/27+1) 52 132 22.0 31.1
log, (Number of homogeneous quadratics) | 6 15 28 45

the DJ codeset and with the same Hamming Distance, D = 27~2, but now PAR is upper-
bounded by 4.0 instead of 2.0. Table 1 also shows the log, of the size of the complete
set of homogeneous quadratic functions, and it is evident from Table 1 that P contains a
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significant proportion of these homogeneous quadratic functions for n < 10. Note that, as
n increases, the discrepancy between the upper bound, B, and |P| becomes negligible as
a fraction of |P|. Therefore, in practice, for n > 10, it may be acceptable, from the view-
point of an engineer who wishes to use this codeset in an OFDM system, to incorporate the
coding collision errors induced by 7 into the overall error-rate without significant detriment
to performance. In which case we can already claim to have constructed an implementable
low PAR error-correcting code for OFDM systems using 1024 or more carriers which is
significantly larger than any previously proposed that uses construction techniques. How-
ever Table 1 also indicates that the rate of this code is still unacceptably small for n > 10.
For instance, from Table 1, when n = 10, we see that the code rate of P is %, which is
very small.

As an example of a codeword from this set, let p(x) = zoz2 + 122 + T1Z6 + T2X5 + Tex3 +
TeXs + Tsxa + 3x7 + Tox1 + xsx3 + x7 + x1 . Then s has PAs = 1.0, 2.0, and 3.43 wrt
WHT, NHT, and DFT{°, respectively.

Table 2: The Number of Quadratic Coset Leaders for Construction 2 when ¢ = 3

n 6 9 12 15
log,(B/2™+1) 16.7 33.5 51.7 70.9
log,(Number of homogeneous quadratics) | 15 36 66 105

4.3.4 Example 4, PAR < 8.0, (t = 3)
There are now (221)! = 5040 non-trivial permutation polynomials from Z3 — Z3, and of
linear or quadratic degree for each of 6, and -y (ignoring constant-offset). Thus, 6y can
be quadratic, cubic or quartic according to the subset of permutations used. In this paper
we only explicitly enumerate upper bounds for the quadratic and quartic cases, leaving the
cubic case to future work.

Quadratic Construction (1 = 2):

When p = 2 we have a quadratic construction, and 8 and -y are linear permutations. For this
case, as discussed previously, we can, without loss of generalisation, set 8 to the identity
permutation. There are T' = (2% — 1)(2% — 2)(2% — 22) = 168 linear permutation polyno-
mials. By inspection, these 168 polynomials can be represented by the following 7 linear
permutations which are inequivalent under input and output variable index permutation.

Y(Zq,Tr,Ts) € {(Tq; Tr,Ts), (Tg + Ts, Tr, Ts), (Tqg + Ts, Tr + Ts, Ts), (Tqg + Tr + Ts, Tr, Ts),
(J}q + Zr, xp +$s;$s)s(mq +Zr +Ts5,Tp +$s;$s)s(xq + s, Tr + Xgq,%s + Xq +$r)}

Substituting for v and g in Construction 2, with 8 fixed as the identity, gives a large set
of polynomials with PAR< 8.0 wrt all LUUTs. We now list, for this construction, all
quadratic p(x) arising from the 7 inequivalent degree-one permutations, -y, for one ’itera-
tion’ of Construction 2, i.e. for L = 2, where 7 is fixed as the identity:
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p(x) = o3 + 124 + T25 + g(x)

p(x) = wow3 + woxs + z1w4 + 275 + g(x)

p(x) = zoxs + xoxs + £124 + T125 + T2z5 + g(X)

p(x) = xox3 + xoxs + Toxs + X124 + 2225 + 9(x)

p(x) = wow3 + woxa + z1w4 + T125 + T225 + g(x)

p(x) = wox3 + Toxa + Toxs + 124 + T105 + L2205 + 9(X)

p(x) =20T3 + ZTox5 + 123 + T1X4 + T2Z3 + T224 + T2T5 + g(x)

where g(x) = CoXox1 + C1TOT2 + CaX1X2 + C3TQX1T2 + C4X3L4 + C5L3T5 + CeLals +
crx3zaxs + RM(1,6), co,C1,...,07 € Za, with c3 = ¢; = 0. An upper bound, B, to
|P| can be computed from Theorem 2, (4), with g = 2, and the upper bound is com-
pared to the total number of homogeneous quadratics in n binary variables in Table 2.
Once again, a substantial proportion of the possible homogeneous quadratics appear to be
contained in P for n < 15. As with ¢ = 2, exact enumeration and unique generation
for this set remains open, due to extra symmetries induced by 7. This codeset has Ham-
ming Distance, D > 272 and PAR < 8.0 wrt all LUUTs. We can therefore construct a
[2™,log,(|P]), 2" 2, 8.0] error-correcting code. For instance, Table 2 shows the existence
of a [64, ~ 23.7, 16, 8.0] low PAR error-correcting code.

Cubic Construction (u = 3):

For ¢ = 3 we can also include cubic forms in Construction 2, where ¢ and 7 are each
quadratic or linear. There are 168 linear and 5040 — 168 = 4872 quadratic permutations
for each of A and p and, by inspection, this set can be represented by 7 linear and 147
quadratic permutation polynomials which are inequivalent under input and output variable
permutation. This makes a total of 154 inequivalent permutation polynomials for ¢ = 3
[8, 31]. Substituting for #, v and g in Construction 2 gives a large set of polynomials with
PAR< 8.0 wrt all LUUTs, and Hamming Distance, D > 2n—3_ However, we leave to
further work the challenge of upper bounding, enumerating and uniquely generating this
set. Here is an example from this codeset, where ¢jk, uv is short for z;z ;25 + T2y, 7 is
the identity, 6; is linear and +y; is quadratic Vj. Let,

p(x) = 034,035,045, 135, 145, 234, 235, 245, 367, 368, 378, 567, 568, 694, 794, TAB,
894,345,948, 03,05, 14, 24,25, 36, 38,47, 58, 69, 6A, 6B, TA, 7B, 89,88, 67,78, AB

Then s has PAs 4.0, 6.625, and 7.66 wrt the WHT, NHT, and DFT$®, respectively. More-
over, PAR < 8.0. Here is another example from this codeset, where 7 is the identity, 8 is
linear, ~yp is quadratic, #; and 7y, are both linear, and 65 is quadratic, 7, is linear. Let,

p(x) = 034,035, 045,134,135, 145, 234, 235, 245, 789, 67A, 68A,67B, 68B,
03, 05, 14, 15, 36, 38, 46, 47, 56, 57, 58, 69, 79, 89, 8A, 7B

Then s has PAs 1.0, 2.5, and 5.44 wrt the WHT, NHT, and DFT$®, respectively. Moreover,
PAR < 8.0. Successful enumeration would allow us to construct a [27, k, 2"~3,8.0] error-
correcting code.

Quartic Construction (y = 4):

Finally, for ¢ = 3, we can also include quartic forms, p(x), which occur for the subset of
cases where both 8 and v are quadratic permutations. This gives a large set of polynomials
of degree < 4 with PAR < 8.0 wrt all LUUTs, and Hamming Distance, D > 2"~*. Table
3 uses (4) to compute an upper bound on the quartic code size for ¢ = 3 as n varies. We can
therefore construct a [27,log, (|P|), 2" 4, 8.0] error-correcting code. For instance, Table 3
shows the existence of a [64, ~ 42.9, 4, 8.0] error-correcting code.
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Table 3: Upper Bound on Size of the Quartic Codeset Using Construction 2 for ¢t = 3

n 6 9 12
log,(B) | 42.92 80.91 120.29

We leave the exact enumeration and unique generation of this set to future work. Here is
an example from this codeset. Let,

p(x) = 0235,0245,023, 025, 1235, 1245, 0234, 0235, 0245, 1234, 1235, 1245,
123,125,035, 045, 134, 145, 134, 135, 145, 234, 235, 245, 03, 05, 14, 15

Then s has PAs 6.25, 3.25, and 3.74 wrt the WHT, NHT, and DFT$®, respectively. In all
cases, PAR < 8.0.

4.3.5 Example 5, PAR < 16.0, (t = 4)

Table 4 uses (4) to compute an upper bound on the sextic (u = 6) code size fort =4 asn
varies. We can therefore construct a [27, log, (|P|), 2", 16.0] error-correcting code. For
instance, Table 4 shows the existence of a [256, ~ 116.6, 4, 16.0] error-correcting code.

Table 4: Upper Bound on Size of the Sextic Codeset Using Construction 2 for ¢t = 4

n 8 12 16
log,(B) | 116.63 221.08 312.00

We leave the exact enumeration and unique generation of this set to future work.

4.4 A Matrix Construction for all Quadratic Codes from Construc-
tion 2

For the case 1 = 2 we can, without loss of generality, fix 8 to the identity permutation, and
then aim to construct all possible linear permutations for . Each degree-one permutation,
v: Zt — Z% can be viewed as a t X t binary adjacency matrix under the mapping,

M ={mi; 1} < 7(x5) = (00,5 (X3),71,5 (X5)5 - - > Ve-1,5(X5))s Y5 0 Z5 — Zo,deg(mi;) =1, Vi
miy; =1 if ;,j (x;) contains the linear term, x;
m; ; = 0 otherwise

The above mapping is an isomorphism from degree-one permutations to the General Linear
Group, G = GL(t,2), of all binary ¢ X ¢ invertible matrices, mod 2 [11]. Therefore,
to construct all quadratics, p(x), for a given n and ¢ we need to generate all degree one
permutations, 7y, which can, in turn, be constructed by generating all of G = GL(t, 2), as
follows [1, 2]:

Definition 11. A binaryt X t transvection matrix, X o5, satisfies,

Xaob = {us;}, whereu;; =1, i=j,andi=a,j=>
ui,; = 0, otherwise
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Definition 12. The Borel subgroup of G over Zs is the set of t X t upper-triangular binary
matrices, B.

Definition 13. The Weyl subgroup of G is the set of t X t permutation matrices, W.

Arbitrarily assign a fixed ordering, O, to the (%) matrices, Xo5,a < b. Letw € Wbeatxt

Qao
permutation matrix where w also represents a permutation of Z; such that w a“ =
at—1
@w(0)
Fw(l) For each w, form the matrix product, X,,, comprising all X, which satisfy
Qw(i-1)

a < b=w(a) > w(b), where the X, in X, are ordered according to O.

Theorem 3. [1, 2] ('Bruhat Decomposition’)
G =X, WB 9)

where X', is the set of sub-products of X,, that maintain the ordering of the X o5 matrices
in X, including the identity matrix.

All linear permutations, <y, can be uniquely constructed using Theorem 3, where |G| =
r= Hf;é (2t —2%). This means that we can generate all quadratics, p(x), for Construction
2 for any ¢ and L. However, as indicated previously, the p(x) are not guaranteed to be
unique due to the extra symmetries induced by 7. We leave to further work the challenge

of modifying the Bruhat decomposition to eliminate these residual symmetries.

4.5 Examples of Bruhat Decomposition

t=2:
Fort =2,Xo1= (¢ 1).B={(s 7),(s 1)bW={(s 1),(% &)r

Assign the trivial ordering Xo; to the one matrix, X,;. Now w = ( o0 ) defines the

identity permutation (0)(1) and makes X, = ( ¢ { ). Moreoverw = ( { ¢ ) defines
the permutation (0, 1) and makes X,, = Xo1. Therefore, when w defines (0)(1) we gener-
ate 2 matrices of G, and when w defines (0, 1) we generate 4 matrices of G, bringing the
total to 6, which is correct.

t = 3: 1 1 0 1 0 1 1 0 0
Fort:3,X01:(g ! ‘;),X02=(g ! (IJ),Xm:(g ! i),|B|:8,
|[W| = 6. We can arbitrarily choose to assign the ordering X1 Xo2X12 to the 3 matrices,

Xap- The partitioning of matrices in G is then as follows:

w Xuw |subset of G|
O |1 s

(0)(1,2) | X1» 16

(0,1)(2) | Xo1 16

(0, 2)(1) X01X02X12 64

(0,2,1) | Xo1Xo2 32

(0,1,2) | Xo2X12 32

Total = |G| = 168
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5 A Further Generalisation

Lemma 20 of [25] extends the Maiorana-McFarland construction to a large codeset with
near-Bent properties, where a 1-1 map is replaced by a 2°-1 map. In this section we apply
similar ideas to Construction 2 to obtain Construction 3 below, (proofs omitted). Con-
struction 3 is quite complicated and so far we have not found a better way to express the
construction. We advise readers to skip this section on first reading. We do, however,
provide some examples in the appendix which will help to clarify the construction.

Construction 3 tackles the case when the number of variables in each of the L iterations
is allowed to vary. Using the terminology of Construction 1, this implies more than one
E matrix for some iterations, where each E matrix is unitary and is associated with an in-
dependently chosen row/column permutation. Before describing the construction we must
first specify some new terminology.

Let permutation 6 : Z§ — Z§ have as domain the ¢ binary variables, x. Let f : Z% — Z
have as domain the set of u binary variables, z. Let us now assume that the form of 6
depends on the output of f(z). We write this as 8(x){f(z)} and this expression can be
partly evaluated as,

0(x){f(2)} = (f(2) + DE°(x) + f(2)8" (x)

where we must define 2 permutations, #° and 81, from Z§ — Zé. For brevity we can write
this as 8{f}. We can generalise this definition to make 6 dependent on v associated func-
tions, f;, from Z3" — Z5,0 < 4 < v. We write this as 0(x){ fo(20), f1(Z1), - - -, fo—1(Zv—1) },
and we must now define 2° permutations, 6°,6',...,62 1, from Z{ — Z%, one of
which is ’selected’ according to the combined outputs of the f;. For brevity we can
write this as 0{fo, f1,..., fo—1}. We can further abbreviate the notation by labeling
{F} = {fo, f1,---, fo—1}. We can then NEST dependencies Fo, F1, F5, .. .. This is writ-
ten as 0 = O{Fo{F1{F>{...}}}}, and means that the form of the functions in F;_; depend

on the outputs of the functions F;. We express the NEST operation as,

NEST(0{F},{F'}) - 0{F{F'}}

Let |F'| mean the number of functions labeled by F'. Letv = E?:_Ol |F;|. Then, if we NEST
to a depth of @) using the function sets, F;, 0 < i < @, then we must define 2¥ permutations,
6°,0%,...,6% 1, from Z, — Z%, one of which is "selected” according to the combined
outputs of the F;. As an example, let Fy = {fo(2o), f1(2z1))}, and F; = {f2(z2)}. Then,
with fo, f1, fo outputting — Zs,

O(x){Fo{F1}} = 0(x){fo(Z0), f1(z1){ f2(22)}}

which, for brevity, can be written as,

0{Fo, F1} = 0{fo, fi{f2}}
and can be partially evaluated as,

(f2(22) + 1)((f1(z1) + 1)(fo(zo) + 1)8°(x) + (f1(21) + 1) fo(20)8" (x) + f1(z1)(fo(z0) + 1)6%(x)
+£1(71) fo(20)0° (%)) + fa(22)((f1(71) + 1)(f5 (7o) + 1)0%(x) + (f1(z1) + 1) f5(20)0%(x)
+£1(z1)(fo(20) + 1)0°(x) + f{(21) f3(20)07 (x))

where f] is not necessarily the same as f;, and where 8 permutations, 6¢ : Z§ — ZI,
0 <1 < &, must be defined with domain x.

We will also decompose the permutation 6; : Zi — Zi as 6; = (69,6015, --,0t—1,5),
where 0; ; : Z4 — Z,. Similarly, v; : Z§ — Z% is decomposed as
Vi = (V0,55 Vi,j» - - - Ve—1,5), Where v; j : Z§ = Zs.
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We now define the EXTEND operation. Let F' be a length t' — ¢ vector of functions of
arbitrary domain each of which outputs — Z5 (where it is assumed that ¢’ > ¢). Then,

EXTEND(GJ,F) — (gj,o,ej,l, PN ,Oj,t_l,F)

is a mapping — Zﬁl. In other words, 8; has been extended by means of the vector F' from
a permutation of Z% to a mapping which outputs to Zg. Construction 3 uses combinations
of NEST and EXTEND to construct 8} and -y}, which output (after NESTING and EXTEN-
SION) to Z;max, where tmax is defined below. 6 and v} can then be "multiplied’, in the
same way as §;+; in (3), and the resulting expressions added to form the final polynomial,
p.

We are now ready to describe Construction 3.

Construction 3: To construct a function of n boolean variables with PAR < 2tmax yrt
all LUUTs, we pursue the following strategy (the y; are auxilliary boolean variables which
can be used at the end to select between different sequences):

o Choose tmax so that 1 < timax < n.

e Partition the n binary variable indices, {0,1,...,n — 1}, into L disjoint variable
subsets, Sj, such that t; = |S;j| < tmax, Vj, 0 < j < L.

e Foreachj, 0 < j < L—1, define ; comprising 2'max—ti permutations, 0?, 011', ..
from Z5 — Z5 with domain the set of t;j binary variables x; = {z;}, i € S;.
Similarly, for each j, 0 < j < L—1, define yj comprising 2tmax—ti+1 permutations,

t —t; . .
0 TR ,'y; MAXTI =1 rom Zé”l — Z;”l with domain the set of tj11 binary
variables X541 = {x;}, i € Sjy1.

® forj=0,7<L -1, j++ do:
{
t=t;.
Assign F' as the zero vector of length tmax — t;.
Fori=j+1,1<L—1, i++ do:

{
ift <t;
{
assign Gj = NEST(QJ, {'Yifl,t; Yi—1,t4+1y---, ’yifl,tifl}).
sett =t;.
}
}
ift < tmax

assign 9]- = NEST(aj: {yta Yt+1y.00y yimax—l})'
9;- = EXTEND(6;, F).
t=1tj4+1.
F = ).
Fort=34+11<L—1,14++ do:
{
ift <tit1
{
assign F' = {7i,t, Yi,t+1, - - - ,’Yi,t,-+1—1}~
assigny; = NEST (v;, F).
assignv; = EXTEND(~;, F).
sett =t;y1.
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PAR < 8.0

6 %6 %

9 76
@F‘v@ < %)

Figure 3: Example of Construction 3 where tmax = 4

}
}
ift < tmax
{
assign F' = {ys, ys41, -y Ytypar—1}-
assign v; = NEST (v;, F).
assign v; = EXTEND(y;, F).
}
%=
}
o Thens =272 (—1)P™), where p is given by,
L—2 L-1
px) =D 0+ gi(x;) (10)
j=0 J=0

where 2tmax—tL-1 different sequences are generated according to the assignments
given to the tmax — tr.—1 auxilliary variables, y;, which are present in the 0;- or ’y;-,
and where the g; are arbitrary functions of xj, outputting — Zs. (Note that, for
this generalisation, the permutation, =, of the indices {0, 1,...,n — 1} is implicitly
included in the initial index partition operation).

Corollary 3. The length N = 2" sequences, s, of Construction 3, satisfy PAR(s) < 2tmax
wrtall N x N LUUTs.

Fig 3 illustrates Construction 3 for the case of Example 1 in the Appendix, where we are
also free to permute indices, %, of x;.

Corollary 4. Each of the 2tmax—tL-1 sequences, s, of Construction 3 is a coset leader
for a coset of 2tL-1 sequences formed from any linear offset of s by linear combinations
of members of X1,—1. The union of these 2tmax—tt—1 cosets forms a CS set of 2tmax
sequences of length 2™.

The Appendix provides examples for Construction 3.

In Construction 3, if t; = tmax, Vj, then there is no NESTING or EXTENSION and the con-
struction simplifies to Construction 2. It remains open to exactly enumerate and uniquely
generate the sequences in Construction 3. Note that, just as Construction 2 is a special case
of Construction 1, so Construction 3 is a special case of a more general construction where
the E matrices are not necessarily WHT matrices. This further generalisation is concep-
tually straightforward once Construction 3 is understood. Note also that Construction 3
allows us to add yet more sequences to our low PAR codesets without degrading distance,
and these improvements in code rate will be discussed in future papers.
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6 Discussion and Open Problems

This paper presented a construction for low PAR error-correcting codes which significantly
generalises the fundamental codeset of Davis and Jedwab, and concisely summarises the
complementary set constructions of Golay, Turyn, and Tseng and Liu. An important sub-
case, Construction 2, can be viewed either as recursion or specialisation of a two-sided
Maiorana-McFarland construction. The paper highlights the central importance for PAR
constructions of generating permutation polynomials of prescribed maximum degree, and
provides motivation for further research work in this area, and also motivates the search for
solutions to a number of open problems which we will now discuss.

Open Problems:

e The constructions of this paper only provide a unique, implementable encoder if
we can provide algorithms to generate all permutations and/or many-to-one/one-to-
many mappings of specified maximum algebraic degree. Symmetric permutations
are straightforward. Section 4.4 provides a (previously-known) generation scheme
for linear permutations (producing ’quadratic’ sequences). But the problem of unique
generation of permutations of degree greater than one is, as far as the authors know,
unsolved. Solutions to this problem would have far-reaching application in cryptog-
raphy, and this paper shows that such algorithms are central to the development of
constructions for low PAR error-correcting codes.

e Given an algorithm to generate all permutation polynomials, then Construction 2
only generates distinct p(x) for ¢ = 1. For ¢ > 1, m, the permutation of variable
indices induces extra symmetries causing a few p(x) to be generated more than once.
In other words, for ¢ > 1 it is possible that the action of two (or more) distinct
permutations, 7w and 7', may result in the same polynomial, p(x). This situation is
reflected in (4), which is a strict upper bound for ¢ > 1. It remains open to provide
an algorithm to generate all distinct p(x). Such an algorithm would replace (4) with
an exact expression and provide a ’black-box’ encoding solution for OFDM systems.
The problem is closest to solution for the case of linear permutations, where Section
4.4 solves the permutation generation part, and it remains to eliminate the coding
collisions caused by distinct permutations 7. We have not yet tackled the problem of
unique generation of codewords for Construction 3, but this is clearly an even harder
task.

o It would also be interesting to choose the E; other than WHTs for Constructions 1
and 3. In particular, note that the case of ¢ = 1, 2, 3 refers to Hadamard matrices of
size 2,4, 8, respectively (PAR < 2,4, 8, respectively). It is known that, for ¢t < 3,
all Hadamard matrices are row/column permutation equivalent to WHT matrices, so
Construction 2 covers all cases. However, for ¢t = 4, (PAR < 16) we know that there
are 5 row/column permutation inequivalent 16 x 16 Hadamard matrices, one of which
is the WHT [32]. Therefore, for ¢ = 4, there are essentially 5 different versions of
Construction 1, one of which is Construction 2. As t increases we have yet more
inequivalent classes of Hadamard matrices. This paper therefore establishes a direct
link between the classification of Hadamard matrices, and the classification of PAR
classes, and provides a strong motivation to discover manageable ANF descriptions
for each of these classes.

e One important way to improve code rate whilst keeping PAR low is to choose rectan-
gular E;, with more rows than columns, where the rows form a set of near-orthogonal
sequences. Application of Construction 1 would then result in a slowly rising PAR
bound as L increases, but the rate of the code would also improve compared to the
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cases where Ej is a square matrix. This raises the possibility of even higher rate low
PAR error-correcting codes. For instance, in CDMA, the WHT rows can be used as
a sequence set, due to their orthogonality. But larger near-orthogonal sequence sets
are highly desirable, and the set of Gold sequences is such a set. The set of Kerdock
sequences is an even larger set [9]. One could therefore use one of these larger se-
quence sets to form our E matrices, one sequence per row. Our row permutation, -y,
would then operate over a larger space, resulting in an improved code rate. And the
near-orthogonality of the sequence set would ensure the upper-bound on PAR only
rose slowly after each iteration of the construction, although computing the precise
upper-bound in such cases remains an open challenge.

¢ In this paper we have proposed the study of PAR wrt all LUUTSs. One can completely
generalise the set of LUUTS to the set of Linear Unitary Transforms (LUTs) by
including unitary matrices which are the tensor product of 7 X 7 unitary matrices
such that each matrix entry is no longer constrained to have a magnitude of # For

. . . . . 10 1 [ V3 1
instance, linear unitary matrices which have ( 0 1 ) and 3 ( 1 -3 ) as

tensor factors are in the set of LUTSs but not the smaller subset represented by LUUTS.
It is of interest to study the PAR of sequences wrt all LUTs. This study has been
initiated in [18, 19] where it was shown that the length 2™ sequences which represent
indicator functions for linear error-correcting codes of blocklength n have PAR wrt
all LUTs lower bounded by 2% . Moreover, it is proved in [18] that, for indicator
functions which represent linear error-correcting codes (functions outputting to 0 or
1), the worst-case spectral peak wrt all LUTs, (and hence the peak which defines the
PAR wrt all LUTS), occurs in one or more of the spectra generated by action of the set

of transforms formed from all possible tensor products of the matrices ( i _} >
01

complete infinite space of LUTs to find the worst-case spectral peak. However, little
more is known about the PAR wrt all LUTSs for more general functions. The study has
direct relevance to Quantum Entanglement and it has recently been shown that the
spectral index of the worst-case spectral peak wrt all LUTs identifies a generalised
linear weakness for classical cryptosystems [27], where a large PAR means a large
linear bias.

and ( 10 . The nice thing about this result is that we don’t have to search the

e One celebrated area of study is the unresolved quest to find flat polynomials on the
unit circle [12]. This translates, in the terminology of this paper, into the search for
a sequence construction of length 2™ (restricted, say, to the alphabet {1, —1}), such
that the sequence has PAR wrt DFT{® of 1.0 + ¢ and a lowest spectral power trough
of 1.0 — €; such that the € terms vanish as length, 2™, increases. No construction with
these properties is known for the bipolar case. We can pose a more general problem.
Do flat polynomials exist wrt all LUUTS (not just DFT$°)? And an even more general
problem would be: Do flat polynomials exist wrt all LUTs? More realistically, how
well can we do for these transform sets?
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8 Appendix

We provide some examples for Construction 3.

8.1 Example 1

Let n = 7. Consider the partition, So = {0,1,2},S; = {3}, S2 = {4,5}, S3 = {6}, as
shownin Fig 3. Thentg = 3,%1 = 1,t5 = 2,t3 = 1,tmax = to = 3,and L = 4.

Applying Construction 3, we must initially define the following permutations:

65 with domain (g, 21, T2)
Y, 78,723,738, and 69,61, 62,03 with domain (x3)
9,1, and 69,63 with domain (x4, T5)
V33735 Y5 with domain (x¢)

It then follows, from Construction 3, that,

05 < bo(z0, 1, 22) Y0 (o(@3){71,1{y2}}, m,1{y2}, v2)
01 <+ (01(z3){711,1{92}},0,0) 7 + (m(z4,75){y2},92)
05 < (02(z4,75){y2},0) ¥ = (v2(w6){y1, Y2}, y1,y2)

Let us now assign, as examples, specific (arbitrary) permutation polynomials to each of the
0; and vy;. Let,

6o = (xo0, x1,x2) Y0 = (x3), 75 = (3),7 = (x3), 76 = (z3 + 1)
07 = (w3 +1),01 = (x3),67 = (23),07 = (z3) A = (z4,25),71 = (w4 + x5, 25)
65 = (x4 + @5,5), 03 = (T4, T5) 78 = (z6),7s = (x6),75 = (x6),75 = (z6 + 1)

1)

Given these permutation assignments we can evaluate:

vo(z3){v1,1{y2}} = (y2 + 1)((z5 + 1)z3 + 2523) + y2((z5 + 1)z3 + z5(23 + 1)) = 23 + 592
01(z3){v1,1{y2}} = (y2 + 1)((zs + 1)(z3 + 1) + z523) + y2((z5 + )23 + z523) = 23 + 5 + 1 + (z5 + 1)y2
Y1(Za,25){y2} = (y2 + 1)(z4, z5) + y2(Ta + 25, 25) = (T4 + T5y2, T5)

O2(z4,2z5){y2} = (y2 + 1) (x4 + 5, 25) + y2(v4, 25) = (x4 + 25 + T5Y2, 5)

v2(we){y1,y2} = (y1 + 1)(y2 + 1)ze + y1(y2 + 1)ze + (y1 + 1)y2z6 + y19y2(x6 + 1) = 6 + y1y2

Therefore,
0070 = o3 + 2175 + y2(Toxs + T2)
0171 = 374 + 425 + T4 + Y2 (ToT5 + T2)
0575 = T4T6 + T5T6 + Y175 + Y2T5%6 + Y1Y2T4
Therefore,

2
9;7} =wepe3+e125+ezeqteges+eq26+2526 +2a+y1e5+tya(eoes+eges+eqes +asegt+e2+eq)tyr1yaes
j=0

Let us arbitrarily first consider that all g functions in (10) are zero (for ease of exposition).
Then, p = 2520 6'y;. Moreover we have 4 different choices of sequence, s, depending
on the values of y; and y». Table 5 shows the PARs wrt WHT, NHT, and DFT{°, for each

of these 4 sequences.

In all cases the PAR is upper-bounded by 2'max = 8.0, as predicted by Corollary 3.
Note that, as stated by Corollary 4, the final optional addition of +x¢’ onto each of the 4
sequences in Table 5 produces a CS set of 8 sequences (of length 128) wrt all LUUTs.
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Table 5: PAs of Example 1 wrt WHT, NHT, and DFT{®

Yiy2 | p PA: WHT | NHT | DFT§°
00 ToxT3 + T1T5 + T3T4 + T4T5 + T4Te + T5T6 + T4 2.0 1.0 4.18
10 20x3 + 125 + T3T4 + x4T5 + Tax6 + T5T6 + T4 + T35 2.0 1.0 4.25
01 xoT3 + x0Ty + 1T + T3T4 + T3T5 + Taxe + T2 2.0 1.0 5.79
11 x0ox3 + Toxs5 + T1T5 + T3T4 + x3T5 + Taxe + T2 + x4 + T5 2.0 1.0 6.02

It is helpful to alternatively construct these sequences visually, by using a generalised ver-
sion of the strategy outlined in Section 3, which is also the foundation for Construction
1. Although we have not formally proved Construction 3 in this paper, the following con-
struction technique essentially provides the proof for Construction 3. We use unitary WHT
matrices, EJI-‘, 0 < k < 2!max—ti Specifically, for Example 1, we have one 8 x 8 matrix,
Eo, four 2 x 2 matrices, E9, E], E3, E3, and two 4 x 4 matrices, ES, E3. The rows and
columns of E¥ are permuted by v¥_, and 6%, respectively. Specifically,

8o permutes columns of Eq, 76 permutes consecutive row pairs of Eg, 0 <7 < 4

9’f permutes columns of BX, 0 < k < 4, 71 permutes consecutive sets of four rows of
column-concatenated Elf, 0<r<2

9’2“ permutes columns of EX, 0 < k < 2, Y5 permutes consecutive row pairs of
column-concatenated El._§, 0<r<4

Let us choose the permutations for #and - as shown in (11) of Example 1. Then these
permutations act in conjunction with the E matrices as follows (where '@’ means multiply
a by —1). Note that, after each v permutation, the appropriate rows are concatenated before

point-multiplying by elements of the appropriate E matrix:

99 0 01 Y1
WHT Last 2 rows swapped 2-col segment swap on first 2 rows Last 2 rows swapped
++++++++ A+t ++HA+ Attt Attt -+ -+ —+— A+ttt +tt+t+ -t —+—4—=a
+-+-—F+-+- +-+-+-4- FFFFFFFF+-+—-F+—-F+—- ———————— +-—4+-+-+-=0b
++-—F+-—— +4+-—++-— F+-—++-—F+——++-—F ++-—++-——+——+4-——t=c¢
+——+4+-—+ +--—F+-—-+ F+-——++--—F-—FF-—F ++——++-——++-—-—++-=d
++++-———-— F+++-—-—-— F+H++-————+-—+-——+—-+ ++++-————F—+——+—+=e¢
+-+——+—+ +-+-—+-+ F+++-———F-F-——F—-F FH+++--——---— +—F+—4-—=7
++-———4+ +--—F—+4— -t -F+-Ft+-————4+ +-——+-F++—-—++++-—-=g
+-—+-++- ++-———++ F-—F-F+-FF-————FF +--—F—++—++————++=1h
) s
Last 2-col segment 52w1|p on first 4 rows Last 2 m‘v‘{/gswappcd Consecutive row pairs concatenated

abed abed abedabed

abed abed

abed abed abedabed

abed abed

efgh efgh efghefgh

efgh efgh

efgh efgh efghefgh

efgh efgh

It is straightforward to check that the above 4 sequences, s, correspond exactly to the 4
sequences, s, in Table 5, as represented by p. This example also illustrates that if the Ej‘
are chosen to be row/column inequivalent to WHT matrices, then we can further generalise
Construction 3.

Finally, for Example 1, let us now make the g functions non-zero. Arbitrarily, let go(xg, 1, Z2) =
ZToT1T2 + T2, g1(x3) = T3, go(T4, T5) = T4T5 + 5, and g3(xe) = 0. Table 6 shows the
PAs after addition of gg + g1 + g2 + g3 onto each of the four sequences of Table 5.

Once again, in all cases the PAR is upper-bounded by 2¢tmax = 8.0, as predictedby Corol-
lary 3. Note that, as stated by Corollary 4, the final optional addition of +2¢’ onto each of
the 4 sequences in Table 6 forms a CS set of 8 sequences wrt all LUUTs.

27



Table 6: PAs of Example 1 wrt WHT, NHT, and DFT{® after Addition of go + g1 + g2 + g3

y1y2 P PA: WHT [ NHT | DFT{®
00 zoezleg + wQeg + ©12h + w324 + 2426 + e5eE + ¢4 + 2o + 23 + x5 4.5 | 2.5 4.04
10 zoeleg + wzqe3 + w125 + @324 + ¢4z + @526 + ¢4 + 22 + @3 4.5 2.5 4.83
01 zoezieg + woeg + zoey + w125 + 23w + 2325 + w425 + 2q2g + 23 + 25 4.5 | 2.0 3.59
11 zqezieg + wqeg + zoey + w12p + ®3wy + z3wy + wqxp + 2qwg + g4 + 23 4.5 | 2.0 3.51

PAR < 8.0

6 N6 % 6

Figure 4: Example of Construction 3 where tmax = 4 (Reverse of Figure 3)

8.2 Example 2

Except for the special case of Construction 2, Construction 3 does not give the same set
of sequences when starting from the rightmost variable set (as shown), instead of the left-
most variable set. Example 2 emphasises this point by describing the construction for the
partition of Figure 4, which is clearly the reverse of Figure 3.

The partition is, Sg = {0}, S1 = {1,2}, S2 = {3}, Sz = {4, 5,6}, as shown in Fig 4.
Thento = ].,tl = 2,t2 = ].,tg :3,tmax :t3 = 3,andL: 4.

Applying Construction 3, we must initially define the following permutations:

09,65,0%, 63 with domain (zg)

73,75 and 69,61 with domain (1, z5)
7?7 7117 ’Y%J 7?7 and 087 0%7 0%7 0% with domain (1'3)

79 with domain (x4, 5, T¢)

It then follows, from Construction 3, that,

66 < (Bo(w0){70,1{72,2}},0,0) 75 < (vo(z1,22){72,2},72,2)
01 <+ (01(z1,22){72,2},0) 71— (n(z3){r2,1,72.2}, 72,1, 72,2)
05 < (62(23){r2,1,72,2},0,0) 73 + Y2(z4,25,%6)

Let us now assign the same permutations as Example 1, but in reverse, to each of the §;
and ;. Let,

85 = (w0),06 = (w0),05 = (x0),05 = (o + 1) 1§ = (x1 + 2, %2),75 = (1, 22)
60 = (z1,22), 61 = (z1 + 22, 22) 7
03 = (w3),03 = (w3),05 = (x3),05 = (xa +1) 72

(w4, x5, T6)

Given these permutation assignments we can evaluate:

0o (x0){Y0,1{12,2}} = z2z6 + 20

Yo(x1, ®2){V2,2} = (w226 + x1 + T2, 22)

01 (w1, 22){72,2},0) = (w226 + 71, 22)

Y (23){V2,1, 72,2} = 56 + T3 + x5 + 26+ 1
02 (x3){V2,1, 72,2} = T526 + X3
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Therefore,

96’)’6 = ToT2Ze + T1X2Tg + ToT1 + ToT2
17 = T1T5T6 + TaT3Te + T1T3 + T1X5 + T1Z6 + TaTs + X1
! !

05775 = w4506 + T34

Therefore,

2
i i
E 0;7; = ToT2T6+T1T2T6+T1T5T6+T2T3T6+T4T5T6+T0T1+ToT2+T123+T1T5+T1T6+T2T5+T3T4+T1

j=0
(12)

Let us, arbitrarily, consider that all g functions in (10) are zero (for ease of exposition).
Then, p = Z?:o ¢;- Unlike Example 3, we now only have 1 choice of sequence, s. This
sequence has a PA of 8.0, 2.5, and 4.93 wrt the WHT, NHT, and DFT$°, respectively. In all
cases the PAR is upper-bounded by 2!max = 8.0, as predicted by Corollary 3. Note that,
as stated by Corollary 4, a CS set of 8 sequences (of length 128) wrt all LUUTs is formed
by s and all linear offsets of s over the variables {z4, x5, Z6}.

We can, alternatively, construct this sequence using a generalised version of the strategy
outlined in Section 3. We obtain the following construction steps:

8¢ 70 61 1 L]

Cols swapped on Second pair of Last 2 col segments First 2 rows Col segments swapped

last 2 rows rows swapped swapped on last 4 rows swapped on last 2 rows
++ ++ +4++—+—4+ ++—++-——— F+-F+———F+++—+-—++=a
+- +- ++F-+-FF +++-+—++ ++—++--——FFF-—F-—F+=b
++ +- +++-+r-++ +++--+-- +++--+--++-+-+t++=c
+- ++ +++-+-=-++ ++—-+—-+++ +++—-=-+-=-++-+-+++=d
++ ++ +++-++-+ +++-++ -+ +++-++-+++-+-=--+=
+- +- ++F-FF—+ +Ht-F+-———+ +++-++t-—+FF-F-——F=F
++ ++ +++-FF—F +H++-——+— Ft+t-——+—++-++++-=g
-+ -+ ++Fo++F  ++ -+ +++- FFF o F—++-—++++-=h

Finally, v generates s = abede fg

It is straightforward to check that the above sequence, s, corresponds exactly to the s, as
represented by p in (12).
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