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Abstract

A Golay Complementary Sequence (CS) has a Peak-to-Average-
Power-Ratio (PAPR) ≤ 2.0 for its one-dimensional continuous Dis-
crete Fourier Transform (DFT) spectrum. Davis and Jedwab showed
that all known length 2m CS, (GDJ CS), originate from certain quadratic
cosets of Reed-Muller (1,m). These can be generated using the Rudin-
Shapiro construction. This paper shows that GDJ CS have a PAPR
≤ 2.0 under all 2m×2m unitary transforms whose rows are unimodular
linear (Linear Unimodular Unitary Transforms (LUUTs)), including
one- and multi-dimensional generalised DFTs. In this context we de-
fine Constahadamard Transforms (CHTs) and show how all LUUTs
can be formed from tensor combinations of CHTs. We also propose
tensor cosets of GDJ sequences arising from Rudin-Shapiro extensions
of near-complementary pairs, thereby generating many more infinite
sequence families with tight low PAPR bounds under LUUTs. We
then show that GDJ CS have a PAPR ≤ 2m−bm

2
c under all 2m × 2m

unitary transforms whose rows are linear (Linear Unitary Transforms
(LUTs)). Finally we present a radix-2 tensor decomposition of any
2m × 2m LUT.
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Some preliminary definitions:
Zn is the set of integers {0, 1, . . . , n − 1}.
For length N vectors s,f , where s ∈ ZN

P , f ∈ ZN
n , and sj , fj are sequence elements

of s and f , respectively, 0 ≤ j < N , we define,
Correlation: s� f =

∑N−1
j=0 εµsj−λfj , where

ε = exp(2π
√
−1/lcm(P, n)), µ = lcm(P,n)

P
, λ = lcm(P,n)

n
, where lcm means ’least

common multiple’.
Orthogonal: s and f are ’Orthogonal’ to each other if s� f = 0.
(Almost) Orthogonal:1 s and f are ’(Almost) Orthogonal’ to each other if
0 ≤ |s � f | ≤

√
2N .

Roughly Orthogonal: s and f are ’Roughly Orthogonal’ to each other if 0 ≤
|s� f | ≤ B, for some pre-chosen B significantly less than N .
Unimodular: A sequence is unimodular if every element in the sequence has
magnitude 1.
A Function representation for a sequence will be used interchangeably with the
sequence representation itself, where the sequence describes the function. A func-
tion, s, will be defined over m binary variables, xi, and outputs to ZP . More
precisely,

s : {0, 1}m → {0, 1, . . . , P − 1}
s is then represented by a sequence, also called s, under a lexicographical ordering
of the variables. More precisely,

s(x0 = k0, x1 = k1, . . . , xm−1 = km−1) = sj

where j =
∑m−1

i=0 ki2
i, ki ∈ {0, 1}. For instance, for m = 3, choosing s = 2(x0x1 +

x0x2)+x1 with output over Z4 gives the following function ↔ sequence equivalence:

x2 x1 x0 s

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 3
1 0 0 0
1 0 1 2
1 1 0 1
1 1 1 1

equivalent to
the sequence
s = 00130211

1This definition is related to the definition of ’Quasi-Orthogonality’ found in [34].
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Sequence representations for linear functions, xi, are of the form x0 = 0101010101 . . .,
x1 = 001100110011 . . ., x2 = 0000111100001111 . . ., and so on.
In Sections 2-6 we refer to a sequence, s, by its integer representation over ZN

P .
In Sections 7-8 we refer to the same sequence, s, by its unimodular complex-
modulated form, such that s = (εs0 , εs1 , . . . , εsN−1), where ε = exp(2π

√
−1/P ).

Moreover we widen the discussion to include non-unimodular sequences, i.e. se-
quences whose complex-modulated form does not necessarily have elements with
magnitude 1.
Tensor Sum: In this paper the (left) tensor sum is the additive version of the
better-known (left) Tensor Product. The tensor sum of vectors (a,b,...,x) and
(c,d,....,z) is here defined by ⊕ as,

(a, b, ...., x) ⊕ (c, d, .....z) =
(a + c, b + c, ..., x + c, a + d, b + d, ...., x + d, .....a + z, b + z, ....x + z)

We equate the Tensor Sum (a, b)⊕ (c, d)⊕ (e, f)⊕ . . . mod n with linear functions
of single binary variables: q(x0) + r(x1) + s(x2) + . . . with output over Zn, which
in turn represents the element-by-element addition of sequences: abababab... +
ccddccdd... + eeeeffff..., mod n.
The (left) Tensor Sum of Matrices is also defined by ⊕ as follows. Let A be an
m × n matrix, and B be a p× q matrix with elements Ai,j, Bi,j , respectively. Let
Bi,j + A be the m × n matrix,











Bi,j + A0,0 Bi,j + A0,1 . . . Bi,j + A0,n−1

Bi,j + A1,0 Bi,j + A1,1 . . . Bi,j + A1,n−1

. . . . . . . . . . . .
Bi,j + Am−1,0 Bi,j + Am−1,1 . . . Bi,j + Am−1,n−1











Then A⊕B =










B0,0 + A B0,1 + A . . . B0,q−1 + A
B1,0 + A B1,1 + A . . . B1,q−1 + A

. . . . . . . . . . . .
Bp−1,0 + A Bp−1,1 + A . . . Bp−1,q−1 + A











Tensor Product: The (left) Tensor Product [14] of vectors and of matrices is
identical to the previous definition of (left) Tensor Sum, but with ⊕ and + (addi-
tion) replaced by ⊗ and × (multiplication), respectively.
Tensor Permutation: A tensor permutation of m binary variables, xi, takes xi

to xπ(i), where the permutation π is any permutation of the integers in Zm.
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Definitions:

Definition 1 2 Lm is the infinite set of length 2m sequences representing all linear
functions in m binary variables with output over all alphabets, Zn, 1 ≤ n ≤ ∞,

Lm = {β ⊕ (0, α0) ⊕ (0, α1) ⊕ . . . ⊕ (0, αm−1)}, mod n

where ⊕ means ’tensor sum’, β, αj ∈ Zn ∀j, gcd(β, n) = gcd(αj , n) = 1.

Definition 2 F1 is the infinite set of length N sequences representing all one-
dimensional Fourier functions with output over all alphabets, Zn, 1 ≤ n ≤ ∞,

F1 = {(0, δ, 2δ, 3δ, . . . , (N − 1)δ), mod n
1 ≤ n ≤ ∞, 0 ≤ δ < n, gcd(δ, n) = 1}

Definition 3 F1m is the infinite set of length 2m sequences representing all one-
dimensional Fourier functions in m binary variables with output over all alphabets,
Zn, 1 ≤ n ≤ ∞,

F1m = {(0, δ) ⊕ (0, 2δ) ⊕ (0, 4δ) ⊕ . . . ⊕ (0, 2m−1δ), mod n
1 ≤ n ≤ ∞, 0 ≤ δ < n, gcd(δ, n) = 1}

F1m ⊂ Lm. Note also that F1m is a special case of F1 for the case when N = 2m.

Definition 4 Fmm is the infinite set of all m-dimensional linear Fourier func-
tions in m binary variables with output over all alphabets, Zn, 1 ≤ n ≤ ∞, n
even,

Fmm = {(0, δ + c0) ⊕ (0, δ + c1) ⊕ (0, δ + c2) ⊕ . . . ⊕ (0, δ + cn−1)
mod n, 2 ≤ n ≤ ∞, n even, 0 ≤ δ < n/2, gcd(δ, n) = 1, ci ∈ {0, n/2}}

Fmm ⊂ Lm.

Definition 5 A 2m × 2m Linear Unimodular Unitary Transform (LUUT) L has
rows taken from Lm such that LL† = 2mIm, where † means conjugate transpose,
It is the 2t × 2t identity matrix, and a row, u, of L ’times’ a column, v, of L† is
computed as u� (−v).

2The gcd constraint in Definition 1 and in subsequent similar definitions is to avoid
degenerate cases (multiple representations).
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Definition 6 Gm is the infinite set of length 2m normalised complex sequences,
representing all complex-modulated linear functions in m binary variables with
output over C.

Gm = {(χ) ⊗ (φ0, θ0) ⊗ (φ1, θ1) ⊗ . . . ⊗ (φm−1, θm−1)}

where χ, φj , θj ∈ C, ∀j, such that |χ|2 = 1, and |φj |2 + |θj|2 = 2, and ⊗ means
tensor-product. C is the infinite set of complex numbers. The sum of the magnitude-
squareds of the elements of a sequence in Gm is N = 2m.

Definition 7 A 2m × 2m Linear Unitary Transform (LUT) G has rows taken
from Gm such that GG† = 2mIm, where a row, u, of G ’times’ a column, v, of
G† is computed as

∑2m−1
i=0 uiv

∗
i . LUUTs are a special case of LUT.

1 Introduction

Length N = 2m Complementary Sequences (CS) are known to be (Almost)
Orthogonal to F1m (Definition 3) [11, 12, 13, 2, 9],i.e. they have a (near)
flat Fourier spectrum. For example, Fig 1 shows the one-dimensional (2000-
point) Fourier power spectra of the binary length 16 Complementary pair
of sequences, s0 = x0x3 + x3x1 + x1x2 + x1 + x2 + 1 = 0110010100000011
and s1 = x0x3 + x3x1 + x1x2 + x1 + x2 + x0 + 1 = 1001010111110011 which
both have a worst case PAPR of 1.97. It is evident from the figure that
their power sum is 2.00 everywhere. Length 2m CS over Z2h , as formed
using the Davis-Jedwab construction, DJm,h, are also Roughly Orthogonal
to each other [16, 9, 26, 33, 21], i.e. they form a codeset with reasonable
Euclidean distance. For example, here are the 48 codewords in DJ3,1, having
a minimum Hamming Weight of 2m−2 = 2 between codewords, and where
each codeword in the set has PAPR = 2.00,

00010010, 00011101, 00100001, 00101110, 01000111, 01001000, 01110100, 01111011
11101101, 11100010, 11011110, 11010001, 10111000, 10110111, 10001011, 10000100
00000110, 00001001, 00110101, 00111010, 01010011, 01011100, 01100000, 01101111
11111001, 11110110, 11001010, 11000101, 10101100, 10100011, 10011111, 10010000
00010100, 00011011, 00100111, 00101000, 01000001, 01001110, 01110010, 01111101
11101011, 11100100, 11011000, 11010111, 10111110, 10110001, 10001101, 10000010

We refer to DJm,∞ as DJm. This paper shows that DJm is (Almost)
Orthogonal to Lm (Definition 1), and therefore each member of DJm has
a Peak-to-Average Power Ratio (PAPR) ≤ 2.0 under all 2m × 2m LUUTs
(Definition 5). The properties of DJm are shown to follow directly from
a generalisation of the Rudin-Shapiro construction [29, 28, 13, 16, 17, 30].
We then define the set of ConstaHadamard Transforms (CHTs), a subset
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Figure 1: The Power Spectra of s0 = x0x3 + x3x1 + x1x2 + x1 + x2 + 1 and
s1 = x0x3 + x3x1 + x1x2 + x1 + x2 + x0 + 1

of LUUTs, whose rows cover all members of Lm. DJm consequently has a
PAPR ≤ 2.0 under all CHTs. We identify Hadamard and Negahadamard
Transforms (HT,NHT) as being from a subclass of CHTs whose rows cover
all members of Fmm (Definition 4). In particular we show that DJm,1 is
both Bent and Negabent for m even, m 6= 2 mod 3 [23], under the HT and
NHT respectively. We also show how Zn-linearity of a sequence can be tested
using appropriate CHTs. We then propose tensor cosets of DJm, where we
identify near-complementary seed pairs whose power sum has a PAPR ≤ υ
under certain subsets of LUUTs, where υ is small. We grow sequence sets
from these pairs by repeated application of Rudin-Shapiro such that these
sets also have a PAPR ≤ υ under certain subsets of LUUTs. In this way we
extend the work of [16, 9, 26] by proposing further infinite sequence families
with tight one-dimensional Fourier PAPR bounds, and of degree higher than
quadratic. We also confirm and extend the recent results of [5] who construct
families of Bent sequences using Bent sequences as seed pairs, although not
in the context of Rudin-Shapiro [25]. We then show that DJm has PAPR
≤ 2m−bm

2
c under all LUTs (Definition 7). Finally we show that LUTs always

have a convenient radix-2 tensor decomposition.
The (almost) orthogonality between DJm and Lm (Theorem 2) has, in

one sense, been implicitly stated before. More specifically, Frank [10] and
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Van Nee [33] have highlighted the polyphase properties of CS, namely that
any phase shift of an orthogonal subset of a CS maintains the sequence as a
CS. Also Davis and Jedwab [9] have implicitly used the polyphase property
to extend their codesets from codes over Z2 to codes over Z2h, h → ∞. In
all this work the idea is that any linear offset of a CS is also a CS under
the one-dimensional Fourier Transform, where the linear offset is defined
over any alphabet. However, the immediate implication that CS have PAPR
≤ 2.00 under all tensor-decomposable unitary transforms (including one and
multidimensional DFTs) has not, to our knowledge been stated or exploited
(Corollary 1). In other words, applying the polyphase property of CS not
only widens the choice of CS possible but it all also widens the choice of
unitary transform under which the sequence is a CS. So one contribution of
this paper is to identify the complete class of unitary transforms under which
length 2m CS have an (Almost) Flat spectrum. To our knowledge the result
of Theorem 6 relating to the (Roughly Flat) spectra of CS under a wider
class of unitary transforms is completely new, and will have implications
for the decoding complexity and/or cryptographic strength of CS under a
generalised linear correlation attack.

2 Complementary Sequences (CS)

Let s be a length-N sequence (vector) over ZP , and let sj be the jth element
in s, such that sj = 0, 0 > j ≥ N .

Definition 8 The (one-dimensional) Aperiodic Autocorrelation Function (ACF)
of s is given by,

As(k) =
N−1
∑

j=0

εsj−sj+k , − N < k < N

where ε = exp(2π
√
−1/P ).

Definition 9 s0 and s1 are Golay Complementary Pairs of Sequences if
they satisfy,

As0(k) + As1(k) = 0, k 6= 0

i.e. if their Aperiodic ACFs sum to a delta-function. s0 and s1 are then
referred to as Complementary Sequences (CS). Binary CS are known for
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even lengths 2a10b26c, a, b, c ≥ 0, where the length is the sum of at most two
squares. This paper mainly considers power-of-two lengths for alphabets Z2h ,
but adaptations to other lengths (using non-power-of-two kernel sequences)
and other alphabets can easily be envisaged [10].

The one-dimensional Fourier power spectrum of s, for s of length N defined
over some ZN

P , is then given by |s � f |2, ∀f ∈ F1. By Parseval’s Theorem,
the average value of the one-dimensional Fourier power spectrum of s is N .
Definition 9 implies that the one-dimensional Fourier power spectra of s0 and
s1 sum to a constant value of 2N at all frequencies (e.g. Fig 1). Therefore,

Implication 1 The PAPR of the one-dimensional Fourier power spectrum
of a CS, s, is constrained by,

1.0 ≤ PAPR(s) ≤ 2N

N
= 2.0

The Aperiodic ACF of Definition 8 is implicitly one-dimensional, hence the
one-dimensional spectral property described in Implication 1. However this
paper shows that Golay-Davis-Jedwab (GDJ) CS have good properties be-
yond the one-dimensional case.

2.1 Golay-Davis-Jedwab (GDJ) Complementary Sequences

Theorem 1 [9] s is a GDJ CS if of length 2m and expressible in Algebraic
Normal Form as a function of m binary variables with output over Z2h as,

s(x0, x1, . . . , xm−1) = 2h−1
m−2
∑

k=0

xπ(k)xπ(k+1) +
m−1
∑

k=0

ckxk + d (1)

where π is a permutation of the symbols {0, 1, . . . , m − 1}, ck, d ∈ Z2h, and
the xk are linear binary functions with output over Z2h . We refer to the set
of GDJ CS over Z2h as DJm,h, and refer to DJm,∞ as DJm.

The first term on the right-hand side of (1) determines the quadratic coset
leader, and the second term determines the component from Reed-Muller
(RM)(1, m). There are (m!

2
)2h(m+1) sequences in DJm,h, and DJm,h has a

minimum Hamming Distance ≥ 2m−2. Thus, for distinct s0, s1 ∈ DJm,1,
s0 � s1 ≤ 2m−1, i.e. DJm,1 is roughly orthogonal.
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3 Distance of DJm from Lm

Theorem 2 DJm is (Almost) Orthogonal to Lm.

Proof: We prove for DJm,1 by using the Rudin-Shapiro construction [29, 28]
to simultaneously construct DJm,1 and Lm. We then extend the proof to
DJm. Let s0j, s1j be a CS pair in DJm,1. More specifically, let s00, s10 be
the length 1 sequences,

s00 = (0), s10 = (1)

where s00, s10 ∈ DJ0,1. The Rudin-Shapiro sequence construction is as
follows:

s0j = s0j−1|s1j−1, s1j = s0j−1|s1j−1 (2)

where s0j, s1j ∈ DJj,1, s means binary negation of sequence s, and | means
sequence concatenation.
Example 1: s01 = 01, s11 = 00 ⇒ s02 = 0100, s12 = 0111.
More generally we generate the RM(1, m)∪RM(0, m) coset of x0x1 +x1x2 +
. . . + xm−2xm−1 using all 2m combinations of m iterations of the two con-
structions,

A : s0j = s0j−1|s1j−1, s1j = s0j−1|s1j−1

and
B : s0j = s0j−1|s1j−1, s1j = s0j−1|s1j−1

(3)

Algebraically, constructions (3) become,

A :

B :

s0j(x) = xj−1(s0j−1(x′) + s1j−1(x′)) + s0j−1(x′)
s1j(x) = s0j(x) + xj−1

and
s0j(x) = xj−1(s0j−1(x′) + s1j−1(x′) + 1) + s0j−1(x′) + 1
s1j(x) = s0j(x) + xj−1

where x = (x0, x1, . . . , xj−1), x
′ = (x0, x1, . . . , xj−2)

(4)

Example 2: s00 = 0, s10 = 1 ⇒ s01 = 01, s11 = 00 by the first construction,
and s01 = 11, s11 = 10 by the second construction, thereby covering the four
sequences in RM(1, 1) ∪ RM(0, 1).
Finally we generate the complete set DJm,1 from this coset by permutation
of the indices, i, of xi (tensor permutation) over Zm. There are m!

2
distinct

tensor permutations, (ignoring reversals).
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Example 3: Let s03 = x0x1 +x1x2 +x2 +1 = 11100010. Permuting x0 → x1,
x1 → x0, x2 → x2, gives s0′

3 = x0x1 + x0x2 + x2 + 1 = 11100100, where
s03, s0

′
3 ∈ DJm,1.

We now prove Theorem 2 for construction (2), where the extension of the
proof to construction (3) with subsequent tensor permutation is straightfor-
ward. Let fj be a sequence in Lj (Definition 1), and let f0 be the length
1 sequence, f0 = (β), where β ∈ Zn, 1 ≤ n ≤ ∞. Let pj, qj be complex
numbers satisfying,

pj = fj � s0j, qj = fj � s1j (5)

Let,
fj = fj−1 ⊕ (0, αj−1), mod n (6)

αj−1 ∈ Zn, 1 ≤ n ≤ ∞, gcd(αj−1, n) = 1.
Using (6) ∀αj we generate the complete set, Lj. Combining (5), (2) and (6)
we have,

pj = fj−1 � s0j−1 + εαj−1fj−1 � s1j−1 = pj−1 + εαj−1qj−1 (7)

qj = fj−1 � s0j−1 − εαj−1fj−1 � s1j−1 = pj−1 − εαj−1qj−1 (8)

where ε = exp(2π
√
−1/n). Applying the relation,

|φp + θq|2 + |φp − θq|2 = 2(|φ|2|p|2 + |θ|2|q|2) (9)

for the special case |φ|2 = |θ|2 = 1, to (7) and (8) we get,

|pj|2 + |qj|2 = 2(|pj−1|2 + |qj−1|2) = 2j(|p0|2 + |q0|2)

Noting that |p0|2 = |q0|2 = 1, it follows that,

|pj|2 ≤ 2j+1, |qj|2 ≤ 2j+1 (10)

Noting that length N = 2j, and combining (5) and (10) proves Theorem
2 for a subset of DJm,1 comprising the sequences generated by (2). It is
straightforward to extend the proof to the RM(1, m) coset of x0x1 + x1x2 +
. . . xm−2xm−1 by replacing construction (2) with constructions (3). Fur-
ther extension to the complete set DJm,1 follows by observing that identical
tensor-permuting of f and s leaves the argument of (7) - (10) unchanged. We
further extend the proof to DJm by the following argument.
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Let R be the set of all linear functions in m binary variables with output to
Z2∞ but not to Z2. Then,

DJm = DJm,1 ∪ (DJm,1 + R)

Then the orthogonality between DJm and Lm is given by,

DJm � Lm = {DJm,1�Lm, (DJm,1 + R)�Lm}

But Lm includes R and Lm = Lm + R. Therefore,

(DJm,1 + R)�Lm = (DJm,1 + R)�(Lm + R) = DJm,1�Lm

4 Transform Families With Rows From Lm

Corollary 1 Theorem 2 implies that sequences from DJm have an (Almost)
flat spectrum under all 2m × 2m transforms with rows taken from Lm. In
particular they have a PAPR ≤ 2.0 under all LUUTs.

This section highlights two important LUUT sub-classes, firstly the one-
dimensional Consta-Discrete Fourier Transforms (CDFTs), and secondly the
m-dimensional Constahadamard Transforms (CHTs). We show that CHTs
partition Lm into disjoint groups of 2m sequences per matrix. An N × N
Consta-DFT (CDFT) matrix has rows from F1 and is defined over Zn by,

(

0 d 2d . . . (N − 1)d
0 d + k 2(d + k) . . . (N − 1)(d + k)
. . . . .

0 d + (N − 1)k 2(d + (N − 1)k) . . . (N − 1)(d + (N − 1)k)

)

(11)

1 ≤ n ≤ ∞, N |n, k = n
N

, d ∈ Zk, gcd(d, k) = 1, (including the case d = 0,
k = 1, which is the N × N DFT).

A radix-2 N = 2m-point CHT matrix has rows from Lm over Zn and is
defined by the m-fold tensor sum of CHT kernels,

(

0 δ0
0 δ0 + n

2

)

⊕

(

0 δ1
0 δ1 + n

2

)

⊕ . . . ⊕

(

0 δm−1

0 δm−1 + n

2

)

= ⊕m−1

i=0

(

0 δi

0 δi + n

2

)

2 ≤ n ≤ ∞, n even, 0 ≤ δi < n
2

gcd(δi,
n
2
) = 1, (including the case δi = 0,

n = 2). The rows of A and A′ are disjoint for A, A′ ∈ {2m × 2m CHT
matrices }, A 6= A′, and the rows of all CHT matrices cover all members of
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Lm. The Hadamard Transform (HT) is ⊕mH, where H =
(

0 0
0 1

)

over Z2,

and the Negahadamard Transform (NHT) is ⊕mN, where N =
(

0 1
0 3

)

over
Z4. Both HT and NHT originate from a subclass of CHTs whose rows are
from Fmm, i.e. where all δ’s are the same. Previous papers have focussed
on proving Theorem 2 for the subset F1m of Lm, in other words showing
that DJm has a PAPR ≤ 2.0 under all CDFTs 3. A new contribution of
this paper is that we have proved Theorem 2 for all of Lm. In other words,
we have shown that DJm has a PAPR ≤ 2.0 under all LUUTs, including all
CHTs and CDFTs.

4.1 The (Almost) Constabent Properties of DJm

Definition 10 [23] A length 2m sequence, s, is Bent, Negabent, Constabent,
if it has a PAPR = 1.0 under the HT, NHT, and CHT, respectively. It is
(Almost) Bent, (Almost) Negabent, (Almost) Constabent, if it has a PAPR
≤ 2.0 under the HT, NHT, and CHT, respectively.

From Theorem 2, DJm is (Almost) Constabent. More particularly,

Theorem 3 [23] DJm,1 is Bent for m even, and (Almost) Bent, with PAPR
= 2.0, for m odd.

Theorem 4 [23] DJm,1 is Negabent for m 6= 2 mod 3, and (Almost) Ne-
gabent, with PAPR = 2.0, for m = 2 mod 3.

Corollary 2 [23] DJm,1 is Bent and Negabent for m even, m 6= 2 mod 3.

Proof of Theorem 3: The restriction to rows of the HT constrain αj−1

to be 0 and 1 over Z2 in (6), (7), and (8). We are left with the recurrence
relationship,

pj = pj−1 + qj−1, qj = pj−1 − qj−1

Self-substitution gives pj = 2pj−2, qj = 2qj−2. With p0 = 1, q0 = −1 we

get p1 = 0, q1 = 2, and pj = 2b
j
2
cp

j mod 2
, qj = 2b

j
2
cq

j mod 2
. The HT

output for a length 2j sequence constructed using (3) comprises elements of
magnitude |pj| and |qj|. The theorem follows by observing that the PAPR is

max(
|pj |2

2j ,
|qj |2

2j )

3Although the Bent nature of DJm,1 has also been noted previously [19, 9].
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Proof of Theorem 4: The restriction to rows of the NHT constrain
αj−1 to be 1 and 3 over Z4, in (6), (7), and (8). We are left with the recurrence
relationship,

pj = pj−1 + iqj−1, qj = pj−1 − iqj−1

where i =
√
−1. Self-substitution gives pj = 2(1 + i)pj−3, qj = 2(1 + i)qj−3.

With p0 = 1, q0 = −1 we get p1 = 1− i, q1 = 1+ i, p2 = 0, q2 = 2(1+ i), and

pj = 2(1 + i)b
j
3
cp

j mod 3
, qj = 2(1 + i)b

j
3
cq

j mod 3
. The NHT output for a

length 2j sequence constructed using (3) comprises elements of magnitude |pj|
and |qj|. The theorem follows by observing that the PAPR is max( |pj |

2

2j , |qj |
2

2j )

The orders, 2 and 3, of the normalised recurrence relationships in the
proofs of Theorems 3 and 4, respectively, are simply the multiplicative or-
ders of the normalised complex modular versions of the Hadamard and Ne-
gahadamard kernel matrices, respectively. In other words, for complex mod-
ulated HT,

(
1√
2
)2

(

1 1
1 −1

)2

=

(

1 0
0 1

)

and, for complex modulated NHT,

(
1√
2
)3

(

1 i
1 −i

)3

=
1 + i√

2

(

1 0
0 1

)

where i =
√
−1. The full order of the NHT is 24, to eliminate the complex

scalar rotation. This analysis of PAPR ’orders’ as j increases is related to
the analysis of [3] regarding the change in Rudin-Shapiro sequence weight as
length increases. Table 1 shows some PAPRs for DJm,1 for small values of m
using the HT and NHT. The HT results relate to the binary Covering Radius

Table 1: PAPRs for Binary GDJ Complementary Sequences Using the HT
and NHT

m 0 1 2 3 4 5 6 7 8 9

HT PAPR 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0

NHT PAPR 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0

problem for RM(1, m) which seeks to determine the maximum Hamming

13



distance, d, a length 2m binary vector can be from RM(1, m) [15, 20, 6].

For m even, d = 2m−1 − 2
m−2

2 . For m = 3, 5, 7, d = 2m−1 − 2
m−1

2 . For
m = 9, 11, 13, d is known to satisfy 2m−1 − 2

m−1
2 ≤ d ≤ 2m−1 − 2

m−2
2 , and

for odd m ≥ 15 d is known to satisfy 2m−1 − 2
m−1

2 < d ≤ 2m−1 − 2
m−2

2 . The
PAPR of a binary sequence under the HT is related to d by,

PAPR =
4(2m−1 − d)2

2m

Therefore, in the terminology of this paper, the best possible PAPR of a
binary sequence under the HT is 1.0 for m even, 2.0 for m = 3, 5, 7, 1.0 ≤
PAPR ≤ 2.0 for m = 9, 11, 13, and 1.0 ≤ PAPR < 2.0 for odd m ≥ 15.
Therefore the set DJm,1 is optimally distant from RM(1, m) for all even m
and odd m < 9, maybe optimally distant from RM(1, m) for m = 9, 11, 13,
and near-optimally distant from RM(1, m) for odd m ≥ 15.

A sequence which is (Almost) Orthogonal to, say, F1m is not always (Al-
most) Orthogonal to Fmm, and vice versa. For instance, there are 64 binary
sequences of length 8 which are (Almost) Orthogonal to F1m. However, only
48 of these sequences are (Almost) Orthogonal to Fmm, and these form the
set DJ3,1. The other 16 sequences, namely,

00001101, 00011010, 01001111, 01011000, 10100111, 10110000, 11100101, 11110010,

00010110, 00111101, 01000011, 01101000, 10010111, 10111100, 11000010, 11101001,

have, for instance, a PAPR of 4.5 under the HT, and a PAPR of 2.5 under
the NHT.

The results relating to the HT spectra of DJm,1 and the associated con-
struction of DJm,1 have also recently been described in Theorems 4 and 5 of
[5], (although not in the context of CS or the Rudin-Shapiro construction).
We have further shown the (Almost) Negabent and (Almost) Constabent
properties of such sequences, and the generalisation of the construction to
Z2h. We have also shown the equivalence of these sequences to the (one-
dimensional) GDJ CS, and their (Almost) Orthogonality to all unimodular
linear functions.

4.2 Partitioning Lm Using CHTs

It will now be explained by example how the set of CHTs can partition Lm

space, and how to test for Zn-linearity. Consider, as an example, the set
of matrices whose rows cover all Z4-linear functions. The rows of HT and
NHT comprise only a subset of the complete set of Z4-linear functions. There

14



are, in total, 4m Z4-linear functions (ignoring constant integer offsets, β) and
the rows of the HT and NHT each comprise 2m of these Z4-linear functions.
The complete set of Z4-linear functions can be covered by the rows of all 2m

tensor sum combinations of H and N. For instance, for m = 3 we cover all
Z4-linear functions by using the following 8 transform matrices:

H⊕H⊕H, H⊕H⊕N, H⊕N⊕H, H⊕N⊕N,
N⊕H⊕H, N⊕H⊕N, N⊕N⊕H, N⊕N⊕N

where H =

(

0 0
0 2

)

and N =

(

0 1
0 3

)

, both over Z4.

For instance, the rows of N ⊕ H ⊕ N are the 8 linear functions {1, 3}x0 +
{0, 2}x1 + {1, 3}x2 over Z4.

Although DJm,1 can be both Bent and Negabent, it is never Z4-Bent
(i.e. DJm,1 cannot have a PAPR = 1.0 under all Z4-linear transforms). For
example, Table 2 shows the PAPR of DJ4,1 under all 16 tensor sum com-
binations of H and N, where N ⊕ H ⊕ N ⊕ N is represented by NHNN,
and so on. Table 2 shows that, although DJ4,1 is Bent (HHHH) and Ne-

Table 2: PAPRs for Length-16 Binary GDJ Complementary Sequences Using
all Z4-Linear Transforms

Transform HHHH HHHN HHNH HHNN
PAPR 1.0 1.0 1.0 2.0

Transform HNHH HNHN HNNH HNNN
PAPR 1.0 1.0 1.0 2.0

Transform NHHH NHHN NHNH NHNN
PAPR 1.0 2.0 1.0 1.0

Transform NNHH NNHN NNNH NNNN
PAPR 2.0 1.0 2.0 1.0

gabent (NNNN), it is not Z4-Bent. For instance, it has a PAPR = 2.0 using
HHNN.

We cover all Zn-linear functions for any even n in a similar way (odd n is
included as a subset of Z2n-linear functions). In general the matrix partitions
are the (n

2
)m different tensor sum combinations of appropriate CHT kernels.

For example, when n = 6 we use three CHTs, H =

(

0 0
0 3

)

, S =

(

0 1
0 4

)
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, and T =

(

0 2
0 5

)

over Z6. For m = 2 we can test the Z6-linearity of s

using 9 transforms, HH,HS,HT,SH,SS,ST,TH,TS,TT. It is evident from
the above discussion that each member of Lm occurs as a row of one of these
matrix partitions.

5 Complementary Sets

[9, 26] also present constructions for Complementary Sets of unimodular
sequences over Z2h with PAPR ≤ 2v, for some v > 1. In each case we can
show that these sequences have a PAPR ≤ 2v under all LUUTs by use of
Rudin-Shapiro-type equations. For instance, the relation,

|p + q + r + s|2 + |p − q + r − s|2 + |p + q − r − s|2
+|p − q − r + s|2 = 4(|p|2 + |q|2 + |r|2 + |s|2)

can be used to construct complementary sets of four sequences with PAPR
≤ 4.0 under all unimodular linear functions. [9, 26] have highlighted the
one-dimensional spectral properties of these sequences. Theorem 6 of [5]
has further highlighted the HT spectral properties of these sequences. The
extension to larger sets of sequences, defined by further Rudin-Shapiro-type
(orthogonal) equations is straightforward, but we leave the full investigation
of the properties of these sequences to further work, leaving this paper to
concentrate just on sequence pair constructions.

6 Seeded Extensions of DJm

DJm is recursively constructed using the initial length 1 CS pair, s00 =
(0) and s10 = (1). DJm is (Almost) Orthogonal to Lm precisely because
|f � s00|2 + |f � s10|2 = 2.0, ∀f ∈ L0. We can, instead, take any pair of
length-t starting sequences s00 and s10, such that,

|f � s00|2 + |f � s10|2 ≤ υt, ∀f ∈ E0 (12)

where E0 is any desired set of length-t sequences, and υ is a real value
≥ 2.0. Applying Rudin-Shapiro to these starting sequences then constructs
a sequence family with PAPR ≤ v.
Example 4. There are twelve entries in Table 8 which refer to an infinite
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sequence family called 12Γ
1,1 where each sequence in the family has a PAPR

≤ v = 2.9425 under all CDFTs. For Tables 4 to 12 E0 = F13. The notation
and construction will become clearer as this section progresses but we first
show why 12Γ

1,1 ensures a PAPR ≤ v = 2.9425 under all CDFTs. For
example, the first entry for 12Γ

1,1 in Table 8 describes a ’seed’ with form,

Θ = τpqr + τ(pr + p + r) + pq + pr + q + r

Fixing the ’glue’ variable, τ , to 0 and 1, respectively, splits the seed into a
pair of sequences,

s0 = pq + pr + q + r and s1 = pqr + pq + p + q

We can then, for instance, assign p = x0, q = x1, r = x2, thereby describing
two length 8 starting sequences over three variables (t = 8). (Note here that,
with p = xi, q = xj, r = xk, we require j − i = 1 and k − j = 1, which is
implied by the 1, 1 superscript of 12Γ

1,1). We find that the sum of the power
spectra of s0 and s1 has a worst-case peak of 2.9425, as required and shown
in Fig 2. In this paper we propose the construction of ’seeds’ by computer

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3
2000−pt power DFT for Multiple messages,  8−Carrier, 2PSK

Figure 2: The Power Spectra of s0 = pq+pr+ q+r and s1 = pqr+pq+p+ q

search for pairs of sequences with a low spectral power sum. The seed is
then formed by ’joining’ the sequence pair using a ’glue’ variable, τ = xg.
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Subsequent Rudin-Shapiro extension ’grows’ on a quadratic extension which
is connected to the seed at the glue variable, xg. We now describe the seed
construction more formally.

Let t = w2u, w odd. We can therefore define a function for our length t
starting sequences using u binary variables and one w-state variable, y. We
first define an ordered subset of u integers, U = {q0, q1, . . . , qu−1}, U ⊂ Zm,
qi 6= qk, i 6= k. We also define Z′

m = Zm 6 ∩U. xU is the set of binary
variables {xq0, xq1 , . . . , xqu−1} over which, along with y, a starting sequence
is described, xZ′

m
is the set of binary variables {x0, x1, . . . , xm−1}6 ∩xU over

which DJm−u,h is described, and xZm
= xU ∪ xZ′

m
, where xZm

is a set of
m binary variables with output over Z2h . s00 and s10 are functions of y
and xU, where y has w states. s01 and s11 are functions of y, xU, and
xg, g ∈ Z′

m. We refer to xg as the ’glue’ variable. We then identify sets
of seed functions Θ(y,xU, xg) derived from s00, s10 which satisfy (12) for
certain fixed (preferably small) υ. We illustrate the seed construction in
Fig 3, further developing the line graph representation of [26]. Each black
dot symbolises a function variable. The line between two dots (variables)
indicates a quadratic component comprising the variables at either end of
the line. For example, a line with four consecutive black dots, xi, xj, xk, xl,
indicates the quadratic extension xixj + xjxk + xkxl.

(Seed)
(Rudin−Shapiro Extension)

x

X

y

U

g

XZm
/

DJm−u

Figure 3: Seeded DJm

Theorem 5 The length t2m−u = w2m sequence family Γ(y,xZm
) = Θ(y,xU, xg)+

DJm−u(xZ′
m

) has a correlation ≤
√

υt2m−u with the length t2m−u sequence
set E0 ⊕ Lm−u, where υ is given by (12), and g ∈ Z′

m.

Proof: Similar to the proof for Theorem 2, but now |p0|2 + |q0|2 ≤ υt, and
the starting sequence pairs are length t, not 1.
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Theorem 5 allows us to construct favourable ’tensor cosets’ 4 of DJm by first
identifying a starting pair of sequences with desirable correlation properties,
i.e. a pair which satisfy (12) for small υ, and where E0 may be, say, F1u,
Fmu, Lu, or something else. We don’t consider Θ which are, themselves,
line graph extensions of smaller seeds, Θ′, i.e. Θ satisfying the following
degenerate form are forbidden: Θ(y,xU, xg) = Θ′(y,xU′, xa)+xaxb +xbxc +
. . . + xqxg, for some a, b, c, . . . , q, g 6∈ U′ but ∈ U. For each algebraic form
Θ, we can identify certain tensor symmetry operations on xU which leave
PAPR invariant. The specific symmetry depends on the choice of E0.

Lemma 1 If E0 = Fmu the PAPR associated with Rudin-Shapiro exten-
sions of a specific Θ(y,xU, xg) is invariant for all possible choices and or-
derings of U where |U| = u is fixed.

Proof: From Definition 4, each tensor component of f ∈ Fmm is of the form,
(0, δ + c), so swapping xi with xk simply swaps (0, δ + c) with (0, δ + c′) to
give another function, f ′ ∈ Fmm.
We now give a few example constructions which all follow from Theorem 5,
coupled with Theorems 3 and 4.

Corollary 3 5 Let s00(xU) and s10(xU) be any two length t = 2u Bent
Functions in u binary variables with output over Z2, where u is even. Then
Γ(xZm

) comprises (Almost) Bent functions, and when h = 1, comprises Bent
functions for m − u even and functions with PAPR = 2.0 under the HT for
m − u odd.

Example 5: Let s00(xU) = x0x1 +x1x2 +x2x3, s10(xU) = x0x1 +x0x2 +x2x3

with output over Z2. s00,s10 are in DJ4,1 so both are Bent. However they
do not form a complementary pair. By j = m − u applications of (4) with
output over Z2h and with tensor permutation we can use these two sequences
to generate the (Almost) Bent family,
Γ(xZm

) = 2h−1(xg(xq1xq2 + xq0xq2) + xq0xq1 + xq1xq2 + xq2xq3+
∑3

k=0 bkxqk
) + 2h−1∑j−1

k=0 xrk
xrk+1

+
∑j−1

k=0 ckxrk
+ d

= Θ(xU, xg) + DJj,h(xZ′
m

)

where U = {q0, q1, . . . , qu−1}, Z′
m = {r0, r1, . . . , rm−u−1}, qi 6= qk, ri 6= rk,

4By ’tensor-coset’ we do not mean the well-known construction p(x, y) = q(x) + r(y),
which ensures that p(x, y) is Bent given q(x) and r(y) Bent. In contrast, seed constructions
of this section are not tensor decomposable.

5This corollary has also recently been presented in Theorems 4 and 5 of [5], but not in
the context of Rudin-Shapiro constructions.
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i 6= k, bk ∈ Z2, ck, d ∈ Z2h , g ∈ Z′
m. The members of xZm

are binary variables
with output over Z2h. By Lemma 1 all possible configurations/permutations
are achieved by all possible assignments of qi, ri to Zm. For h = 1 Γ(xZm

) is
Bent for j even, and has a PAPR = 2.0 under the HT for j odd.

Corollary 4 Let s00(x) and s10(x) be any two length t = 2u Bent and
Negabent Functions in u binary variables with output over Z2, where u is
even, and u 6= 2 mod 3. Then Γ(xZm

) comprises (Almost) Bent and (Almost)
Negabent functions in m = u + j binary variables with output over Z2h and,
when h = 1, comprises Bent and Negabent functions for j = 0 mod 6.

Example 5 is also an example for Corollary 4.
Corollaries 3 and 4 and a similar one for Negabent sequences allows us

to ’seed’ many more Bent, Negabent and Bent/Negabent sequences with
degree higher than quadratic. Table 3 shows the degrees of Bent, Negabent,
and Bent/Negabent functions we can construct using seeds constructed from
DJu,1, where the total number of binary variables is m.

Table 3: The Degrees of DJu,1-Seeded Bent,Negabent,Bent/Negabent Func-
tions With Output Over Z2

m 0 1 2 3 4 5 6 7 8 9 10
B 0 2 2 2, 3 2, 3, 4 2, 3, 4, 5
N 0 1 2 2 2, 3 2, 3 2, 3, 4 2, 3, 4
B/N 0 2 2 2, 3

B: Degrees for Bent, N: Degrees for Negabent, B/N: Degrees for Bent/Negabent

6.1 Families with Low PAPR Under all CDFTs

We now identify, computationally, sets of length-t sequence pairs over Z2

which, by the application of (4), can be used to generate families of length
N = t2m−u sequences over Z2h which have a PAPR ≤ υ under all length-N
CDFTs. In particular we find pairs of length t = 2u, and present sets of
length 2m with PAPR ≤ υ ≤ 4.0 in Tables 4 - 12. In [9, 26] constructions are
provided for quadratic cosets of RM(1, m) with PAPR upper bounds ≤ 2k,
k ≥ 1 under all length-N CDFTs. The seeded constructions of this paper
further refine these PAPR upper bounds to include non-powers-of-two. We
also present low PAPR constructions not covered in [9, 26], including those
higher than quadratic.
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Corollary 5 Let s00 and s10 be length t = 2u binary sequences whose one-
dimensional continuous Fourier power spectrum sum is found, computation-
ally, to have a maximum = υt. Then the set of length 2m sequences over Z2h ,
constructed from s00, s10, has a one-dimensional continuous Fourier PAPR
≤ υ. Tables 4 - 12 show such sets for u = 0, 1, 2, 3 and U ⊂ {0, 1, 2, 3, 4},
for the cases υ ≤ 4.0.

For the CHT examples previously discussed all choices and orderings of seed
variables left PAPR invariant (Lemma 1). In the case of CDFT PAPR,
however, Lemma 1 does not hold. But tensor shifts of variables do leave
PAPR invariant. This leads us to modify our definition as follows. U is now
the ordered subset of u integers, U = {z+q0, z+q1, . . . , z+qu−1} for integers
z, qi such that U ⊂ Zm and qi < qi+1. The following Lemma describes the
invariance of CDFT PAPR under tensor shift.

Lemma 2 If E0 = F1u then the PAPR associated with Rudin-Shapiro ex-
tensions of a specific Θ(y,xU, xg) is invariant for all possible shifts of U, i.e.
for all possible values of z, given fixed qi.

Proof: From Definition 3, each tensor component of f ∈ F1m is of the form,
(0, 2iδ), so replacing xi with xi+1 is equivalent to replacing δ with δ/2, where
the shifted version of f is also in F1m

For example, it is found, computationally, that the normalised sum of the
power spectrums of s00 = x0x1+x1+x0, and s10 = x0x1 under the continuous
one-dimensional Fourier Transform has a maximum of 3.5396. Then one seed
is (xg+1)(x0x1+x1+x0)+xgx0x1+b0x0+b1x1 = x0x1+xg(x0+x1)+b0x0+b1x1,
b0, b1 ∈ {0, 1}. Let p be the first element in xu (x0 in our example), q be the
second (x1 in our example), and τ = xg. One can then find this seed in Table
6 which also represents seeds derived from this seed via Lemma 2. Here is
the complete set having PAPR ≤ 3.5396,

3aΓ
1 = 3aΘ(xU, xg) + DJm−u,h(xZ′

m
), U = {z, z + 1}, g ∈ Z′

m

where

3aΘ(p, q, τ) = 2h−1(pq + τ(q + p) + b1q + b0p), b0, b1 ∈ {0, 1}

where xi outputs over Z2h, ∀i. The e of eΓ
s0 and eΘ is an arbitrary cate-

gorisation label for the specific seed, and the si of eΓ
s0,s1,...,su−2 describe the

tensor-shift-invariant pattern of variable indices associated with this seed,
where si−1 = qi − qi−1. For instance, for our example, 3aΓ

1, we could choose
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U = {2, 3}, where the seed is built from the ANF form 3aΘ, thus the ANF
form x2x3 + x0(x3 + x2) + x2 + x0x4 + x4x5 + x1x5 + x1 + 1 has a PAPR
≤ 3.5396, where we have constructed our seed over x2, x3, and x0, ’attached’
the line graph x1x5 +x5x4 +x4x0 to it, connecting at xg = x0, and added the
linear terms x2 + x1 + 1. As another example, the following set has PAPR
≤ 3.8570,

3aΓ
2 = 3aΘ(xU, xg) + DJm−u,h(xZ′

m
), U = {z, z + 2}, g ∈ Z′

m

3aΓ
2 has exactly the same algebraic structure as 3aΓ

1, but 3aΘ is, instead,
constructed over x0, x2, xg. The sets 3aΓ

s are quadratic sets so, when h = 1,
the union of the sets 3aΓ

s with DJm,1 is a set of binary quadratic forms, so
retains minimum Hamming distance of 2m−2. Tables 4 - 12 show Γ-sets using
1,2,3,4-variable seeds with PAPR ≤ 4.0. We use reversal symmetry to halve
the number of inequivalent representatives for some Γ sets, (indicated by
’with R’). Reversal symmetry for functions of binary variables is equivalent
to replacing each xi with xi + 2h−1. Reversal does not change the algebraic
degree of the seeds, Θ.

Table 4: Rudin-Shapiro Extensions Using u + 1 = 1-Variable Seeds (the set
DJm,h)

Γ Θ(xg)
2h−1 = Θ(τ)

2h−1 υ χ

0Γ 0 2.00 0

Table 5: Rudin-Shapiro Extensions Using u + 1 = 2-Variable Seeds

Γ
Θ(xz ,xg)

2h−1 = Θ(p,τ)
2h−1 υ χ

1Γ b0p 4.00 0

b0 ∈ {0, 1}

1Γ of Table 5 is an alternative derivation for the PAPR ≤ 4.0 bound of
the complementary set of Section 5. The χ-value of each Γ-set, as shown
in Tables 4 - 12, is a threshold on or below which a given Γ-set overlaps
with other Γ-sets, i.e. where Rudin-Shapiro extensions of Θ equal Rudin-
Shapiro extensions of Θ′, Θ 6= Θ′. Consider a seed extension of the form
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Table 6: Rudin-Shapiro Extensions Using u + 1 = 3-Variable Seeds, All
Cosets of RM(1, 1) in p

Γ
Θ(xU,xg)

2h−1 = Θ(p,q,τ)
2h−1 υ χ

2Γ
1 pqτ+ 3.0000 0

{pq + q, q} with R

3Γ
1 pq + b1q 3.5396 1

3aΓ
1 pq + τ(q + p) + b1q 3.5396 0

3Γ
2 3.8570 1

3aΓ
2 3.8570 0

3Γ
3 3.9622 1

3aΓ
3 3.9622 0

3Γ
4 3.9904 1

3aΓ
4 3.9904 0

3Γ
5 3.9976 1

3aΓ
5 3.9976 0

4Γ
1 τ(p + q) + b1q 4.0000 1

4Γ
2 4.0000

4Γ
3 4.0000

4Γ
4 4.0000

4Γ
5 4.0000

b1 ∈ {0, 1}

shown in Fig 4. The seed shows three subsidiary quadratic extensions other
than the primary extension. These subsidiary extensions qualify as Rudin-
Shapiro extensions if they have no quadratic offshoots and if their constituent
variables do not occur elsewhere in the seed (other than in linear terms). In
Fig 4 the maximum length of a subsidiary quadratic extension comprises 4
variables. We therefore set χ = 4 for this seed and state that Γ, the Rudin-
Shapiro extension of Θ, only becomes active when extended by χ variables
from xg, i.e. when m−u = χ+1. Consider Fig 5. Here χ = 3 and Γ becomes
active only when extended by χ = 3 variables. Only enumerating active Γ
avoids repeated counts. However, this way of counting does not deal with the
case when two or more Γ are identical, inactive, and all extended by χ − 1
variables for their respective χ. At the moment we can only count these cases
by hand or by computer. χ is an indication of the level of extension required
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y

gx

Figure 4: Seed with Subsidiary Quadratic Extensions, χ = 4

y

gx

Figure 5: Seed with Subsidiary Quadratic Extensions, χ = 3

before a certain Γ-set is wholly disjoint from other Γ-sets under consideration.
The lack of disjointness between Γ-sets makes sequence enumeration for a
union of Γ-sets non-trivial at extensions ≤ χ. This is an important drawback
of the seed extension technique.

The size of each Γ-set is shown in Tables 13 - 14, where all sizes are given
relative to the size, D, of DJm,h.

6.1.1 Some Comments on Code Rate Versus PAPR Versus Dis-
tance

In the following we define a quadratic, cubic, quartic code, etc..., as being a
codeset comprising functions with degrees ≤ 2, ≤ 3, ≤ 4, ....etc, respectively.

24



The underlying aim of [9, 26] is to find a largest possible family of sequences,
S, roughly orthogonal to the set F1m and roughly orthogonal to every other
member of S. As discussed in [27], these three aims, PAPR vs Distance vs
Rate, work against each other. The solution of [9, 26] in a binary context pro-
poses S comprising selected RM(2, m) cosets of RM(1, m), thereby ensuring
Hamming Distance ≥ 2m−2 for binary sequences of length 2m. The complete
set of RM(2, m) cosets of RM(1, m) is a significant proportion of Z2m

2 up
to about m = 5, so for 2 ≤ m ≤ 5 one can obtain quadratic codes with
good PAPR/distance/code rate trade-off. [9, 26] propose quadratic codes
comprising the infinite family DJm,1 together with further RM(2, m) cosets
of RM(1, m) identified computationally to have low worst-case PAPR over
the whole coset. This computational search is practical up to about m = 6,
where there are 222 sequences with algebraic degree = 2 to search, of which
about 216 are from DJm,1. A hardware implementation requires a ROM to
store those coset leaders not in DJm,1. Using the results of [26] one can
reduce the size of this ROM by constructing some of these sequences using
the infinite family derived from complementary sets of size 4 with PAPR
≤ 4.00 (this family is also 1Γ of Table 6). Our paper further introduces in-
finite quadratic families 3Γ, 3aΓ, 4Γ,18Γ, 18aΓ, 19Γ, 19aΓ,20Γ, 20aΓ,21Γ, 22Γ,

23Γ, 24Γ,25Γ, which also have PAPRs ≤ 4.0. The inclusion of these sets can
further reduce ROM size. However, those Γ-sets identified above, and com-
prising seeds over T ≤ 4 variables do not provide disjoint sequence sets until
m = T +χ+1 which, worst-case, is m = 7 for χ = 2, by which time quadratic
codes have lost their rate and are not so practical. For about 5 ≤ m ≤ 7
cubic codes comprising sequences with algebraic degree ≤ 3 are desirable as
they maintain a good code rate whilst ensuring a Hamming Distance ≥ 2m−3.
Similarly, quartic codes are desirable for 7 ≤ m ≤ 9, and so on. To emphasise
this point, [27] highlights that asymptotically good PAPR codes exist with
constant rate, distance growing with

√
N , and PAPR growing with log N (it

is an open problem to find code constructions satisfying these constraints).
We observe that choosing a low PAPR subset of the sequences with alge-
braic degree ≤ m−1

2
and length 2m ensures we are selecting from a constant

rate subspace of the whole space, and that the code distance remains upper
bounded by

√
2
√

N . It remains to show that the low PAPR subset is a con-
stant rate subset of this subspace with PAPR growing with log N . The seed
technique of this paper offers many infinite cubic families with low PAPR
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but cubic seeds can only be searched up to seeds of about 4 variables 6, so
we cannot get enough cubics this way to justify a cubic-based low PAPR
code. The full usefulness of the seed technique will only become apparent
if a method can be found to construct seeds (as opposed to computational
search). The authors currently know of no such method and it is left as an
open problem. In general we note that a reasonable rate, low PAPR, Reed-
Muller-based code of length 2m, and with good distance, should comprise
Algebraic Normal Forms of degree ≤ bm

2
c (or thereabouts).

7 The Set, Gm, of Linear Complex Modu-

lated Sequences and its Distance From DJm

Previous sections have focussed on unimodular binary linear functions which
are (Almost) Orthogonal to DJm. In this section we examine the distance of
all binary linear functions in m variables with output over the complex plane
from DJm. The previous restriction to unimodular sequences allowed us to
present our arguments using the integer field/ring Zn. In this section we
must use the complex-modulated form for sequences and basis functions, as
we are now also dealing with sequence elements with non-unity magnitude.
Thus DJm in this section refers to the complex-modulated form of DJm.

Definition 11 Let s, f be length N vectors with complex elements sj, fj,
respectively, such that

∑N−1
i=0 |si|2 =

∑N−1
i=0 |fi|2 = N . Then the correlation of

s and f is given by,

s · f =
N−1
∑

j=0

sjf
∗
j

where ∗ means complex conjugate.

This definition agrees with the definition of correlation for unimodular se-
quences at the beginning of this paper. The definitions of ’Orthogonal-
ity’...etc are equivalent to those at the beginning of the paper, where �
is replaced by ·. Remembering that complex-modulated DJm,h is the set of
all length 2m ’Phase-Shift-Keyed’ (PSK) sequences with 2h equally-spaced
phases and unity magnitude, we state the following.

6Unlike quadratic seeds, PAPR equivalence classes for cubics do not conveniently fall
into cosets of RM(1, m), so such symmetries cannot be used to reduce computational
search time for cubic classes.
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Theorem 6 For s ∈ DJm and g ∈ Gm
7, |g · s|2 ≤ 22m−bm

2
c.

Proof: Once again the proof hinges on the Rudin-Shapiro equality of
(9), but this time |φ|2 is not necessarily equal to |θ|2. We only require, for
normalisation, that |φ|2 + |θ|2 = 2. Let pj, qj be complex numbers satisfying,

pj = gj · s0j, qj = gj · s1j (13)

where gj ∈ Gj and s0j, s1j are a complementary pair in DJj. Let,

gj = gj−1 ⊗ (φj, θj) (14)

where |φj|2 + |θj|2 = 2. Then, using similar reasoning to that in (7) and (8),

pj = φj−1pj−1 + θj−1qj−1, qj = φj−1pj−1 − θj−1qj−1 (15)

Using (9) we get,

|pj|2 + |qj|2 = 2(|φj−1|2|pj−1|2 + |θj−1|2|qj−1|2) (16)

Moreover, self-substitution in (15) gives,

pj = (φj−1 + θj−1)φj−2pj−2 + (φj−1 − θj−1)θj−2qj−2

qj = (φj−1 − θj−1)φj−2pj−2 + (φj−1 + θj−1)θj−2qj−2
(17)

We are interested in finding the largest possible values of |pj| or |qj|, as j
increases. We note the following,

|φj−1 + θj−1|2 + |φj−1 − θj−1|2 = 4,
|φj−2|2 + |θj−2|2 = 2, |pj−2|2 + |qj−2|2 = k2

for k some arbitrary real constant. It can be seen from (17) that |pj|2 + |qj|2
will be maximised if all energy is concentrated in just one of the four three-
term products on the right-hand side of the two equations of (17). Without
loss of generality we aim to maximise |pj| using Condition A:

Condition A:
|φj−1 + θj−1|2 = 4, |φj−2|2 = 2, |pj|2 = k2, j odd

From (17) this gives |pj| = 2
√

2, |qj| = 0 which conveniently concentrates
all energy in pj ready for the next application of (17) using Condition A.

7see Definition 6
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We conclude that, given |pj−i| = k, |qj−1| = 0, i even, the largest possible

value of |pj| (or |qj|) is (2
√

2)
1
2 k. Secondly we note that |p0| = |q0| = 1.

Consequently, from (15), |p1|2 + |q1|2 is maximised by choosing |φ0| = |θ0| =
1. We can also choose the phase angles of φ0 and θ0 so that |p1| = 2,
|q1| = 0, which concentrate all energy in p1, ready for subsequent iterations
using (17) under Condition A. At all stages in the above arguments we have
achieved maximisation of |pj|. In this way we guarantee that maximum

|pj| = (2
√

2)
j−1
2 2 = 2

3j+1
4 , j odd. Finally, for |pj| = 2

3j+1
4 , j odd, we know

that |qj| = 0. Therefore, from (15), |pj+1| is a maximum if |pj+1| = 2
3j+3

4 , j
odd. Putting all the above arguments together,

|pj|2 ≤ 22j−b j

2
c, |qj|2 ≤ 22j−b j

2
c (18)

whatever the choices for φi, θi, 0 ≤ i < j.
The action of an LUT (Definition 7) on a sequence from DJm leaves

the average power of the sequence invariant. A corollary of Theorem 6 is,
therefore,

Corollary 6 The action of an LUT on a sequence from DJm gives an output

spectrum with PAPR ≤ 22m−b m
2 c

2m = 2m−bm
2
c.

Example 6: An LUT, G, which always achieves the worst-case PAPR of
2m−bm

2
c from at least one member of DJm is as follows,

G =

(

1 1
1 −1

)

⊗
( √

2 0

0
√

2

)

⊗
(

1 1
1 −1

)

⊗
( √

2 0

0
√

2

)

⊗ . . .

For instance,
G3(1,−1, 1, 1,−1, 1, 1, 1)T = (0, 0, 4

√
2, 0, 0, 4

√
2, 0, 0)T , with PAPR = 32

8
=

4.

7.1 A Lower Bound on the Correlation Between Any
Length 2m Unimodular Sequence and Gm

Consider the length 2m sequence, s, over ZP , which represents a function in
m binary variables. Then we can write s in Algebraic Normal Form as,

s(x0, x1, . . . , xm−1) =
∑

v∈Zm
2

cv

m−1
∏

i=0

xvi
i , where cv ∈ ZP
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Theorem 7 The sequence s has a correlation of at least (2
t
2 )2m−t with at

least one member of Gm, where t is the minimum number of variables, xi,
that one must fix to a constant value from ZP so as to reduce s to a linear
function with output over ZP in m − t variables.

Proof: We illustrate the proof by example. Consider a sequence from
DJm. For instance, consider a binary sequence, s, with quadratic part, say,
x0x2+x2x3+x3x5+x5x1+x1x4. We only need to fix x0, x3, x1, or x2, x3, x1, or
x2, x5, x1, or x2, x5, x4, to some constants from Z∞ to ensure that s reduced
in this way is a linear function, sr, of 3 variables with output over Z∞. In this
case t = 3, and performing a 2t = 8-point HT on any of the 2m−t = 8 length-
8 linear subsequences, sr, results in a maximum spectral value of 2m−t = 8.
The HT is implicitly expanded to cover m variables by tensor multiplication

with the 2t × 2t identity matrix, which must be scaled by
√

2
t

to normalise
so that each row of the resultant matrix is in Gm.
Example 6 is also a specific instance of Theorem 7 for DJm. Theorem 7
applies to any function, not just members of DJm. However, for sequences
from DJm we have the following corollary.

Corollary 7 For s ∈ DJm, ∃g ∈ Gm such that |g · s|2 ≥ 22m−bm
2
c.

Proof: As evident from the proof of Theorem 7, when m is even (odd) we
need to fix m

2
(bm

2
c) variables to reduce s to a linear function, respectively.

This linear function has a maximum correlation with a row of the HT of
b2m

2 c). After scaling by
√

2
dm

2
e

and taking squares we arrive at Corollary 7.

The lower bound of Corollary 7 is identical to the upper bound of Theorem
6.

Corollary 8 For s ∈ DJm, only 1 out of the

(

m
bm

2
c

)

possible choices of

variables to fix reduces s to a linear function when m is odd, and only m
2

+ 1

out of the

(

m
m
2

)

possible choices of variables to fix reduces s to a linear

function when m is even.

In the context of unitary matrices we also have the following corollary of
Theorem 7.

Corollary 9 ∃ an LUT such that any member of DJm has PAPR ≥ 2m−bm
2
c

under this LUT. linear function.
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The upper bound of Corollary 9 is identical to the lower bound of Corollary
6.

The conclusion from this section is that unimodular sequences are open
to correlation attack from LUTs if fixing a small number of variables projects
the sequence to a linear function. However, finding LUTs which exploit this
weakness becomes more costly as the number of variables to fix rises. In
particular, from Corollary 8, DJm seems relatively secure from LUT attack.
We can also use the ’weakness’ of DJm to develop an efficient decoder for
DJm-based OFDM (an alternative to the schemes of [18, 22]) where a cor-
relation peak identifies the codeword sent. Another way of looking at the
properties of DJm is to consider the Quantum Entangling properties of the
Rudin-Shapiro recursion. The (Almost) Orthogonality of DJm to Lm can
be interpreted as strong quantum entanglement in a certain quantum axis
and suggests that Rudin-Shapiro recursion is a good Quantum Entangling
primitive, but the weaker (Rough) Orthogonality of DJm to Gm indicates a
moderation in the entanglement strength of DJm in another quantum axis.
These connections are discussed in [24] where it is shown how Rudin-Shapiro
recursion can be used to construct good error-correcting codes which, in turn,
represent highly entangled quantum states.

8 A Representation For All 2m × 2m Unitary

Matrices with Linear Rows

Whereas multidimensional CHTs can be described as tensor products of 2×2
matrices, the one-dimensional CDFTs also require the inclusion of ’twiddle
factors’ [7, 1]. This section outlines a tensor decomposition for all LUTs.
Radix-2 CHTs and CDFTs are then seen as instances of this decomposition.
Consider the length 2m binary sequence s(x0, x1, . . . , xm−1). Then a 2m × 2m

LUT matrix, Q, which only acts on variable i of the complex-modulated form
of s can be represented as,

Q = Ii ⊗ Q(i) ⊗ Im−i−1

where Ik is the 2k × 2k identity matrix, and Q(i) is a 2 × 2 LUT matrix.
We refer to the action of Q on variable i by Q(i), where the context of m
variables is implicit. In a similar way we refer to LUUT diagonal matrices
∆(i,k) which only act on variables i and k out of m variables.
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Theorem 8 (Based on the ’Quantum FFT Algorithm’ of [8, 32]). All LUTs,
G, can be represented by the following decomposition.

G = PQ0(0)∆1Q1(1)∆2Q2(2) . . .∆m−1Qm−1(m − 1)

where ∆k is a diagonal matrix whose diagonal entries are all unimodular and
P is any permutation matrix which permutes the rows of G.

The radix-2 linearity of the rows of G (Definitions 6 and 7) is ensured be-
cause each Qk acts on only one variable at a time, and because the only
other matrices in the decomposition of G are row permutations or diagonal.
Consider the following sub-cases:

• For CHTs we have,

∆k = Im, Qk =

(

1 εδk

1 −εδk

)

, ∀k

where ε is a non-degenerate nthcomplex root of 1, 0 ≤ δk < n
2
, 1 ≤ n ≤

∞, gcd(δk,
n
2
) = 1, n even. P is the identity matrix.

Example 7. The 4 × 4 HT is decomposed as,

Q(0)Q(1) =

(

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

)(

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

)

• For CDFTs we have,

∆i =
i−1
∏

k=0

∆(i,k)

where ∆(i,k) acts on variables i and k 8, and is of the form,

∆(i,k) = Diag(1, 1, 1, ε2m−1−(i−k)

)

and, Qk =

(

1 ε2kδ

1 −ε2kδ

)

where ε is a non-degenerate nth complex root of 1, 0 ≤ δ < n
2
, 1 ≤

n ≤ ∞, gcd(δ, n
2
) = 1. P is the ’bit-reversal’ permutation reversing the

roles of x0 and xm−1, x1 and xm−2,...etc.

8This specific decomposition of ∆ is due to [8] and allows implementation of the FFT
as a series of unitary matrices acting on only one or two variables per matrix.
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Example 8. The 8 × 8 one-dimensional DFT is decomposed as,

PQ(0)Diag(1, 1, 1, ε2, 1, 1, 1, ε2)Q(1)×
Diag(1, 1, 1, 1, 1, ε, 1, ε)Diag(1, 1, 1, 1, 1, 1, ε2, ε2)Q(2)

where Q =

(

1 1
1 −1

)

, P =

(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

, and ε = e
πi
4 , i2 = −1.

9 Discussion and Conclusions

We have shown that Golay-Davis-Jedwab Complementary Sequences, DJm,
are (Almost) Orthogonal to the set Lm of all linear functions in m binary
variables, and therefore have PAPR ≤ 2.0 under all Linear Unimodular
Unitary Transforms (LUUTs). We identified two transform subsets of LU-
UTs, namely one-dimensional Consta-Discrete Fourier Transforms, and m-
dimensional Constahadamard Transforms (CHTs), both of whose rows are
from Lm. We further showed that rows of all CHTs partition Lm, and there-
fore that CHTs provide efficient transforms for testing Zn-linearity. Using
the Rudin-Shapiro construction we identified many seeds from which to con-
struct infinite sequence families with (Almost) Constabent properties, and
other seeds with low PAPR under one-dimensional Consta-DFTs. In this
way we have identified new low PAPR families not necessarily limited to
quadratic degree. These families are of particular importance with relation
to the requirement for large families of sequences with low PAPR and good
Hamming Distance for Orthogonal Frequency Division Multiplexing trans-
mission [9, 26]. One of the contributions of this paper in this context is to
provide more infinite families with low PAPR and good distance in addi-
tion to DJm. Their union provides codes with improved rate and smaller
hardware implementation. The low degree (e.g. quadratic, cubic) ensures
good Hamming distance for the combined families. We also determined the
distance of DJm from the set, Gm, of complex linear functions in m vari-
ables, where Gm contains Lm. In transform terminology these results imply
a PAPR ≤ 2m−bm

2
c under all Linear Unitary Transforms (LUTs) constructed

from members of Gm. Consequently ciphers which incorporate the set DJm

are highly resistant to correlation attack from transforms with unimodular
rows (LUUTs), but there exist rare unitary transforms with non-unimodular
rows (LUTs) which can yield a PAPR as high as 2m−bm

2
c from members of

the set, DJm. However, this is not so high. The linear nature of the LUT
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rows implies that they possess a radix-2 tensor decomposition into tensor
products of 2×2 LUT matrices together with optional inter-product twiddle
factors, as discussed in the last section. This tensor decomposition translates
to an efficient software or hardware implementation to compute correlations
with members of Gm. These LUTs therefore have O(N log N) complexity
algorithms, which simultaneously imply cryptographic weakness and efficient
decoding algorithms for any codeset which has a pronounced spectral peak
under one or more LUTs. We should emphasise that the combined size of
the new infinite sequence families provided by this paper cannot maintain
overall code rate without substantial computational search to find suitable
low PAPR pairs. This computational overhead (and consequent ROM stor-
age overhead) soon becomes prohibitive for increasing sequence length. We
therefore need some way to efficiently construct seeds. Finally, we reiterate
the open problem, posed by [27], namely to discover an infinite construction
for an asymptotically good error-correcting code with low PAPR.
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Table 7: Rudin-Shapiro Extensions Using u + 1 = 4-Variable Seeds, All
Cosets of RM(1, 1) in p

Γ
Θ(xU,xg)

2h−1 = Θ(p,q,r,τ)
2h−1 υ χ

5Γ
1,1 τpqr + {τ(pr + qr + q + r) + pq + pr + q + r, 2.5000 0

τ(pr + qr + p + q) + pq + q,
τ(pr + qr) + pqr + pq + pr + qr,

τ(pr + qr) + pq + pr,
τ(pr + qr + q + r) + pqr + pq + qr,

τ(pr + qr) + pqr + pq + qr,
τ(pq + p + q + r) + pq,
τ(pr + qr) + pq} with R

6Γ
1,1 τpqr + {τ(p + r) + pqr + pq + pr + r, 2.6578 0

τ(q + r) + pqr + pq + pr + r,
pqr + pq + pr + r,

τ(pq + pr + qr + r) + pq + pr,
τ(pq + pr + qr + p + q + r) + pqr + qr + r,

τ(pq + pr + qr + p) + pqr + qr + r,
τ(pq + pr + qr + q) + pqr + qr + r,

τ(pq + pr + qr + r) + pqr + qr + r} with R

7Γ
1,1 τpqr + {τ(p + r) + pq + q, 2.7199 0

τ(pq + pr + qr + p) + pq + q,
τ(pq + pr + qr + q) + pq,

τ(q + r) + pq,
τ(q + r) + pr + r,

τ(pq + pr + qr + r) + pr + r,
τ(p + q) + pr,

τ(pq + pr + qr + p) + pr} with R

8Γ
1,1 τpqr + {τ(pq + q) + pq + pr + q + r, 2.7500 0

τ(pq + r) + pq + pr,
τ(pq + q) + pqr + pr + r,
τ(pq + r) + pqr + pr + r,

τ(pq + p) + pr + r,
τ(pr + qr) + pr + r,

τ(pr + qr + p + r) + pr,
τ(pq + r) + pr} with R

9Γ
1,1 τpq + {τ(q + r) + pq + pr + qr + q + r, 2.7698 0

τ(q + r) + pr + r,
τ(q + r) + pr + qr,

τ(p + r) + pr} with R
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Table 8: Rudin-Shapiro Extensions Using u + 1 = 4-Variable Seeds (contin-
ued), All Cosets of RM(1, 1) in p

Γ Θ(xU,xg)
2h−1 = Θ(p,q,r,τ)

2h−1 υ χ

9aΓ
1,1 τpq + {pr + r, 2.7698 1

τ(p + q) + pr} with R

10Γ
1,1 τpqr + {τ(qr + q + r) + pq + pr + q + r, 2.9282 0

τqr + pqr + pq + pr + qr,
τ(pq + pr + p + q + r) + pq + pr,

τqr + pq + pr,
τ(qr + q + r) + pr + r,
τ(pq + pr + q) + pr + r,

τ(pq + pr + p + q + r) + pr,
τ(qr + p + q) + pr} with R

11Γ
1,1 τ(pq + pr) + {τq + pq + qr + q + r, 2.9285 0

τq + pq + pr + qr + q + r,
τ(p + q + r) + pq + qr + q,

τq + qr + r,
τ(p + q + r) + pr + qr + r,
τq + pr + qr + r} with R

12Γ
1,1 τpqr + {τ(pr + p + r) + pq + pr + q + r, 2.9425 0

τ(pr + p + q) + pqr + pq + q,
τ(pr + p + r) + pqr + pq + pr + r,

τ(pr + p + q) + pq + pr,
τ(pq + qr + p + q + r) + pq + pr,

τ(pq + qr + r) + pq,
τ(pq + qr + p + q + r) + pqr + qr + r,

τ(pq + qr + r) + pqr + qr + r,
τ(pq + qr + p) + pr + r,
τ(pr + q + r) + pr + r,

τ(pr + p + q) + pr,
τ(pq + qr + r) + pr} with R

13Γ
1,1 τ(pq + pr) + {pq + qr + r, 2.9514 0

τ(p + r) + pq + qr,
τ(p + r) + pr + qr + r,
pr + qr + r} with R

14Γ
1,1 τpqr + {τ(pq + q + r) + pq + q, 2.9575 0

τ(pq + p + r) + pq,
τ(pq + p + r) + pqr + r,

τ(pq + q + r) + pqr + r} with R
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Table 9: Rudin-Shapiro Extensions Using u + 1 = 4-Variable Seeds (contin-
ued), All Cosets of RM(1, 1) in p

Γ
Θ(xU,xg)

2h−1 = Θ(p,q,r,τ)
2h−1 υ χ

15Γ
1,1 τ(pq + pr + qr) + pqr + {pq + q, 3.0000 0

15Γ
1,2 pr + qr + q,

15Γ
1,3 τ(p + q) + q,

15Γ
1,4 τ(p + q) + pq + pr + qr} with R

16Γ
2,1 τ(pq + pr + qr) + pqr + {qr + r, 3.0000 0

16Γ
3,1 qr + q + r,

16Γ
4,1 pq + pr + r,

pq + pr + q + r,
τ(q + r) + q + r,

τ(q + r) + pq + pr + qr + q,
τ(q + r) + pq + pr + qr,

τ(q + r) + r}
17Γ

1,1 pqr + {τ(p + q + r) + pr + r, 3.0000 0
τ(p + q + r) + pq + qr + q + r,
τ(pq + q + r) + pq + pr + qr,

τ(pq + q + r) + pr + qr + q + r,
τ(pr + qr + q) + pq + q,

τ(pr + qr + q) + pq + pr + qr,
τ(pr + qr + r) + pq + pr + r,

τ(pq + p + r) + qr + r,
τ(pq + p + r) + pq + qr,

τ(pr + qr + p + q + r) + qr + r,
τ(pq + pr + qr + p + r) + pr + r,

τ(pq + pr + qr + p + r) + pq + qr} with R
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Table 10: Rudin-Shapiro Extensions Using u + 1 = 4-Variable Seeds,
Quadratic Seeds Only, 3.0 < υ ≤ 4.0, All Cosets of RM(1, 3) in p, q, r

Γ
Θ(xU,xg)

2h−1 = Θ(p,q,r,τ)
2h−1 υ χ

18Γ
1,1 τp + {τq + qr, 3.3746 2

τr + qr}
18aΓ

1,1 τp + {τq + pq + pr, 3.3746 1
τr + pq + pr}

19Γ
1,2 τr + {τp + pq, 3.4243 2

τq + pq}
19aΓ

1,2 τr + {τp + pr + qr, 3.4243 1
τq + pr + qr}

19Γ
1,1, 19aΓ

1,1 3.4467

20Γ
1,1 τq + {τp + pr, 3.4702 2

τr + pr}
20aΓ

1,1 τq + {τp + pq + qr, 3.4702 1
τr + pq + qr}

18Γ
2,1, 18aΓ

2,1 3.4964

18Γ
1,3, 18aΓ

1,3 3.5168

20Γ
2,1, 20aΓ

2,1 3.5216

18Γ
3,1, 18aΓ

3,1 3.5287

20Γ
3,1, 20aΓ

3,1 3.5351

19Γ
1,3, 19aΓ

1,3 3.5364

19Γ
1,4, 19aΓ

1,4 3.5364

18Γ
1,2, 18aΓ

1,2 3.5366

18Γ
4,1, 18aΓ

4,1 3.5369

18Γ
1,4, 18aΓ

1,4 3.5373

20Γ
4,1, 20aΓ

4,1 3.5385

21Γ
1,1 τ(p + q + r) + pq 3.5396 1

22Γ
1,1 τ(p + q + r) + qr 3.5396 1

21Γ
1,2 3.5396

21Γ
1,3 3.5396

21Γ
1,4 3.5396

22Γ
2,1 3.5396

22Γ
3,1 3.5396

22Γ
4,1 3.5396

18Γ
2,2, 18aΓ

2,2 3.7741

20Γ
1,2, 20aΓ

1,2 3.8260

18Γ
3,2, 18aΓ

3,2 3.8361

18Γ
2,3, 18aΓ

2,3 3.8470
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Table 11: Rudin-Shapiro Extensions Using u + 1 = 4-Variable Seeds,
Quadratic Seeds Only, 3.0 < υ ≤ 4.0, All Cosets of RM(1, 3) in p, q, r

Γ Θ(xU,xg)
2h−1 = Θ(p,q,r,τ)

2h−1 υ χ

19Γ
2,3, 19aΓ

2,3 3.8480

19Γ
2,2, 19aΓ

2,2 3.8483

20Γ
2,2, 20aΓ

2,2 3.8492

19Γ
2,1, 19aΓ

2,1 3.8497

20Γ
3,2, 20aΓ

3,2 3.8550

23Γ
1,1 τ(p + q + r) + pr 3.8570 1

22Γ
1,2 3.8570

21Γ
2,1 3.8570

21Γ
2,2 3.8570

22Γ
2,2 3.8570

22Γ
3,2 3.8570

20Γ
1,3 3.9530

19Γ
2,3, 19aΓ

2,3 3.9599

19Γ
3,2, 19aΓ

3,2 3.9616

19Γ
3,1, 19aΓ

3,1 3.9617

23Γ
1,2 3.9622

22Γ
1,3 3.9622

23Γ
2,1 3.9622

22Γ
2,3 3.9622

21Γ
3,1 3.9622

21Γ
3,2 3.9622

20Γ
1,4, 20aΓ

1,4 3.9880

19Γ
4,1, 19aΓ

4,1 3.99038

23Γ
1,3 3.9904

22Γ
1,4 3.9904

23Γ
2,2 3.9904

23Γ
3,1 3.9904

21Γ
4,1 3.9904

23Γ
1,4 3.9976

23Γ
2,3 3.9976

23Γ
3,2 3.9976

23Γ
4,1 3.9976
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Table 12: Rudin-Shapiro Extensions Using u + 1 = 4-Variable Seeds,
Quadratic Seeds Only, 3.0 < υ ≤ 4.0, All Cosets of RM(1, 3) in p, q, r

Γ Θ(xU,xg)
2h−1 = Θ(p,q,r,τ)

2h−1 υ χ

24Γ
1,1 {τ(p + q + r) + pq + qr, 4.0000 0

24Γ
1,4 τ(p + q + r) + pr + qr,

24Γ
2,1 τ(q + r) + pq + pr + qr,

24Γ
3,1 τ(p + q) + pq + pr + qr,

24Γ
4,1 τ(p + r) + pq + pr + qr,

τ(p + q + r) + pq + pr,
τ(q + r) + pq + pr,
τ(p + q) + pr + qr,
τ(p + r) + pq + qr}

25Γ
1,1 {pq + pr, 4.0000 2

25Γ
1,4 pq + qr,

25Γ
2,1 pr + qr}

25Γ
3,1

25Γ
4,1
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Table 13: The Size of Γ-Sets

Γ |Γ|
0Γ D

1Γ 21−hD

2Γ
1 23−2h

m
D

3Γ
1, 3aΓ

1 22−2h

m
D

3Γ
2, 3aΓ

2 22−2h(m−2)
m(m−1) D

3Γ
3, 3aΓ

3 22−2h(m−3)
m(m−1) D

3Γ
4, 3aΓ

4 22−2h(m−4)
m(m−1) D

3Γ
5, 3aΓ

5 22−2h(m−5)
m(m−1) D

4Γ
1 22−2h

m
D

4Γ
2 22−2h(m−2)

m(m−1) D

4Γ
3 22−2h(m−3)

m(m−1) D

4Γ
4 22−2h(m−4)

m(m−1) D

4Γ
5 22−2h(m−5)

m(m−1) D

5Γ
1,1, 6Γ

1,1, 7Γ
1,1, 8Γ

1,1, 10Γ
1,1 25−3h

m(m−1)D

9aΓ
1,1 23−3h

m(m−1)D

11Γ
1,1 23−3h3

m(m−1)D

12Γ
1,1 24−3h3

m(m−1)D

9Γ
1,1, 13Γ

1,1, 14Γ
1,1, 15Γ

1,1 24−3h

m(m−1)D

15Γ
1,2, 16Γ

2,1 24−3h(m−3)
m(m−1)(m−2)D

15Γ
1,3, 16Γ

3,1 24−3h(m−4)
m(m−1)(m−2)D

15Γ
1,4, 16Γ

4,1 24−3h(m−5)
m(m−1)(m−2)D

17Γ
1,1 24−3h3

m(m−1)D

18Γ
1,1, 19Γ

1,1, 20Γ
1,1, 18aΓ

1,1, 19aΓ
1,1, 20aΓ

1,1 24−3h

m(m−1)D

18Γ
1,2, 19Γ

1,2, 20Γ
1,2, 18Γ

2,1, 19Γ
2,1, 20Γ

2,1 24−3h(m−3)
m(m−1)(m−2)D

18aΓ
1,2, 19aΓ

1,2, 20aΓ
1,2, 18aΓ

2,1, 19aΓ
2,1, 20aΓ

2,1

18Γ
1,3, 19Γ

1,3, 20Γ
1,3, 18Γ

2,2, 19Γ
2,2, 20Γ

2,2 24−3h(m−4)
m(m−1)(m−2)D

18aΓ
1,3, 19aΓ

1,3, 20aΓ
1,3, 18aΓ

2,2, 19aΓ
2,2, 20aΓ

2,2

18Γ
3,1, 19Γ

3,1, 20Γ
3,1, 18aΓ

3,1, 19aΓ
3,1, 20aΓ

3,1

where D = |DJm,h| =
(

m!
2

)

2h(m+1)
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Table 14: The Size of Γ-Sets (continued)

Γ |Γ|
18Γ

1,4, 19Γ
1,4, 20Γ

1,4, 18Γ
2,3, 19Γ

2,3, 20Γ
2,3 24−3h(m−5)

m(m−1)(m−2)D

18aΓ
1,4, 19aΓ

1,4, 20aΓ
1,4, 18aΓ

2,3, 19aΓ
2,3, 20aΓ

2,3

18Γ
3,2, 19Γ

3,2, 20Γ
3,2, 18Γ

4,1, 19Γ
4,1, 20Γ

4,1

18aΓ
3,2, 19aΓ

3,2, 20aΓ
3,2, 18aΓ

4,1, 19aΓ
4,1, 20aΓ

4,1

21Γ
1,1, 22Γ

1,1, 23Γ
1,1 23−3h

m(m−1)D

21Γ
1,2, 22Γ

1,2, 23Γ
1,2, 21Γ

2,1, 22Γ
2,1, 23Γ

2,1 23−3h(m−3)
m(m−1)(m−2)D

21Γ
1,3, 22Γ

1,3, 23Γ
1,3, 21Γ

2,2, 22Γ
2,2, 23Γ

2,2 23−3h(m−4)
m(m−1)(m−2)D

21Γ
3,1, 22Γ

3,1, 23Γ
3,1

21Γ
1,4, 22Γ

1,4, 23Γ
1,4, 21Γ

2,3, 22Γ
2,3, 23Γ

2,3 23−3h(m−5)
m(m−1)(m−2)D

21Γ
3,2, 22Γ

3,2, 23Γ
3,2, 21Γ

4,1, 22Γ
4,1, 23Γ

4,1

24Γ
1,1 23−3h9

m(m−1)D

24Γ
1,2, 24Γ

2,1 23−3h9(m−3)
m(m−1)(m−2)D

24Γ
1,3, 24Γ

2,2, 24Γ
3,1 23−3h9(m−4)

m(m−1)(m−2)D

24Γ
1,4, 24Γ

2,3, 24Γ
3,2, 24Γ

4,1 23−3h9(m−5)
m(m−1)(m−2)D

25Γ
1,1 23−3h3

m(m−1)D

25Γ
1,2, 24Γ

2,1 23−3h3(m−3)
m(m−1)(m−2)D

25Γ
1,3, 24Γ

2,2, 24Γ
3,1 23−3h3(m−4)

m(m−1)(m−2)D

25Γ
1,4, 24Γ

2,3, 24Γ
3,2, 24Γ

4,1 23−3h3(m−5)
m(m−1)(m−2)D

where D = |DJm,h| =
(

m!
2

)

2h(m+1)

44


