
Fast Blum-Blum-Shub Sequence Generation Using

Montgomery Multiplication

M.G.Parker,

University of Bergen, Department of Informatics, University of Bergen,

N-5020 Bergen, Norway, matthew@ii.uib.no.

A.H.Kemp,

Institute of Integrated Information Systems, School of Electronic and

Electrical Engineering, University of Leeds, LS2 9JT Leeds, UK.

S.J.Shepherd,

Telecommunications Research Centre, Department of Electronic and

Electrical Engineering, University of Bradford, Bradford, BD7 1DP, UK.

1



Abstract

VLSI modules are proposed for fast, efficient generation of high-throughput

Blum-Blum-Shub (BBS) and BBS-like sequences using Montgomery Multi-

plication, where post-processing associated with Montgomery’s algorithm can

be eliminated.

2



1 Introduction

Public key cryptosystems ensure secrecy between communicating parties

without the need to distribute secret keys. The most famous public key

cryptosystem is that devised by Rivest, Shamir, and Adleman (RSA) [1].

Another lesser-known public key cryptosystem is the Quadratic Residue

Cipher (QRC) introduced by Blum, Blum, and Shub [2], which relies on

the ease of squaring an integer, mod n, as compared to the intractability

of finding the square root of a number, mod n when n is large. As with

RSA the valid recipient publishes the prime factors of n, where n = pq

and p and q are strong primes. The sender scrambles his message with a bit

sequence (Blum-Blum-Shub Sequence, BBS) comprised of the concatenation

of the least significant bits of a series of successive squares, mod n, starting

with a randomly chosen ’seed’, and then appends the final value in the

sequence of successive squares to the scrambled message. Only the valid

recipient can unscramble the data as only he/she knows the factors of n,

and knowing p and q allows the recipient to find the starting seed, i.e. the

2nth root, mod n, using the final successive square which was appended

to the received sequence. Once the starting seed is known the recipient

can regenerate the scrambling sequence and decrypt the ciphertext. As

with RSA the scheme relies on the inability to factor n when n = pq, and

p and q are large strong primes. The advantages of QRC over RSA are

that RSA is a deterministic cipher, whereas QRC is probabilistic because

it starts from a randomly chosen seed. Moreover it is known that RSA can

3



leak partial information about the message sent, whereas no such weakness

is known for QRC. Also it is a bit easier to generate BBS for QRC, than

successive exponents for RSA. Finally, spectral randomness properties of

BBS make it very suitable for use as a spreading sequence in a spread-

spectrum communications system, thereby providing the possiblity of high-

security spread spectrum [3]. QRC can also provide digital signature and

resistance to a chosen ciphertext attack, but at greater cost than with RSA

[4]. Detailed comparisons of QRC and RSA are given in [5, 4].

Although implementation complexity of QRC is slightly less than RSA,

it is still costly. Successful implementation of QRC relies on efficient gener-

ation of BBS. This paper proposes novel hardware to allow highly efficient

generation of BBS using Montgomery Multipliers (MMs) [6, 7, 8, 9]. MMs

are particularly suited to VLSI implementation of modular multiplication as

they allow computation of modular reduction to begin before computation

of the most-significant-bit has been completed. This speeds up successive

modular arithmetic operations (such as squaring). However the drawback

is the multiplicative offset associated with MM. In this paper this offset is

incorporated into BBS generation without cost, and further simplification

is made possible by considering the generation of BBS-like sequences.

4



2 Blum-Blum-Shub Sequence (BBS) and QRC

Let n = pq, where p and q are primes satisfying p = 4kp + 3, q = 4kq + 3.

The BBS [2, 5] of integer a, mod n, is given by,

BBSn(a) = L(BSn(a)) where

BSn(a) = (a, a2, a4, . . . , a2t−1

), mod n, t ≤ µn

(1)

where the orderi of BBSn(a) is µn = lcmii (µp, µq), µp = ord ordp(a)(2),

µq = ord ordq(a)(2), and L means ’concatenate the h least-significant-bits

(lsbs) of each successive residue’. (1) requires the following gcdiii condition

to be satisfied,

Condition: gcd(2, ordp(a)) = gcd(2, ordq(a)) = 1 (2)

For a good choice of kp and kq, approximately 1
4 of all integers, a, satisfy

Condition (2), and can generate BBS [2]. Condition (2) can be virtually

guaranteed by selecting a random integer α < n. Then a =
〈

α2
〉

n
nearly

always satisfies (2). The randomness and cryptographic strength of the

QRC are fatally compromised if the BBS has short period, µn, or if n can

be factored. Therefore, ideally p and q are ’strong’ primes, in other words

p, q are chosen such that p, q, kp, kq, 2kp + 1, 2kq + 1 are all prime. This

ensures a very large BBS period of kpkq or 2kpkq, and also maximises the

difficulty of factoring n.

i ordf (e) - ’the order of e, mod f , is t, where
〈

et
〉

f
= 1, 〈es〉f 6= 1 for some positive

integers s, t, s < t’
iilcm(.) - ’lowest common multiple of’
iiigcd(.) - ’greatest common denominator of’

5



The QRC generates ht BBS bits and XOR’s them with ht bits of the mes-

sage. Finally it appends the complete final residue,
〈

a2t
〉

n
, to the XOR’ed

message, and the bit string is transmitted. No polynomial time algorithm

exists to regenerate BBS from knowledge of the final residue
〈

a2t
〉

n
and n

[10]. The message is therefore secure from eavesdroppers.

[2] shows that concatenating h = 1 lsbs from each residue of BSn(a)

is provably secure. Further analysis [11, 10] indicates a lower bound of

h = log2(log2(n)) bits which can be extracted from each residue. However

even this is a lower bound and it is an open question as to how large h can

be. The relevance to this paper is that BBS generation speed rises linearly

with h.

3 Montgomery Multiplication (MM)

MM [7] efficiently computes,

c =
〈

abr−m−1
〉

n
+ jn j ∈ {0, 1} (3)

where 0 < a < n, 0 < b < 2n, r is the radix of representation for a, b, and c,

gcd(r, n) = 1, and m = ivdlogr(n)e. MM can be used for squaring if b = a,

requiring two successive MMs,

1. c =
〈

aar−m−1
〉

n
+ j1n

2.
〈

a2
〉

n
+ j2n =

〈

cdr−m−1
〉

n
+ j2n, where d =

〈

r2m+2
〉

n
, j1, j2 ∈ {0, 1}

(4)

ivd.e - ’round up to the next highest integer’

6



MM is inefficient for squaring as two successive MMs are required. This is

also true for direct generation of BBS using MM. Moreover, the result may

be offset by j2n, j2 ∈ {0, 1}.

4 Fast BS Generation Using MM

Consider the sequence generated by successive applications of MM,

ci =
〈

ci−1ci−1r
−m′

〉

n
+ jin, ji ∈ {0, 1} (5)

where 0 < ci < 2n and m′ = m+2. In the previous section m′ = m+1. This

is because inputs a and b were specified with a maximum of m and m + 1

radix-r digits, respectively, where the m + 1thdigit of a is zero and used to

reduce the output, c, back to m + 1 digits. However, in this section both

inputs, ci−1, require m + 1 digits each. Therefore our MM for successive

squaring requires m′ = m+2 rows, where row m+2 reduces the output, ci,

back to m + 1 digits. Let c0 =
〈

rm′

a
〉

n
. Then the sequence generated by

(5), Wn(c0) = {ci : 0 ≤ i < t}, is given by,

Wn(c0) =
〈

rm′

(a, a2, a4, . . . , a2t−1

)
〉

n
+ (0, j1n, j2n, . . . , jt−1n) ji ∈ {0, 1}

(6)

where the ’+’ indicates vector addition. If a satisfies (2) then,

Wn(c0) =
〈

rm′

BSn(a)
〉

n
+ (0, j1n, j2n, . . . , jt−1n) (7)

As before, for a good choice of kp and kq, approximately 1
4 of all integers,

c0, generate a, such that (2) is satisfied, on condition that gcd(r−m′

, n) =

7



1, which is virtually guaranteed, and is certain for r = 2. (In any case,

gcd(r, n) = 1 is a requirement for the operation of MM).

To generate BSn(a) using Wn(c0), one again performs two MMs:

Step 1. ci =
〈

ci−1ci−1r
−m′

〉

n
+ jin Step 2. a2i−1

=
〈

ci−11r
−m′

〉

n

(8)

The result of Step 2 always gives 0 ≤ a2i

< n, ∀i (Appendix A). Moreover,

Step 2 can be performed in parallel with the subsequent Step 1, (unlike

(4) where the operations are sequential and both in the squaring loop). A

similar idea to (8) is suggested in [7, 8, 9], but there it is with reference

to RSA exponentiation. In contrast we propose (8) for successive squaring.

Finally, for r = 2, and assuming it is required to compute only the vh =

blog2(m)c lsbs of each member of BSn(a), a reduction in latency for Step

2 approaching 1
2 is possible, as is a similar hardware reduction for a fully

parallel implementation of Step 2. (For QRC this last simplification is not

possible as one needs to append the full final residue to the bit stream).

As one of the inputs to the second MM is fixed at ′1′, further hardware

simplification to Step 2 is possible, for both parallel and serial versions.

Fig 1 shows fully parallel and parallel-serial architectures for this algorithm.

The fully parallel version is only useful if m′ different BS sequences are

interleaved. For both parallel and serial, ci becomes available at the output

of MM1, LSB first, and is fed back to the input of MM1 immediately, giving

a throughput rate of one new member of sequence Wn(c0), (and BSn(a)),

vb.c - ’round down to the next lowest integer’

8



every m′ clock cycles. The first member of BSn(a) begins to appear after

2m′ clock cycles.

Assuming a conventional modular multiplier is ' 2 times slower than a

MM, then BBS generation using MM is ' 2 times faster than conventional

generation. This is because Step 1 does not wait for Step 2 to finish between

iterations.

5 Improvements

For r = 2, blog2(m)c lsbs of each member of BSn(a) are mutually uncorre-

lated with each other and with the same bits of any other member of the

same sequence [10, 11]. This assumes 0 ≤ a2i

< n, ∀i, mod n. For Wn(c0),

the ci satisfy 0 ≤ ci < 2n, and the sequence is a constant multiple, (×rm′

)

of BS(a), mod n. One can therefore compute the sequence, Tn(d0), where

di = 〈ci〉n, i.e. the di satisfy 0 ≤ di < n, di =
〈

rm′

a2i
〉

n
. Tn(d0) is generated

by replacing Step 2 of (8) with,

Revised Step 2. di−1 = ci−1

if di−1 > n, di−1 = di−1 − n

(9)

and for r = 2 the blog2(m)c lsbs of Tn(d0) will again be mutually uncorre-

lated. For large m, (9) requires less hardware and is faster than Step 2 of

(8).

The sequence throughput remains unchanged, whether the sequence be

BSn(a) or Tn(d0). To substantially increase throughput, the parallel form of

Step 1 (and Step 2) can interleave m′ different BS or T sequences, originating

9



from m′ different seeds and/or moduli, c0,k and nk, respectively. In this way,

blog2(m)c lsbs can be appended to the output bit-stream every clock cycle.

An argument for the maintained cryptographic strength of interleaved BS or

T sequences is given in Appendix B. Such interleaving dramatically increases

throughput.

Finally, for the user who knows p and q, BSp(a), BSq(a), or Tp(d0),

Tq(d0) sequences can be generated in parallel, mod p and mod q, with a

final combining of sequence residues outside the loop to generate BSn(a), or

Tn(d0), using the Chinese Remainder Theorem [13], thereby reducing area

four times, and halving sequence generation time.

6 Conclusion

Montgomery Multiplication (MM) is appropriate for fast generation of BBS

Sequences in spite of the constant multiplicative offset inherent within suc-

cessive squarings using MM. Post-processing associated with MM is taken

out of the squaring loop to occur in parallel with the squaring. Further

area/time savings are achieved by retaining the multiplicative offset to the

BS Sequence whilst ensuring each member of the sequence is less than

the modulus. High-throughput sequence generation is obtained using in-

terleaved squarings and fully parallel MM. As a final suggestion one could

eliminate post-processing completely by simply generating the concatenation

of blog2(m)c lsbs of each member of Wn(c0). In this way Step 2 is elimi-

nated completely. This sequence is probably also mutually uncorrelated,

10



although we have no proof for this. The hardware improvements presented

in this paper enhance the proposal to use the Quadratic Residue Cipher in

cryptosystems and secure spread-spectrum systems.

7 Acknowledgements

This work was supported in part by EPSRC grants GR/K48914,GR/K06839,

and by NFR Project Number 119390/431.

8 Appendix A - To Verify Step 2 of (8)

From [7], the output from MM2 of Fig 1 is given by,

〈

a2i
〉

n
+ vn = (ci + Qn)/rm′

(10)

where v is a small positive integer. The maximum output from MM2 occurs

with worst-case ci and Q both equal to rm′

− 1, respectively, so,

〈

a2i
〉

n
+ vn ≤

(

rm′

− 1

rm′

)

(1 + n) (11)

As
〈

a2i
〉

n
6= 0 for any valid seed, a, (11) implies v = 0, i.e.,

(ci + Qn)/rm′

< n ∀i (12)

9 Appendix B - To Justify the Cryptographic Strength

of Interleaved BBS and T Sequences

Let the sender generate a BBS sequence, mod n, of length ht bits using a

randomly generated starting seed a and its t− 1 successive squares, mod n.

11



The strength of the QRC partially rests on the impossibility of an eaves-

dropper guessing a starting seed b such that
〈

b2i
〉

n
∈ {

〈

a2j
〉

n
, 0 ≤ j < t},

0 ≤ i < t in polynomial (in m) time using polynomial resources. Therefore

m′ = m+2 eavesdroppers will have no more success than one eavesdropper.

This is the same as saying that m′ interleaved BBS sequences, mod n, will

be mutually uncorrelated. This argument, as with single sequence BBS, is

conditional on a sufficiently large sequence order kpkq or 2kpkq. Similar ar-

guments can be used when using a different modulus, nk, for each interleaved

sequence, both for BBS and T sequences.

12



References

[1] Rivest,R.L., Shamir,A., Adleman,L.: ”A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems”, Comm.ACM, Feb 1978,

21,(2), pp. 120-126

[2] Blum,L., Blum,M., Shub,M.: ”A Simple Unpredictable Pseudo-

Random Number Generator”, SIAM J. Comput, May 1986,15,(2), pp.

364-383

[3] Shepherd,S.J., Kemp,A.H., Barton,S.K.: ”An Efficient Key Exchange

Protocol for Cryptographically Secure CDMA Systems,” Globecom ’96,

London, U.K., Nov 1996

[4] Rubin,F.: ”The Quadratic Residue and Double Quadratic Residue Ci-

phers”, Cryptologia, 1995, IX,(3), pp. 275-28

[5] Shepherd,S.J., Sanders,P.W., Stockel,C.T.: ”The Quadratic Residue

Cipher and Some Notes on Implementation”, Cryptologia, July 1993,

XVII,(3), pp. 264-282

[6] Montgomery,P.L.: ”Modular Multiplication without Trial Divison”,

Math. Computation, 1985, 44, pp. 519-521

[7] Walter,C.D.: ”Systolic Modular Multiplication,” IEEE Trans. on Com-

puters, March 1993, 42, (3), pp. 376-378

13



[8] Kornerup,P.: ”A Systolic, Linear Array Multiplier for a Class of Right-

Shift Algorithms,” IEEE Trans. on Computers, August 1994, 43, (8),

pp. 892-898

[9] Blum,T.,Paar,C.: ”Montgomery Modular Exponentiation on Reconfig-

urable Hardware”, IEEE Symp. on Computer Arithmetic, Adelaide,

1999

[10] Vazirani,U.V., Vazirani,V.V.: ”Efficient and Secure Pseudo-Random

Number Generation”, Proc 25th IEEE Sym. Foundations of Computer

Science, ’84, 1984, pp. 458-463

[11] Yao,A.C.: ”Theory and Applications of Trapdoor Functions”, Founda-

tions of Computer Science, IEEE 23rd Symp, 1982, pp. 80-91

[12] Kemp,A.H., Shepherd,S.J., Barton,S.K.: ”Correlation Properties of a

Class of Cryptographically Secure Spreading Sequences,” ISSSTA ’96,

Mainz, Germany, Sept 22-25, 1996

[13] McClellan,J.H., Rader,C.M.: Number Theory in Digital Signal

Processing, Prentice Hall, 1979

14



Figure 1: Parallel and Serial-Parallel Blum Sequence Generators Using

Montgomery Multipliers

15



Figure 1: Parallel and Serial-Parallel Blum Sequence Generators Using

Montgomery Multipliers

16


