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Abstract — Classification of different forms of quan-
tum entanglement is an active area of research, central
to the development of effective quantum computers,
and similar to classification of error-correction codes,
where the concept of code duality is broadened to
equivalence under all ’local’ unitary transforms. We
examine links between entanglement and coding the-
ory by forming Algebraic Normal Form (ANF) de-
scriptions for bipolar indicator sequences to describe
binary codes with codewords which occur with bipolar
probabilities. Quadratic entanglement is the basis of
particle-entangling arrays found in recent literature.

I. Definition of Entanglement

Recent interest in Quantum Computation has fuelled a desire
to understand Quantum Entanglement. Entanglement exists
between any two or more systems if their joint probability
state cannot be factorised using the tensor product. Consider
two qubits, x0 and x1. Their joint probability state is given
by,

s = (s0, s1, s2, s3)

where the si are complex and
∑3

i=0
|si|

2 = 1. There is a prob-
ability of |s0|2,|s1|2,|s2|2,|s3|2 of measuring the two qubits
in states 00, 01, 10, 11, respectively. If s can be written as
(a0, b0) ⊗ (a1, b1), then s is tensor-factorisable and the two
qubits are not entangled. Conversely, if we cannot write s
in the above form then the two qubits are entangled. This
idea generalises in an obvious manner to m qubits. Conven-
tional (classical) computers only ever use tensor-factorisable
space of physical matter. But the existence of entanglement
between quantum particles allows us to store and operate on
exponentially larger data vectors than possible classically.

II. Entanglement and Error-Correction Codes

Here and in the rest of the paper normalisation of the joint-
state vector is omitted for clarity. Normalisation would ensure
∑2n−1

i=0
|si|

2 = 1. Consider the two-qubit entangled vector,
s = (1, 0, 0, 1). Measurement of the two qubits produces states
00 and 11 with equal likelihood. 01 and 10 are never measured.
We could think of s as the ’indicator’ sequence for the parity-
check [2, 1, 2] code, C = {00, 11}. C corrects errors because
s is entangled (there is mutual information between qubits).
This state is known as the ’CAT’ state in physics literature.
In contrast, consider the two-qubit unentangled vector, s =
(1, 0, 1, 0) = (1, 0) ⊗ (1, 1). s defines a [2, 1, 1] code, C =
{00, 10} which cannot correct errors because s is unentangled
(there is no mutual information between qubits). Consider
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the three-qubit entangled vector, s = (1, 0, 0, 1, 0, 1, 1, 0). s
defines a [3, 2, 2] code, C = {000, 011, 101, 110} which can
correct error in any of the three qubits because s is entangled
(i.e. s is not tensor-factorisable).

III. Entanglement Equivalence ⇔ Code

Equivalence

A unitary transform U satisfies UU† = I where † means con-
jugate transpose and I is identity. Let M be a 2n ×2n unitary
transform. Let s be the joint-state vector of n qubits.

Fact 1 If M is tensor decomposable into 2×2 ’local’ unitaries,
then the entanglement of s is the same as the entanglement of
Ms.

Definition 1 If ∃M, where M is decomposable into 2×2 local
unitaries, such that s′ = Ms, then we write s′ ≡LU s.

Proposition 1 If s ≡LU s′ then s and s′ represent ’equiva-
lent’ error-correcting codes.

Proposition 2 If s 6≡LU s′, then s and s′ generally represent
’inequivalent’ error-correcting codes.

Code duality is an example of entanglement equivalence:

Proposition 3 Let C be the code associated with sequence s
, and C⊥ be associated with s′. Then s ≡LU s′.

For example, s′ = (1, 0, 0, 0, 0, 0, 0, 1) can be obtained from
s = (1, 0, 0, 1, 0, 1, 1, 0) by application of the 8 × 8 Walsh-
Hadamard Transform, which is tensor-decomposable. (s′ is
known amongst physicists as the GHZ state).

IV. Bipolar Entangled Sequences

We describe bipolar sequences using the Algebraic Normal
Form (ANF) in the following way. Consider the bipolar se-
quence + + + −−−−+. log−1 of this sequence is 00011110,
and the ANF for this sequence is x0x1 + x2.

Definition 2 ’bipartite degree-m bipolar’ (mB) sequences
have homogeneous degree-m ANFs over 2 disjoint sets of vari-
ables, L and R such that each degree-m term in the ANF in-
cludes exactly one variable from set L.

For instance, bipolar sequence +++−++−++−++−+++
has ANF x0x1 + x1x2 + x2x3 + x3x0. Separating variables
into two disjoint sets L = {x0, x2} and R = {x1, x3} ensures
that each quadratic term in the ANF contains one variable
from L. Therefore this sequence is mB. In contrast, sequence
+ + + − + − − − + − + + − − +− has ANF x0x1 + x1x2 +
x2x0 + x0x3 + x2x3. This sequence is evidently not mB.



Proposition 4 mB sequences are equivalent (Proposition 1)
to binary error-correcting codes. mB quadratic sequences are
equivalent to linear binary error-correcting codes.

Let H =

(

1 1

1 −1

)

and I =

(

1 0

0 1

)

. Let ’H acting on vari-

able v’ mean application of the tensor-decomposable trans-
form, I ⊗ . . . ⊗ I ⊗ H ⊗ I ⊗ . . . ⊗ I on an n-variable indicator
sequence, with v − 1 I’s before the H and n − v I’s after the
H.

Proposition 5 The mB sequence s with associated L and R
sets satisfies s ≡LU s′ where s′ is obtained from s by H acting
on every variable in L.

Example 1: The mB sequence + + + − + + − + + −
+ + − + + + + − + + − + + + + + + − + + −+ has ANF
x0x1 +x0x3 +x0x4 +x1x2 +x2x3 +x2x4 and is equivalent via
transform I⊗H⊗ I⊗H⊗H to a [5, 2, 2] binary linear error-
correcting code, C. Alternatively it is equivalent via transform
H ⊗ I ⊗ H ⊗ I ⊗ I to a [5, 3, 2] binary linear error-correcting
code, C⊥. We illustrate these equivalences in Fig 1 where the
lh-side is the quadratic form, and the rh-side is a factor graph
[2] for the binary code (the cross in a box represents parity).
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Figure 1: Bipolar to Binary Equivalence (Quadratic)

Example 2: The mB sequence +++++++−+++−
+ +−− has ANF x0x1x2 + x1x2x3 + x0x1x3. It is equivalent
via I ⊗ H ⊗ I ⊗ I to a nonlinear [4, 3, 1] binary code. In this
example there is no other possible configuration. Fig 2 shows
the equivalence where the left-hand-side is a cubic form, and
the right-hand side is a factor graph for the binary code. The
triangle in Fig 2 represents the logical operation on the rh side
of Fig 2 , where the dot in a box is ’AND’.
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Figure 2: Binary to Bipolar Equivalence (Cubic)

V. Entanglement Measures

A (partial) quantification of entanglement of s of length 2n (n
qubits) is achieved by measuring maximum possible correla-
tion of s with any ’linear’ sequence l, where l is any normalised
sequence of the form l = (a0, b0)⊗ (a1, b1)⊗ . . .⊗ (an−1, bn−1).
This correlation maximum can be expressed as a ’Peak-to-
Average-Power-Ratio’ (PAPRl). Thus,

PAPRl(s) = maxl(
|s · l|2

2n
)

where · means ’inner product’ [3]. s is completely uncorre-
lated with all linear sequences and wholly correlated with a
particular linear sequence (unentangled) when its PAPRl is 1
and 2n, respectively. PAPRl is invariant under local unitary
transformation. The smaller PAPRl, the higher the linear
entanglement.

Conjecture 1 PAPRl of a quadratic mB sequence which is
equivalent to an [n, k, d] binary linear code is 2n−r, where r =
min(k, n − k).

Conjecture 1 implies length 2n quadratic mB sequences with
high ’linear’ entanglement are equivalent to length n binary
linear codes with dimension bn

2
c. Non-mB bipolar sequences

can have PAPRl less than 2b n

2
c. For instance, the non-mB

bipolar sequence with ANF x0x1+x0x2+x0x3+x0x4+x0x5+
x1x4 +x1x5 +x2x3 +x2x4 +x3x5 or any of its 72 variable per-
mutations has PAPRl = 4.0. There are no other length 26

bipolar quadratics which have PAPRl this low. Its sequence

graph looks like this . PAPRl examines multi-
partite ’linear’ entanglement between x0, x1, . . . , xn−1. How-
ever, we also need to examine entanglement between (x0, x1)
and x2, x3, . . . , xn−1, or (x0, x1, x2) and x3, . . . , xn−1, or any
partition of the n variables. This is the subject of current
work, where higher ’entropies of entanglement’ are considered,
along with classification of cubic, quartic,..etc, entanglement.
Recent research [1, 4] proposed entangled arrays of particles
to perform Quantum Computation like this,

Gate
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They propose the entangling primitive,

1

2N/2

N−1
⊗

a=0

(|0 >a σ
(a+1)
z + |1 >a)

where σz =

(

1 0

0 −1

)

. The quantum superposition is

quadratic bipolar, so their arrays implement quadratic en-
tanglement. Selective measurement then drives computation,
exploiting inherent entanglement of the array.

References

[1] H.J.Briegel,R.Raussendorf, ”Persistent Entanglement in Arrays
of Interacting Particles,” quant-ph/0004051 v2, 28 Aug 2000

[2] M.G.Parker, ”Quantum Factor Graphs,” 2nd Int. Symp.
on Turbo Codes and Related Topics, Brest, France, Long
version submitted to Annals of Telecom., available on
/∼matthew/mattweb.html or quant-ph/0010043,Sept 4-7, 2000

[3] M.G.Parker,C.Tellambura, ”Golay-Davis-Jedwab Complemen-
tary Sequences and Rudin-Shapiro Constructions,” Submit-
ted to IEEE Trans. Inform. Theory, Preprint available on
/∼matthew/mattweb.html, September 2000

[4] R.Raussendorf,H.J.Briegel, ”Quantum Computing via Mea-
surements Only”, arXiv:quant-ph/0010033, 7 Oct 2000


