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Abstract: This paper proposes design techniques 
for the efficient VLSI implementation of bit-serial 
multiplication over a modulus. These techniques 
reduce multiplication into simple cyclic shifts, 
where the number representation of the data is 
chosen appropriately. This representation will, in 
general, be highly redundant, implying a relatively 
poor throughput for the multiplier. It is then 
shown how, by splitting the multiplier into two 
pipelined multipliers, the throughput of the unit 
can be increased, whilst still retaining a cyclic-shift 
implementation. The split multiplier requires a 
mid-computation basis conversion, and the two 
number representations, used within the unit, are 
only moderately redundant. Thus, high- 
throughput, bit-serial multipliers are achieved, 
with most of the complexity contained within 
systolic basis converter modules. The multipliers 
are applicable to the VLSI implementation of 
high-throughput, signal processing operations per- 
formed over finite fields, in particular, transform 
and filter operations. 

1 Introduction 

Recent advances in VLSI technology have suggested 
novel approaches to the implementation of arithmetic 
units over algebraic rings and fields other than real or 
complex [l-41. These new approaches have been spurred 
on by the need for fault-tolerant, systolic architectures, 
where throughput is maximised and design complexity 
minimised. Residue number systems (RNSs) perform 
arithmetic over a modulus, M where M can be expressed, 
M = fl;:; m i ,  and all arithmetic can be decomposed 
into a combination of smaller, parallel, arithmetic sub- 
computations, thus reducing the granular dimension of 
any consequent VLSI implementation [S, 61. However, 
some or all of these mi can still be quite large, hence the 
need for efficient implementations of modular arithmetic 
units [2, 4, 7, 81. 

The concept of basis and basis flow (BF) are defined, 
and it is shown how, for a specified BF, multiplication by 
an element q, modm, can be implemented using the 
exponent, e, as input, where (Be),,, = q, g is an element of 
the field/ring, and the basis a = g. (+), means the residue 
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of *, mod m. A decomposition of the original multiplica- 
tion is developed into two pipelined multiplications, effec- 
tively replacing e with e, and e2. A basis converter (BC) 
module is inserted between the two multipliers to facili- 
tate the design of the second multiplier, and necessary 
criteria are developed for the chosen bases, to achieve a 
maximum throughput implementation. An example is 
given of a multiplier, firstly using a direct implementa- 
tion, then, secondly, a split implementation, and a suit- 
able application of the split multiplier to a 
number-theoretic transform (NTT) is discussed. These 
multipliers are particularly suitable for use within the 
word-serial implementation of general transforms over 
finite fields, where many products of a single element are 
required at any one time. Systolic architectures are pre- 
sented for basis conversion, and the benefits in area 
achieved by a split-multiplier/systolic BC implementation 
are briefly assessed. 

2 Multiplication using exponents 

We desire to implement the multiplication 

r = <xq)m (1) 
where x, q and r are elements of the rindfield of integers 
0, . . ., m - 1, referred to in this paper as H,, and x will 
be represented using the following BF parameters (see 
Appendix) : 

q will be represented by its exponent e, where q = <ge),,, 
and g is an element of H, . g can have one of the follow- 
ing two properties. 

(i) (sf'>,,, = (g"),,, where ft > e and (e), Z 
for any e <f2 <fl, in which case g is cychc, mod m, of 
order (fi - e) 

(ii) ( g f 3 ) ,  = 0 and (e),,, # 0 for any 0 <f4 < f 3 ,  in 
which case g is not cyclic. 
In the first case, (fl - e) unique values of (ge), exist. In 
the second case,f, unique, non-zero values of (g"), exist. 
These restrictions, in turn, limit the possible values of q 
which can be represented in this form. We observe that, if 
m is prime, g can be chosen to possess the first property, 
such that Ob),,, = m - 1, where O(*),,, means the order of 
*, mod m. Thus, over a prime modulus, any value of q, 
from 0, .. . , rn - 1, can be represented as (g'),. 

If we now define the BF so that a = g, then eqn. 1 can 
be implemented by shifting x. This is simply an extension 
of the well known concept of shifting of binary data to 
perform power of 2 multiplications [%ll]. However, in 
general there will be a shift overflow problem. For 
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instance, if rn = 13, and we define a BF with 
R = 2 , a = 2 , d = l , j = j ' = 4  and Z = [ 1 ]  

then eqn. 1 can be accomplished, where q ranges from 
(go)13 to (g11)13, by using 0 to 1 1  shifts of x, if g is 
chosen = a  = 2. Unfortunately, we then have to deal with 
multiple overflow into the fifth bit of the BF. If, instead, 
the BF of x has j' = 12 then eqn. 1 can be implemented 
using cyclic shifts. This simple solution is at the price of 
data wordlength, and, hence, throughput. Another possi- 
bility would be to define the BF of x as follows: 

This is only one of many possibilities. 
Again, with this BF, eqn. 1 can be implemented using 

cyclic shifts between BF rows, at the price of throughput 
and area. This example demonstrates how the 
multiplicative implementation complexity may be 
avoided by a suitable BF for x, and a suitable exponent 
representation for q. By increasing the redundancy of the 
BF, even overflow circuitry may be eliminated. On the 
downside, we now need special exponent coding of q, an 
unusual redundant number representation (RNR) for x 
and a potentially decreased throughput capacity for bit- 
serial implementations, due to increased wordlength, 
especially for large m. In the following, N = O(g), , O(*), 
means the order of *, mod rn, and a = g .  

To ensure a cyclic shift implementation of eqn. 1, it is 
sufficient to consider the destination of the most signifi- 
cant digit (msd) column in the BF after shifting left by 
one column (multiplying by a). A cyclic shift is defined by 
the avoidance of additive combinations of overflow bits 
after shifting left, and is only achieved by passing the msd 
to the least significant digit (Isd) column of the represen- 
tation, with or without BF row permutation. This is only 
possible if 
w, ajc = w, a < k > N  = w 

for 

S ,  t E CO, 1, ..., d - 11 

j ,  E C j , j  + 1 ,  ..., f l  
and 

(2)  
for each row, with the weights, K., as defined in Appen- 
dix 10.1. Note that ajc = a<jC>" as aN = 1 ,  mod M .  

If cyclic shifts are performed without row permutation, 
s = t and eqn. 2 becomes ajc = 1 ,  therefore j ,  = kN and 

kN E [ j ,  j + 1 ,  . . . , j ' ]  for k a positive integer (3)  

which is clearly always appropriate for one row solutions, 
i.e. d = 1 .  

The maximum element order, mod prime m, is 
N = m - 1 .  For large, prime m, this N is much greater 
than the minimum j necessary to span H,, jminr  for a 
given BF. For solutions without BF row permutation, 
expr. 3 implies that cyclic shifting is only possible if j' is 
much greater than jmin ,  making the number reflresenta- 
tion highly redundant, and reducing throughput drastic- 
ally. The alternative using row permutation is given by 
eqn. 2, where an increase in d can lower the requirements 
onj'  in spite of N .  However, large d is not desirable from 
an implementation point of view, and the rest of this 
paper is concerned with solutions where d is kept small. 
With or without BF row permutation we conclude that, 
for a given d,j' will have to increase in proportion to N .  
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In the next Section, we show how j' can be lowered 
by reducing the effective N .  This is achieved by splitting 
the multiplication and inserting an appropriate mid- 
computation basis conversion. 

3 Lowering wordlength by using a split-multiplier 

Let us consider eqn. 1 where m is large and prime. From 
expr. 3 we see that, for large N, j' must become much 
greater than jnin to ensure a cyclic shift implementation. 
Alternatively, from eqn. 2 d and/or j' may be increased, 
with the weights, K, suitably chosen. As mentioned pre- 
viously, large d is not considered. Therefore j' becomes 
much greater than it's theoretical minimum necessary to 
span H , .  One method of lowering j' is to split eqn. 1 into 
two sub-computations: 

r = (qx ) ,  = (qlqz  x > m  ( q 1 Y ) m  (4)  

where Y = <q2x), ,  q1 = (g; ' ) , ,  q2 = (e?),, 4 = 
W),, g1 = <gb'>,, g2 = <gbz>,,, and e, e,,  e,, b,, b, are 
the minimum possible values necessary to satisfy the 
above congruences. 

Hence, g' = gygy  = geLb1geZb2, all mod rn, and 

e = (e ,b ,  + e2 bz)N where N = O(g), ( 5 )  
Thus, instead of performing the multiplication using e, we 
can perform it using two inputs, e, ,  e , ,  and, for each of 
the N unique values of e, there should be at least one pair 
of values e,, e,. This is only possible if the following con- 
dition is met : 

Condition I :  gcd (b , ,  b,) = 1 where gcd (*, *) is the great- 
est common denominator. If Condition I is met, then 
three options exist for the values of b, and b,: 

Option 1:  

gcd ( b i ,  N) = 1 for i E [ l ,  21 

Option 2:  

gcd (bi ,  N )  = 1 ,  gcd ( b k ,  N )  # 1 for i ,  k E [ l ,  23, i # k 

Option 3: 

gcd ( b i ,  N) # 1 for i E [ l ,  23 

We will consider the implementation of expr. 4 using 
each of these options, and the architectures are shown in 
Figs. 1 ,  2 and 3. For each case we assume an a-BF input 

a-BF 0-BF * 
e2 q-i+ cycl1c 

shifts 

Fig. 1 
WhereP = (N DIV b,XR = b, - 1 or P = b;' - I, R =(N DIV b y ' )  

Split multiplier, option I 

to stage 1 ,  where g, = a, and a P-BF to stage 2, where 
g1 = 8. Hence, for all three options, an a to basis con- 
verter (BC) is inserted between the two stages (see Section 
6). We define N ,  = O(g,),,, and N ,  = O(g2),. 

3.1 Option 1 
The schematic for this multiplier is shown in Fig. 1 and 
we have N ,  = N, = N .  Without loss of generality, we 
assume that g1 = g, therefore b,  = 1 and eqn. 5 simplifies 

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 6, November 1994 



to 

x- 

P-BF a-BF 

cyclic 
shifls 

shifts 

Fig. 2 
Where P = N, - 1, R = b,  - I 

Split multiplier, option 2 

99 95 

gP 9’: 

a10 p cyclic CYCllC 
shlfls ‘i BC shlfts g!4r 

7 

stant throughout the system, we require j ‘  = greater of 
(A, j b )  and the lower requirement for j :  is nullified by the 
higher requirement for j b .  This situation is avoided by 
noting that SPMs for (sly), can, in fact, be implement- 
ed using bit duplication and cyclic shifting (BDCS), see 
option 1, without satisfying exprs. 2 or 3, thereby lower- 
ing the requirements for j b  and j’, and achieving a greater 
throughput rate, due to a reduced data wordlength. Note, 
this multiplier can equally well be reversed, where the 
BDCS block comes first, followed by the cyclic shifts, and 
this has the added advantage that the BDCS block is 
always followed by a BC, enabling, as with option 1, the 
delayed addition to be accomplished as part of the basis 
conversion. 

3.3 Option 3 
The schematic for this multiplier is shown in Fig. 3. We 
have NI, N, < N, and for eqn. 5 

O $ e , < N ,  O < e , < N ,  (8) 

The ranges of e, and e2 are smaller than the range of e, 
and, as NI and N ,  are substituted for N in exprs. 2 and 
3, both multiplications can be implemented using cyclic 
shifts where the requirements onj’ = greater of (fa,&) are 
lower than the single multiplier case. As an aside, we note 
that this option satisfies, precisely, the conditions neces- 
sary for a two-stage, N-point, prime-factor DFT over 
H,, where N,, N, are the factored transform lengths 

For all three of the above options, suitable BF param- 
eters and choices for g, and g, allow the lowering of the 
minimum j’ required, for a given d. Obviously, the lowest 
possible j‘ is bounded by the minimum BF requirements 
necessary for a BF to span H,. The throughput gain is at 
the cost of a BC module, inserted between multiplication 
stages, and a moderate increase in BF redundancy. Only 
option 3 implements the multiplications solely as cyclic 
shifts. The other two options require SPMs, implemented 
using cyclic shifting and implicit single additions, the 
additions being realised by increasing the redundancy of 
the BF. 

3. f Evaluation of e ,  and e,  
The multiplier scheme described above requires the input 
of two exponent indices, e, and e,, which are derived 
from q. Although these indices could always be obtained 
using ROMs addressed by q, this option is not ideal 
especially for large moduli, rn, where ROM size increases 
greatly. For general modular multiplication, the split 
multiplier would only become competitive when eficient 
means can be found to compute e, and e,  given q. This is 
the subject of future research. A general modular multi- 
plier scheme, again using basis conversion, is out-lined in 
Reference 13, but for this paper, the split multiplier is 
advocated primarily for functions that require fixed 
multiplication, such as for fixed filters or the NTT 
described later in this paper. For such tasks, e, and e2 are 
implicitly embedded in the hardware structure, and their 
explicit computation is avoided. 

The next Section presents an example, firstly, using a 
single-basis implementation and, secondly, a split imple- 
mentation, using option 3, and compares the throughput 
requirements and area for the two methods. 

4 Example implementation of multiplier 

In this Section, an example is given for option 3 to 
demonstrate how splitting the multiplication of eqn. 1 

c121. 
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can reduce j', and consequently increase throughput. We 
will operate over the field, H,, where rn = 13. From eqn. 
1, we choose q E [0, 1, . . . , rn - 11, i.e. all possible multi- 
plications are required. 

cyclic . 

I I  I k  

l l  I ,4E 

cyclic : 
shifls . 

Fig. 4 
0" = 

Kernel products split multiplier 
= 1, $,' = 26 = 3 = 8, and s": = 3" = 1 (mod 61) 

Firstly, we implement eqn. 1 directly then we consider 
a split implementation using option 3. 

4.1 Single basis implementation 
Let x have an input BF which is a standard 4bi t  binary 
representation, as follows 

R,=2, a = 2 ,  d , = l ,  j ,=4, 

j' (to be determined), Z = [13 
384 

We note that this BF spans H,, and is also a minimum 
basis with minimal redundancy, as j .  = j , ,  for the given 
BF. 

As O(a), = 12, the input BF is already suited to an 
implementation using shifts and we choose g = a = 2. To 
implement eqn. 1 using cyclic shifts, eqn. 2 must be satis- 
fied. For our chosen input BF, there is no BF row per- 
mutation and expr. 3 is given by 

(9) 
We see that the lowest j' necessary to satisfy expr. 9 is 
given by j' = 12. Hence, for this particular example, the 
multiplier can be implemented using cyclic shifts if at 
least j' - j = 12 - 4 = 8 delay cycles are introduced 
between each consecutive, 4-bit, input word. 
4.2 Split implementation 
Let us now implement eqn. 4. We choose b, = 3 and 
b, = 4, and note that 

These equations satisfy condition I and option 3, there- 
fore suggesting a cyclic-shift implementation with a 
reduced j'. We note that g, = (23)13 = 8 and g2 = 
(24)13 = 3. Eqn. 5 implies the following mapping from e 
to (el, e2) 

where 0 Q e, < NI, 0 d e2 < N, and NI = O(gl), = 4, 
N, = O(g,)m = 3. 

We choose an input a-BF for x, where a = g,, as 

R, = 2, a = 3, d, = 2, j ,  = 3 

k12 E [4, 5, . . . , j'] 

(b,, b,) = 1, (bl, N)  = 3 and (b , ,  N) = 4 

e = <3e1 + (10) 

follows 

jh = j' (to be determined), = [I1] 
We note that this a-BF is a minimum basis, i.e. j., = jmi. 
for the given BF, and contains a moderate amount of 
redundancy. 

We require multiplications of x by powers of g2 from 
g: to g 9 - I  and we substitute N, for N into exprs. 2 and 
3, giving 

a" = 1 *k3 E [3, 4, ...,?I (1 1) 

& = 3 " = - 1  f o r s # t  (12) 

fors  = t 

and 

As O(3),, is odd, eqn. 12 has no solution and expr. 11 
gives a lowest value of j' = 3. Therefore y = (xq,),,, can 
be implemented using cyclic shifts within each row, where 
jh = 3. 

We now convert from an a-BF to a b-BF where we 
choose the B-BF as follows 

R, = 2, b = 8, d, = 2, j, = 3, 

[Ill 
j' (to be determined), Z, = 

We note that this is a minimum b-BF, and contains a 
moderate amount of redundancy. 

We require multiplications of y by powers of g, from 
gy tog:'-' and we substitute N, for N into exprs. 2 and 
3, w n g  

k4 E [3, 4, ...,j'] fors  = t (13) 

p = 8 ° C  = -1 for # t (14) 

and 
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where j B  (= 3) d j ,  d j'. Expr. 13 gives a lowest value of 
j' = 4, and eqn. 14 gives a lowest value of j' = 6. There- 
fore r = ( y q , ) ,  is best implemented using cyclic shifts 
within each row, where4 = 4. 

The value of j' necessary to implement both multipli- 
cations as cyclic shifts is given by 

j' = greater of ( j k ,  jk )  = 4 

Therefore j' - j .  = 4 - 3 = 1 delay cycle is introduced 
between each consecutive input word. 

Thus, by splitting the multiplication, the throughput 
rate has been increased from j' = 12 to j' = 4 and all 
multiplications can be implemented using cyclic shifts. 
The area cost is seen in terms of increased redundancy in 

cyclic 
shifls 

Fig. 6 
ff = 26" = 

I E E  Proc 

2 
t 

- 

the a-BF and b-BF number representations and the 
necessary insertion of an a to b BC. 

5 Application of the split-multiplier to a 
bit-serial, word-serial number-theoretic 
transform 

The number-theoretic transform (NTT) is a discrete 
Fourier transform (DFT) over a finite field, given by 

(15) 

where O(g), = N, <N-'), exists and is unique, and 
q p  - 1 is relatively prime to m for 1 < p d N. 

I - U  ' I  

/ 

X n  5 
Xn.'ll 

Xn.59 

,, 
Y / 

I 
2-BF 3-BF 

NTT product generator using a split-multiplier design 
1 . p  L -  - Z6 = 3 = &  nndg:' = 3" = l(mcd61) 

.-Cornput. Digit. Tech., Vol. 141, No. 6, November 1994 385 



It can be cast as the summation of a series of products 

where Xm, = (x[n]gnk>, . 
The split multipliers, developed in this paper, can be 

used to compute Xn, k .  We choose an input BF, where 
a = g, and split g into g1 and g2. As the kernel multipli- 
cations within the NTT are fixed, we do not input e, or 
e, directly. Instead, the architecture inherently provides 
all possible multiples of x[n], from (x[n]go),, ..., 
( X C ~ I ~ ~ - ' > ~ .  

An example of this all encompassing multiplier archi- 
tecture is shown in Fig. 4, for an input BF with the fol- 
lowing parameters 

R = 2 ,  a = 2 ,  d , = l ,  j ,=6,  j L = 6  and Z,=[ l ]  

We consider multiplications of x[n] by powers of 
g = a = 2 from go, ..., gN-1=59 , mod 61. g is split into 
g1 = g = 2 and g2 = (g6)61 = 3, where O(g1)61 = N ,  = 
60 and O(g,),, = N, = 10. We note that b, = 1 and 
b, = 6 so condition I of Section 3 is met, 2nd the splitting 
satisfies option 2. Thus, we can perform the first multipli- 
cation stage using a BDCS block, and the second stage 
using cyclic shifts. In between the two stages we insert a 2 
to 3 parallel BC (parallel to cope with each of the six 
power-of-two products resulting from the first stage). The 
second stage is performed using the following BF 

Ll R = 2, B = 3, d, = 2, j, = 5, j b  = 6 and Z, = 

The design is able to provide all possible kernel products 
without excessive area cost, because the complexity and 
cost is contained within the inter-stage BC. The kernel 
products come virtually free. The operation of the BDCS 
block is clarified in Appendix 10.2 and the parallel BC is 
explained in Section 6. 

We now incorporate this comprehensive split multi- 
plier within the NTT by appending after each multiplier 
stage, a dynamic crossbar matrix, which selects the 
appropriate multiple of x[n], for each k. This selection 
matrix will reconfigure for each successive x[n] multiple, 
as appropriate to the NTT task. An example of this NTT 
product generation architecture is shown in Fig. 5, 
extending the example of Fig. 4, and the architecture per- 
forms the product generation for a 60pt NTT, mod 61. 
The dynamic crossbar matrices are labelled GR6, GR10, 
. . . etc., where the number refers to the dimension of the 
matrix. For instance, a GR6 is a 6 * 6 matrix. As is 
shown in Fig. 5, the sub-units can, themselves, have their 
multiplications split. g1 = 2 can be split into gl ,  = 2 and 
g12 = 4, and g2 = 3 can be split into g2, = 3 and g2* = 
35 = 60 = - 1. However, for this particular example, no 
further basis conversion is necessary as the a and B bases 
are already sufficiently convenient. This further splitting 
reduces the area requirements of the implementation, 
enhances localisation, and allows the NTT design to be 
constructed out of smaller NTT designs. (Note, the sub- 
sequent summation phase is dealt with separately, and is 
not considered here). 

Thus, the split-multiplier design philosophy allows 
simple, high-throughput, low area NTT implementations, 
where the products are not computed explicitly, but 
implicitly, using basis conversion coupled with dynamic 
data routing. Further details of this form of NTT design 
can be found in References 14 and 15. 
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6 Basis conversion 

Basis conversion can always be accomplished using 
ROMs. However, for large moduli, m, the sue of look-up 
table increases dramatically, and more efficient conver- 
sion techniques need to be found. Parhami [16] has sug- 
gested non-modular, systolic radix converter cells. In this 
paper we propose a similar concatenation of systolic 
basis converter (BC) cells which achieve a maximum 
throughput. A BC cell is shown in Fig. 6, along with a 

etc. 

Fig. 6 General basis Converter cell and cell concutenution 

typical concatenation able to accept a skew-parallel data 
input. On each clock transition, data is transferred from 
input to output of each cell, governed by the equality 

asi + ci = so + Bc, mod m (17) 
where a and 
ively, and 

are the input and output bases, respect- 

si E (input-state integer set} 
ci E {input-carry integer set} 
s, E {output-state integer set} 
c, E {output-carry integer set} 

It is necessary for eqn. 17 to be satisfied for all possible 
values of s,, ci, so, c,, and successful BC design will be 
achieved by minimising the number of output columns of 
Fig. 6 (output wordlength) for a given number of input 
diagonal rows (input wordlength). Note that the integer 
sets definition enables a level of abstraction independent 
of the target hardware. The concatenation scheme of Fig. 
6 allows full pipelining at word and cell level to achieve 
maximum throughput digit-parallel solutions. Fully pipe- 
lined digit-serial solutions are then obtained by imple- 
menting only one diagonal row. To explain the operation 
of the BC, solutions will be proposed for the examples of 
Sections 4 and 5. In fact, a modification of eqn. 17 will 
often be required 

asi + ci + k = so + Bc, mod m (19) 
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where k is an offset chosen to ensure satisfaction of eqn. 
19 for all cases. This offset greatly widens the BC solution 
set, is implicitly implemented, i.e. no extra hardware, and 
the cumulative effect of each cell offset is observed in the 
final offset of the state output. By carefully choosing each 
cell offset, the cumulative offset can be made a multiple of 
the modulus, m, and is therefore eliminated from the final 
BC output. 

Consider, first, the 2 to 3 BC, which may initially be 
required for the split-multiplier, mod 13, example of 
Section 4. Conventional binary input data will have a BF 
of 

R , = 2 ,  y = 2 ,  d ,=1 ,  j = j ’ = 4  Y Y  

and 

z, = c11 (20) 
and it is desired to convert to a BF of 

R, = 2, a = 3, da = 2, j, = 3, A = 4 

and 

Z a  =[I1] 
Fig. 7 depicts a skew-digit-parallel 2 to 3 BC, defined by 
the cell parameters 

Cell A: si E I-) ci E {0, 1) 

so E {O, 1) CO E {-) 

J 

32 3’ 30 
Fig. 7 Skew parallel 2 to 3 BC, mod 13 

i.e. from (17), 2{0, 1) + (0, 1) E {O, 1, 2) + 3{0, 1) 

-IO, 1, 2, 3) E IO, 1, 2, 3,4, 5) 

so E {O, 1921 CO E IO, 1) 

Cell C: si E {O, 1, 2) ci E (0, 1) 

i.e. from (17), 2{0, 1, 2) + {O, 1) E {O, 1, 2) + 3{0, 1) 

={O, 1,2, 3,4, 5) E IO, 1, 2, 3,4, 51 
The input carried to the rightmost column, {0, l),  
matches the basis weights vector, Zy, of eqns. 20. 
However, the output states of the bottom diagonal row, 
(0, 1,2), do not match Z, of eqn. 21. Z, represents the 
integers, { - 1, 0, 1). This is rectified by offsetting each 
output state, so, by - 1 so that 

[-:I {0,1,2) + -1 = {-l,O, 1) 

As shown in Fig. 7, the -1 offset is applied to each 
column, implying a cumulative offset of 

-1+3(-1)+3*(-1) mod 1 3 = 0  

Therefore the offsets cancel and the output matches Z, . 
d, and d, of eqns. 20 and 21 imply a digit-serial BC. The 
skew parallel BC of Fig. 7 is easily serialised as all cells in 
a given column are of type C or subsets of C, (cells A and 
B), with input states compatible with their own output 
states. A serial version of the 2 to 3 BC is shown in Fig. 8, 

3 2  31 30 

Fig. 8 Serial 2 to 3 BC, mod 13 

where the intra-cell feedback is broken upon receipt of 
the final bit of each input word. Note, there is no inter- 
word input delay. 

Consider, now, the realisation of a 3 to 8 BC. A skew 
parallel design is shown in Fig. 9 and is designed to 
match the input and output BFs, as given by eqns. 21 
and 

i.e. from (17), 2{ -}  + {O, 1) E {O, 1) + 3{ - }  

Cell B: si E {O, 1) ci E {0, 1) 

so E (0, 1, 2) CO E {O, 1) 
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R, = 2, B = 8, d, = 2, js = 4, j; = 4 

and 

(22) 
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The cell parameters are 

Cell A: si E { - }  c i E { - l , o , l }  

so E {-LO, 1) CO E I-} 

32 

J 

83 82 8’ 80 

Fig. 9 

i.e. from (17),3{ -}  + { - 1,0, 1) E { -1,O, 1) + 3{ -}  

Skew parallel 3 to  8 BC, mod 13 

Cell B: si E { - 1, 0, 1) ci E { - 4 0 ,  1) 
~ , ~ { - 6 , - 5 , - 4 , - 1 , 0 , 1 )  ~ , ~ { 0 , 2 }  

i . e . f r o m ( 1 7 ) , 3 { - 1 , 0 , 1 ) + { - 1 , 0 , 1 } ~ { - 6 , - 5 , - 4 ,  
- l , O ,  1) + 8{0, 2}-{9, 10, 11, 12, 0, 1, 2, 3, 4) E (7, 8, 9, 

CellC: s i ~ { - 6 , - 5 ,  -4, - l ,O, l}  c i e { - l , 0 , l }  

i.e. from (17), 3{-6, -5, -4, -1, 0, l }+{-1 ,  0, 
1) E {-1, 0, 1) + 8{0, 1, 2, 3) *{7, 8, 9, 10, 11, 12,0, 1, 2, 
3,4} E {7,8,9, 10, 11, 12,0, 1,2, 3,4} 

10, 11, 12,0, 1,2,3,4} 

so E { - 1,0,1) C O  E {O, 1,293) 

Cell D: si€{-} ci E {O, 2) 
Offset,k= -1 sos{- l ,O, l}  c,E{-} 

i.e. from (19), 3{ - }  + {0,2} - 1 E { - 1,0,1} + 8{ - }  
Cell E: 
Offset, k = -3 

si E { - 1, 0, 1) ci E (0, 1,2,3} 

S, E { - 1,0, 1) C, E {0, 1,2,3) 
i.e. from (19), 3{ - l,O, 1) + {O, 1, 2, 3) - 3 E { - l,O, 
1)+8{0, 1, 2, 3)*{10, 11, 12, 0, 1, 2, 3, 4, 5, 
6) - 3 E {7,8,9, 10, 11, 12,0, 1,2,3,4} 

Cell F: % E { - }  ci E io, 1,2,3) 
Off&, k = - 1 S, E { - 1, 0 , l )  C, E {0,2) 

i.e. from (19), 3{ -}  + {0, 1,2, 3) - 1 E { - 1, 0, 1) + 8{0, 

The cumulative offsets sum as follows 

2) *{O, 1,2,3) - 1 E {-l,O, 1,2, 3,4} 

8 + 1 - (3.8) - (1.3.8) mod 13 = 0 
so offset is eliminated. 
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The skew parallel form of Fig. 9 is not easily serialised 
due to the non-identical nature of the cells in each 
column. However a single skew parallel 3 to 8 BC can be 
used to convert up to four power-of-3 multiples of the 
input without limiting throughput. The inter-word delay 
of 4 clock cycles ensures up to 4 BC conversions for every 
word input using the skew parallel form. As a serial form 
is not easily found, the BC is best suited to the combined 
realisation of up to four independent bit-serial split 
multipliers, mod 13, or a bit-serial 3-point or 12-point 
NTT, mod 13, or some similar task, where the BCs of 
Figs. 8 and 9 are interleaved with cyclic shifters (Fig. 3). 
Alternatively, the BCs of Figs. 7 and 9 may be combined 
to achieve a bit-parallel split-multiplier implementation. 
Thus, although the emphasis in this paper is on bit-serial 
solutions, skew parallel BCs can also be combined with 
cyclic shifters to form competitive bit parallel solutions. 

Finally, a 2 to 3 BC, suitable for inclusion within the 
NTT example of Section 5 and Fig. 5, is shown in skew 
parallel form in Fig. 10. The cell parameters are 

J 
3 4  33 32 3’ 30 

Fig. 10 Skew pmallel2 to  3 BC, mod 61 

Cell A: si = so E { - 1,0, 1) ci E {0, 1, 2) 

CO E {-I, 0, 1) 
Cell B: si = so E { - 1, 0, 1) ci = c, E { - 1,0, 1) 

Cell C: si E { - }  ci E {-l,O, 1) 

S,E{-l,O, 1) CO€{-)  
Note that cell A is adapted to accept two separate con- 
ventional binary bit streams 

2 = [ :] = {O, 1,2) 

and therefore incorporates the BDCS implementation of 
power-of-2 multiplication, as explained in Appendix 10.2. 

An important distinction between the BCs of Figs. 7,8 
and 10, and the BC of Fig. 9 is that the former are 
modulus independent BCs, incorporating only a few cell 
types, and are readily expanded to higher moduli. On the 
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other hand, the BC of Fig. 9 is modulus dependent, is 
much less regular, and is suited to only one modulus. 
Modulus independent BCs will be characterised by input- 
carry and output-state integer sets which span a and /I 
respectively, for an a to /I BC. For instance, an example 
of a modulus independent 11 to 7 BC could use the cell 
type specified by 

11 to 7 BC Cell: si = so E (0, 1,2, 3,4, 5,6} 

ci = C,E {0, 1,2,3,4, 5,6,7,8,9, 10) 

The modulus dependent BCs do not satisfy these criteria 
and rely on offset modification for a localised intercon- 
nection scheme. As modulus size increases, the modulus- 
dependent solutions become increasingly difficult ’ to 
design. 

7 Area assessment of split-multipliers using 
systolic basis converters 

By assuming a ROM implementaton for each BC cell, 
one can arrive at a figure for BC area cost for each of the 
multiplier examples discussed. The split-multiplier area 
cost can then be approximated to by its BC area cost, 
ignoring the cost for cyclic shifts, and this figure can be 
compared to a brute force implementation of fixed multi- 
plication using a single ROM. A further comparison with 
the figure for N simultaneous k e d  multiplications using 
N ROMs will then be quoted, to emphasise the suit- 
ability of the split multiplier for simultaneous product- 
generation tasks, such as the NTT. Note, for N 
simultaneous multiplications, the BC figure remains 
unchanged. 

It should be remembered that, unlike the split multi- 
plier, the ROM approach is essentially parallel, although 
not easily pipelined, especially for large moduli. From 
Table 1, the split-multiplier/systolic BC method would 
Table 1 : Comparative area assessment for split-multipliers 
using systolic basis convertars 

Multiplier, mod 13 Area cost (bits) 

serial 2 to 3 BC 
skew parallel 3 to 8 BC 

48 
154 

total 202 

single ROM (one fixed mult) 64 
12  ROMs (twelve fixed mults) 768 

Multiplier, mod 61 Area cost (bits) 

skew-parallel 2 to 3 BC 504 
total 504 

single ROM (one fixed mult) 384 
6 0  ROMs lsixtv fixed mults) 23040 

seem particularly suited to the case where many fixed 
multiplications are required simultaneously, such as the 
NTT. It is debatable whether the method is worth pur- 
suing for moduli as small as 13, but for higher moduli the 
BC cell dimensions can become very small in comparison 
to the dimensions of the alternative ROM solutions. In 
summary, the method achieves a relatively low area by 
computing many products simultaneously, whilst also 
attaining a high throughput by matching element orders 
to the data wordlength. 

8 Conclusion 

In this paper we have considered the implementation of 
bit-serial multiplication over a modulus, using number 
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representations with increased redundancy. It is shown 
that a reduction in throughput rate, i.e. increased word- 
length, enables a simple multiplier implementation using 
only cyclic shifts. To improve on this throughput rate, 
whilst keeping the simplicity, the multiplier is split into 
two multipliers, and, for suitable choices of roots of the 
rindfield, the multiplier can be implemented using two 
pipelined cyclic shifts of smaller orders, thereby increas- 
ing the possible throughput rate. It is demonstrated how 
this split-multiplier design can be incorporated within an 
NTT design, enhancing its modularity and throughput, 
whilst minimising its implementation complexity and 
area. These benefits are made possible by the insertion of 
basis converter@) (BC). Systolic BCs are briefly presented, 
based on a simple cell rule, and BC solutions are given 
for the multiplier examples presented earlier in the paper. 
It is clear that this technique for bit-serial multiplication 
can be generalised to more than two subcomputations, 
for use within a larger rindfield, and the multipliers are 
of particular use within the implementation of RNS- 
based systems, cryptosystems, signal processing oper- 
ations such as transforms over a finite field, [3, 14, 15, 
171, and error-correction systems. The design rules, 
developed herein, form a foundation for the synthesis of 
high-throughput, VLSI circuits for finite field operations. 
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10 Appendix 

10.1 Basis and basis flow (BF) 
Basis refers to the weightings given to a group digits 
which, when evaluated and summed, represent a number. 
An a-basis means all weightings are successive powers of 
a (sometimes referred to as a canonical or primal basis). 
If R = 2, each digit is a binary digit, bit, having two 
values, 0, 1, although the concept can be extended to any 
digit range. 

Basis flow (BF) refers to the flow characteristics of the 
basis data and the weighting pattern is shown below for 
one word, as a j '  * d vector, 

0 ... 0 Woaj-' W & 2  . . .  
0 ... 0 ~ ~ d - 1  ~ ~ j - 2  ... 

0 ... O Wd_,aj-' Wd-laj-2 . . .  

c j' clock cycles + 
c jclockcycles + 

with 

WO a0 
Wlao 

Wd-,a0 

Z= [ "1 
Wd-1 

where the vector is assumed to be travelling right to left. 
j' is the word period and j' - j is the inter-word delay, 
both in clock cycles, and d is the data path width. With 
no delay between successive words, j '= j  and, when 
d = 1, the data moves in a digit-serial fashion. Z is the 
basis weights vector, and WO, . . . , Wd-l are the weight- 
ings associated with each data line. In the text, the BF 
will sometimes be loosely referred to as an a-BF. Each 
word using the above BF will equate to 

I -  1 j -  1 j - 1  

* = O  ,=O i = 0  
Wo,C abi, + Wl ,I aiui, . . , + w,- 1 a'ui, d -  

d - 1  j - 1  

= 1 W, 1 
k = O  i = O  

where ul, is the value (state) of each digit, and 0 < ul, < 
R. 

For a BF over a modulus M to span M, there must be 
at least one representation of each of 0, . . . , M - 1 within 
the basis. If there is only one representation for each of 0, 
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. . . , M - 1 then the basis is non-redundant, otherwise it 
is redundant. j,,,, is the minimum value of j, for a given 
BF, necessary for the BF to span the modulus. 

As an example of a BF, consider the following BF 
parameters, 

Let us consider the i / p  of the following R = 2, binary 
digit, data word, using a d = 2-bit-wide data bus 

0 0 1 0 1 0  
0 0 0 1 1 0  

c 

If this is interpreted using the above BF, it evaluates to 

l(a3 + a') + 2(a2 + a') = 130 + 60 = 190 
Over a suitable modulus, m, this BF will span the range 
0, ..., m - 1. For instance, if m = 29, the given BF spans 
m, where jmi. = 4, and the above example equates to 
( 190)29 = 16. 

The throughput for this example BF will be limited by 
j'. In other words, one data word is passed every 6 clock 
cycles. 

102 Example BDCS block (see Section 5). 
To clarify the function of the BDCS block, for the "IT 
split-multiplier example of Section 5, we present the 
format of the small power of 2 multiplications (SPMs), 
mod 61, as performed within the BDCS block, 

If x[n]  is defined as x525 + x424 + ... + x02O and 
represented by x5,  x4, x j  , x2, xl, xo we can define the 
following 

2Ox[n] = x[n] 

2'xCnl = x4, x3, x2, xl ,  xo, x5 + 0, 440, x5, 0 

22xCnl = x ~ , x ~ , x ~ , x ~ , x ~ , x ~ + ~ , ~ , O , X ~ , X ~ ~ O  

%nI = x2, xl, xo, x5, x4, x3 + 0,0,x5, x4, x3, 0 
24xCnl = xl, xo, x5, x4, x3, x2 + 0,x5, x4, x3, x2, 0 
Z5xCnl = xo, x5, x4, x3, x2, x1 + x5, x4, x3, x2, xl, 0 

and, instead of explicitly adding the shifted data, we can 
pass each output out of the BDCS block as a 6 * 2-bit 
data stream, (i.e. d = 2, j = j' = 6). 

(all operations mod 61) 
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