
VLSI structures for bit-serial modular multiplication
using basis conversion

M.G. Parker
M. Benaissa

Indexing t e r m : Mathematical techniques, bit-serial multipliers

Abstract: This paper proposes design techniques
for the efficient VLSI implementation of bit-serial
multiplication over a modulus. These techniques
reduce multiplication into simple cyclic shifts,
where the number representation of the data is
chosen appropriately. This representation will, in
general, be highly redundant, implying a relatively
poor throughput for the multiplier. It is then
shown how, by splitting the multiplier into two
pipelined multipliers, the throughput of the unit
can be increased, whilst still retaining a cyclic-shift
implementation. The split multiplier requires a
mid-computation basis conversion, and the two
number representations, used within the unit, are
only moderately redundant. Thus, high-
throughput, bit-serial multipliers are achieved,
with most of the complexity contained within
systolic basis converter modules. The multipliers
are applicable to the VLSI implementation of
high-throughput, signal processing operations per-
formed over finite fields, in particular, transform
and filter operations.

1 Introduction

Recent advances in VLSI technology have suggested
novel approaches to the implementation of arithmetic
units over algebraic rings and fields other than real or
complex [l-41. These new approaches have been spurred
on by the need for fault-tolerant, systolic architectures,
where throughput is maximised and design complexity
minimised. Residue number systems (RNSs) perform
arithmetic over a modulus, M where M can be expressed,
M = fl;:; m i , and all arithmetic can be decomposed
into a combination of smaller, parallel, arithmetic sub-
computations, thus reducing the granular dimension of
any consequent VLSI implementation [S, 61. However,
some or all of these mi can still be quite large, hence the
need for efficient implementations of modular arithmetic
units [2, 4, 7, 81.

The concept of basis and basis flow (BF) are defined,
and it is shown how, for a specified BF, multiplication by
an element q, modm, can be implemented using the
exponent, e, as input, where (Be),,, = q, g is an element of
the field/ring, and the basis a = g. (+), means the residue

0 IEE, 1994
Paper 1527E (C2, EIO), first &wd 15th July 1993 and in revised form
15th June 1994
The authors arc with the School of Engineering, University of Hudders-
field, Huddersfield, HDl3DH, United Kingdom

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 6, November 1994

of *, mod m. A decomposition of the original multiplica-
tion is developed into two pipelined multiplications, effec-
tively replacing e with e, and e2. A basis converter (BC)
module is inserted between the two multipliers to facili-
tate the design of the second multiplier, and necessary
criteria are developed for the chosen bases, to achieve a
maximum throughput implementation. An example is
given of a multiplier, firstly using a direct implementa-
tion, then, secondly, a split implementation, and a suit-
able application of the split multiplier to a
number-theoretic transform (NTT) is discussed. These
multipliers are particularly suitable for use within the
word-serial implementation of general transforms over
finite fields, where many products of a single element are
required at any one time. Systolic architectures are pre-
sented for basis conversion, and the benefits in area
achieved by a split-multiplier/systolic BC implementation
are briefly assessed.

2 Multiplication using exponents

We desire to implement the multiplication

r = <xq)m (1)
where x, q and r are elements of the rindfield of integers
0, . . ., m - 1, referred to in this paper as H,, and x will
be represented using the following BF parameters (see
Appendix) :

q will be represented by its exponent e, where q = <ge),,,
and g is an element of H, . g can have one of the follow-
ing two properties.

(i) (sf'>,,, = (g"),,, where ft > e and (e), Z
for any e <f2 <fl, in which case g is cychc, mod m, of
order (fi - e)

(ii) (g f 3) , = 0 and (e),,, # 0 for any 0 <f4 < f 3 , in
which case g is not cyclic.
In the first case, (fl - e) unique values of (ge), exist. In
the second case,f, unique, non-zero values of (g"), exist.
These restrictions, in turn, limit the possible values of q
which can be represented in this form. We observe that, if
m is prime, g can be chosen to possess the first property,
such that Ob),,, = m - 1, where O(*),,, means the order of
*, mod m. Thus, over a prime modulus, any value of q,
from 0, .. . , rn - 1, can be represented as (g'),.

If we now define the BF so that a = g, then eqn. 1 can
be implemented by shifting x. This is simply an extension
of the well known concept of shifting of binary data to
perform power of 2 multiplications [%ll]. However, in
general there will be a shift overflow problem. For

381

R = 2, a, d,j,Y and Z

instance, if rn = 13, and we define a BF with
R = 2 , a = 2 , d = l , j = j ' = 4 and Z = [1]

then eqn. 1 can be accomplished, where q ranges from
(go)13 to (g11)13, by using 0 to 1 1 shifts of x, if g is
chosen = a = 2. Unfortunately, we then have to deal with
multiple overflow into the fifth bit of the BF. If, instead,
the BF of x has j' = 12 then eqn. 1 can be implemented
using cyclic shifts. This simple solution is at the price of
data wordlength, and, hence, throughput. Another possi-
bility would be to define the BF of x as follows:

This is only one of many possibilities.
Again, with this BF, eqn. 1 can be implemented using

cyclic shifts between BF rows, at the price of throughput
and area. This example demonstrates how the
multiplicative implementation complexity may be
avoided by a suitable BF for x, and a suitable exponent
representation for q. By increasing the redundancy of the
BF, even overflow circuitry may be eliminated. On the
downside, we now need special exponent coding of q, an
unusual redundant number representation (RNR) for x
and a potentially decreased throughput capacity for bit-
serial implementations, due to increased wordlength,
especially for large m. In the following, N = O(g), , O(*),
means the order of *, mod rn, and a = g .

To ensure a cyclic shift implementation of eqn. 1, it is
sufficient to consider the destination of the most signifi-
cant digit (msd) column in the BF after shifting left by
one column (multiplying by a). A cyclic shift is defined by
the avoidance of additive combinations of overflow bits
after shifting left, and is only achieved by passing the msd
to the least significant digit (Isd) column of the represen-
tation, with or without BF row permutation. This is only
possible if
w, ajc = w, a < k > N = w

for

S , t E CO, 1, ..., d - 11

j , E C j , j + 1 , ..., f l
and

(2)
for each row, with the weights, K., as defined in Appen-
dix 10.1. Note that ajc = a<jC>" as aN = 1 , mod M .

If cyclic shifts are performed without row permutation,
s = t and eqn. 2 becomes ajc = 1 , therefore j , = kN and

kN E [j , j + 1 , . . . , j '] for k a positive integer (3)

which is clearly always appropriate for one row solutions,
i.e. d = 1 .

The maximum element order, mod prime m, is
N = m - 1 . For large, prime m, this N is much greater
than the minimum j necessary to span H,, jminr for a
given BF. For solutions without BF row permutation,
expr. 3 implies that cyclic shifting is only possible if j' is
much greater than jmin , making the number reflresenta-
tion highly redundant, and reducing throughput drastic-
ally. The alternative using row permutation is given by
eqn. 2, where an increase in d can lower the requirements
onj' in spite of N . However, large d is not desirable from
an implementation point of view, and the rest of this
paper is concerned with solutions where d is kept small.
With or without BF row permutation we conclude that,
for a given d,j' will have to increase in proportion to N .

382

In the next Section, we show how j' can be lowered
by reducing the effective N . This is achieved by splitting
the multiplication and inserting an appropriate mid-
computation basis conversion.

3 Lowering wordlength by using a split-multiplier

Let us consider eqn. 1 where m is large and prime. From
expr. 3 we see that, for large N, j' must become much
greater than jnin to ensure a cyclic shift implementation.
Alternatively, from eqn. 2 d and/or j' may be increased,
with the weights, K, suitably chosen. As mentioned pre-
viously, large d is not considered. Therefore j' becomes
much greater than it's theoretical minimum necessary to
span H , . One method of lowering j' is to split eqn. 1 into
two sub-computations:

r = (qx) , = (qlqz x > m (q 1 Y) m (4)

where Y = <q2x), , q1 = (g; ') , , q2 = (e?),, 4 =
W),, g1 = <gb'>,, g2 = <gbz>,,, and e, e,, e,, b,, b, are
the minimum possible values necessary to satisfy the
above congruences.

Hence, g' = gygy = geLb1geZb2, all mod rn, and

e = (e ,b , + e2 bz)N where N = O(g), (5)
Thus, instead of performing the multiplication using e, we
can perform it using two inputs, e, , e , , and, for each of
the N unique values of e, there should be at least one pair
of values e,, e,. This is only possible if the following con-
dition is met :

Condition I : gcd (b , , b,) = 1 where gcd (*, *) is the great-
est common denominator. If Condition I is met, then
three options exist for the values of b, and b,:

Option 1:

gcd (b i , N) = 1 for i E [l , 21

Option 2:

gcd (bi , N) = 1 , gcd (b k , N) # 1 for i , k E [l , 23, i # k

Option 3:

gcd (b i , N) # 1 for i E [l , 23

We will consider the implementation of expr. 4 using
each of these options, and the architectures are shown in
Figs. 1 , 2 and 3. For each case we assume an a-BF input

a-BF 0-BF *
e2 q-i+ cycl1c

shifts

Fig. 1
WhereP = (N DIV b,XR = b, - 1 or P = b;' - I, R =(N DIV b y ')

Split multiplier, option I

to stage 1 , where g, = a, and a P-BF to stage 2, where
g1 = 8. Hence, for all three options, an a to basis con-
verter (BC) is inserted between the two stages (see Section
6). We define N , = O(g,),,, and N , = O(g2),.

3.1 Option 1
The schematic for this multiplier is shown in Fig. 1 and
we have N , = N, = N . Without loss of generality, we
assume that g1 = g, therefore b, = 1 and eqn. 5 simplifies

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 6, November 1994

to

x-

P-BF a-BF

cyclic
shifls

shifts

Fig. 2
Where P = N, - 1, R = b, - I

Split multiplier, option 2

99 95

gP 9’:

a10 p cyclic CYCllC
shlfls ‘i BC shlfts g!4r

7

stant throughout the system, we require j ‘ = greater of
(A, j b) and the lower requirement for j : is nullified by the
higher requirement for j b . This situation is avoided by
noting that SPMs for (sly), can, in fact, be implement-
ed using bit duplication and cyclic shifting (BDCS), see
option 1, without satisfying exprs. 2 or 3, thereby lower-
ing the requirements for j b and j’, and achieving a greater
throughput rate, due to a reduced data wordlength. Note,
this multiplier can equally well be reversed, where the
BDCS block comes first, followed by the cyclic shifts, and
this has the added advantage that the BDCS block is
always followed by a BC, enabling, as with option 1, the
delayed addition to be accomplished as part of the basis
conversion.

3.3 Option 3
The schematic for this multiplier is shown in Fig. 3. We
have NI, N, < N, and for eqn. 5

O $ e , < N , O < e , < N , (8)

The ranges of e, and e2 are smaller than the range of e,
and, as NI and N , are substituted for N in exprs. 2 and
3, both multiplications can be implemented using cyclic
shifts where the requirements onj’ = greater of (fa,&) are
lower than the single multiplier case. As an aside, we note
that this option satisfies, precisely, the conditions neces-
sary for a two-stage, N-point, prime-factor DFT over
H,, where N,, N, are the factored transform lengths

For all three of the above options, suitable BF param-
eters and choices for g, and g, allow the lowering of the
minimum j’ required, for a given d. Obviously, the lowest
possible j‘ is bounded by the minimum BF requirements
necessary for a BF to span H,. The throughput gain is at
the cost of a BC module, inserted between multiplication
stages, and a moderate increase in BF redundancy. Only
option 3 implements the multiplications solely as cyclic
shifts. The other two options require SPMs, implemented
using cyclic shifting and implicit single additions, the
additions being realised by increasing the redundancy of
the BF.

3. f Evaluation of e , and e,
The multiplier scheme described above requires the input
of two exponent indices, e, and e,, which are derived
from q. Although these indices could always be obtained
using ROMs addressed by q, this option is not ideal
especially for large moduli, rn, where ROM size increases
greatly. For general modular multiplication, the split
multiplier would only become competitive when eficient
means can be found to compute e, and e, given q. This is
the subject of future research. A general modular multi-
plier scheme, again using basis conversion, is out-lined in
Reference 13, but for this paper, the split multiplier is
advocated primarily for functions that require fixed
multiplication, such as for fixed filters or the NTT
described later in this paper. For such tasks, e, and e2 are
implicitly embedded in the hardware structure, and their
explicit computation is avoided.

The next Section presents an example, firstly, using a
single-basis implementation and, secondly, a split imple-
mentation, using option 3, and compares the throughput
requirements and area for the two methods.

4 Example implementation of multiplier

In this Section, an example is given for option 3 to
demonstrate how splitting the multiplication of eqn. 1

c121.

383

can reduce j', and consequently increase throughput. We
will operate over the field, H,, where rn = 13. From eqn.
1, we choose q E [0, 1, . . . , rn - 11, i.e. all possible multi-
plications are required.

cyclic .

I I I k

l l I ,4E

cyclic :
shifls .

Fig. 4
0" =

Kernel products split multiplier
= 1, $,' = 26 = 3 = 8, and s": = 3" = 1 (mod 61)

Firstly, we implement eqn. 1 directly then we consider
a split implementation using option 3.

4.1 Single basis implementation
Let x have an input BF which is a standard 4bi t binary
representation, as follows

R,=2, a = 2 , d , = l , j ,=4,

j' (to be determined), Z = [13
384

We note that this BF spans H,, and is also a minimum
basis with minimal redundancy, as j . = j , , for the given
BF.

As O(a), = 12, the input BF is already suited to an
implementation using shifts and we choose g = a = 2. To
implement eqn. 1 using cyclic shifts, eqn. 2 must be satis-
fied. For our chosen input BF, there is no BF row per-
mutation and expr. 3 is given by

(9)
We see that the lowest j' necessary to satisfy expr. 9 is
given by j' = 12. Hence, for this particular example, the
multiplier can be implemented using cyclic shifts if at
least j' - j = 12 - 4 = 8 delay cycles are introduced
between each consecutive, 4-bit, input word.
4.2 Split implementation
Let us now implement eqn. 4. We choose b, = 3 and
b, = 4, and note that

These equations satisfy condition I and option 3, there-
fore suggesting a cyclic-shift implementation with a
reduced j'. We note that g, = (23)13 = 8 and g2 =
(24)13 = 3. Eqn. 5 implies the following mapping from e
to (el, e2)

where 0 Q e, < NI, 0 d e2 < N, and NI = O(gl), = 4,
N, = O(g,)m = 3.

We choose an input a-BF for x, where a = g,, as

R, = 2, a = 3, d, = 2, j , = 3

k12 E [4, 5, . . . , j']

(b,, b,) = 1, (bl, N) = 3 and (b , , N) = 4

e = <3e1 + (10)

follows

jh = j' (to be determined), = [I1]
We note that this a-BF is a minimum basis, i.e. j., = jmi.
for the given BF, and contains a moderate amount of
redundancy.

We require multiplications of x by powers of g2 from
g: to g 9 - I and we substitute N, for N into exprs. 2 and
3, giving

a" = 1 *k3 E [3, 4, ...,?I (1 1)

& = 3 " = - 1 f o r s # t (12)

fors = t

and

As O(3),, is odd, eqn. 12 has no solution and expr. 11
gives a lowest value of j' = 3. Therefore y = (xq,),,, can
be implemented using cyclic shifts within each row, where
jh = 3.

We now convert from an a-BF to a b-BF where we
choose the B-BF as follows

R, = 2, b = 8, d, = 2, j, = 3,

[Ill
j' (to be determined), Z, =

We note that this is a minimum b-BF, and contains a
moderate amount of redundancy.

We require multiplications of y by powers of g, from
gy tog:'-' and we substitute N, for N into exprs. 2 and
3, w n g

k4 E [3, 4, ...,j'] fors = t (13)

p = 8 ° C = -1 for # t (14)

and

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 6, November 1994

where j B (= 3) d j , d j'. Expr. 13 gives a lowest value of
j' = 4, and eqn. 14 gives a lowest value of j' = 6. There-
fore r = (y q ,) , is best implemented using cyclic shifts
within each row, where4 = 4.

The value of j' necessary to implement both multipli-
cations as cyclic shifts is given by

j' = greater of (j k , jk) = 4

Therefore j' - j . = 4 - 3 = 1 delay cycle is introduced
between each consecutive input word.

Thus, by splitting the multiplication, the throughput
rate has been increased from j' = 12 to j' = 4 and all
multiplications can be implemented using cyclic shifts.
The area cost is seen in terms of increased redundancy in

cyclic
shifls

Fig. 6
ff = 26" =

I E E Proc

2
t

-

the a-BF and b-BF number representations and the
necessary insertion of an a to b BC.

5 Application of the split-multiplier to a
bit-serial, word-serial number-theoretic
transform

The number-theoretic transform (NTT) is a discrete
Fourier transform (DFT) over a finite field, given by

(15)

where O(g), = N, <N-'), exists and is unique, and
q p - 1 is relatively prime to m for 1 < p d N.

I - U ' I

/

X n 5
Xn.'ll

Xn.59

,,
Y /

I
2-BF 3-BF

NTT product generator using a split-multiplier design
1 . p L - - Z6 = 3 = & nndg:' = 3" = l(mcd61)

.-Cornput. Digit. Tech., Vol. 141, No. 6, November 1994 385

It can be cast as the summation of a series of products

where Xm, = (x[n]gnk>, .
The split multipliers, developed in this paper, can be

used to compute Xn, k . We choose an input BF, where
a = g, and split g into g1 and g2. As the kernel multipli-
cations within the NTT are fixed, we do not input e, or
e, directly. Instead, the architecture inherently provides
all possible multiples of x[n], from (x[n]go),, ...,
(X C ~ I ~ ~ - ' > ~ .

An example of this all encompassing multiplier archi-
tecture is shown in Fig. 4, for an input BF with the fol-
lowing parameters

R = 2 , a = 2 , d , = l , j ,=6, j L = 6 and Z,=[l]

We consider multiplications of x[n] by powers of
g = a = 2 from go, ..., gN-1=59 , mod 61. g is split into
g1 = g = 2 and g2 = (g6)61 = 3, where O(g1)61 = N , =
60 and O(g,),, = N, = 10. We note that b, = 1 and
b, = 6 so condition I of Section 3 is met, 2nd the splitting
satisfies option 2. Thus, we can perform the first multipli-
cation stage using a BDCS block, and the second stage
using cyclic shifts. In between the two stages we insert a 2
to 3 parallel BC (parallel to cope with each of the six
power-of-two products resulting from the first stage). The
second stage is performed using the following BF

Ll R = 2, B = 3, d, = 2, j, = 5, j b = 6 and Z, =

The design is able to provide all possible kernel products
without excessive area cost, because the complexity and
cost is contained within the inter-stage BC. The kernel
products come virtually free. The operation of the BDCS
block is clarified in Appendix 10.2 and the parallel BC is
explained in Section 6.

We now incorporate this comprehensive split multi-
plier within the NTT by appending after each multiplier
stage, a dynamic crossbar matrix, which selects the
appropriate multiple of x[n], for each k. This selection
matrix will reconfigure for each successive x[n] multiple,
as appropriate to the NTT task. An example of this NTT
product generation architecture is shown in Fig. 5,
extending the example of Fig. 4, and the architecture per-
forms the product generation for a 60pt NTT, mod 61.
The dynamic crossbar matrices are labelled GR6, GR10,
. . . etc., where the number refers to the dimension of the
matrix. For instance, a GR6 is a 6 * 6 matrix. As is
shown in Fig. 5, the sub-units can, themselves, have their
multiplications split. g1 = 2 can be split into gl , = 2 and
g12 = 4, and g2 = 3 can be split into g2, = 3 and g2* =
35 = 60 = - 1. However, for this particular example, no
further basis conversion is necessary as the a and B bases
are already sufficiently convenient. This further splitting
reduces the area requirements of the implementation,
enhances localisation, and allows the NTT design to be
constructed out of smaller NTT designs. (Note, the sub-
sequent summation phase is dealt with separately, and is
not considered here).

Thus, the split-multiplier design philosophy allows
simple, high-throughput, low area NTT implementations,
where the products are not computed explicitly, but
implicitly, using basis conversion coupled with dynamic
data routing. Further details of this form of NTT design
can be found in References 14 and 15.
386

6 Basis conversion

Basis conversion can always be accomplished using
ROMs. However, for large moduli, m, the sue of look-up
table increases dramatically, and more efficient conver-
sion techniques need to be found. Parhami [16] has sug-
gested non-modular, systolic radix converter cells. In this
paper we propose a similar concatenation of systolic
basis converter (BC) cells which achieve a maximum
throughput. A BC cell is shown in Fig. 6, along with a

etc.

Fig. 6 General basis Converter cell and cell concutenution

typical concatenation able to accept a skew-parallel data
input. On each clock transition, data is transferred from
input to output of each cell, governed by the equality

asi + ci = so + Bc, mod m (17)
where a and
ively, and

are the input and output bases, respect-

si E (input-state integer set}
ci E {input-carry integer set}
s, E {output-state integer set}
c, E {output-carry integer set}

It is necessary for eqn. 17 to be satisfied for all possible
values of s,, ci, so, c,, and successful BC design will be
achieved by minimising the number of output columns of
Fig. 6 (output wordlength) for a given number of input
diagonal rows (input wordlength). Note that the integer
sets definition enables a level of abstraction independent
of the target hardware. The concatenation scheme of Fig.
6 allows full pipelining at word and cell level to achieve
maximum throughput digit-parallel solutions. Fully pipe-
lined digit-serial solutions are then obtained by imple-
menting only one diagonal row. To explain the operation
of the BC, solutions will be proposed for the examples of
Sections 4 and 5. In fact, a modification of eqn. 17 will
often be required

asi + ci + k = so + Bc, mod m (19)
I E E Proc.-Comput. Digit. Tech., Vol. 141, No. 6, Nouember 1994

where k is an offset chosen to ensure satisfaction of eqn.
19 for all cases. This offset greatly widens the BC solution
set, is implicitly implemented, i.e. no extra hardware, and
the cumulative effect of each cell offset is observed in the
final offset of the state output. By carefully choosing each
cell offset, the cumulative offset can be made a multiple of
the modulus, m, and is therefore eliminated from the final
BC output.

Consider, first, the 2 to 3 BC, which may initially be
required for the split-multiplier, mod 13, example of
Section 4. Conventional binary input data will have a BF
of

R , = 2 , y = 2 , d ,=1 , j = j ’ = 4 Y Y

and

z, = c11 (20)
and it is desired to convert to a BF of

R, = 2, a = 3, da = 2, j, = 3, A = 4

and

Z a =[I1]
Fig. 7 depicts a skew-digit-parallel 2 to 3 BC, defined by
the cell parameters

Cell A: si E I-) ci E {0, 1)

so E {O, 1) CO E {-)

J

32 3’ 30
Fig. 7 Skew parallel 2 to 3 BC, mod 13

i.e. from (17), 2{0, 1) + (0, 1) E {O, 1, 2) + 3{0, 1)

-IO, 1, 2, 3) E IO, 1, 2, 3,4, 5)

so E {O, 1921 CO E IO, 1)

Cell C: si E {O, 1, 2) ci E (0, 1)

i.e. from (17), 2{0, 1, 2) + {O, 1) E {O, 1, 2) + 3{0, 1)

={O, 1,2, 3,4, 5) E IO, 1, 2, 3,4, 51
The input carried to the rightmost column, {0, l),
matches the basis weights vector, Zy, of eqns. 20.
However, the output states of the bottom diagonal row,
(0, 1,2), do not match Z, of eqn. 21. Z, represents the
integers, { - 1, 0, 1). This is rectified by offsetting each
output state, so, by - 1 so that

[-:I {0,1,2) + -1 = {-l,O, 1)

As shown in Fig. 7, the -1 offset is applied to each
column, implying a cumulative offset of

-1+3(-1)+3*(-1) mod 1 3 = 0

Therefore the offsets cancel and the output matches Z, .
d, and d, of eqns. 20 and 21 imply a digit-serial BC. The
skew parallel BC of Fig. 7 is easily serialised as all cells in
a given column are of type C or subsets of C, (cells A and
B), with input states compatible with their own output
states. A serial version of the 2 to 3 BC is shown in Fig. 8,

3 2 31 30

Fig. 8 Serial 2 to 3 BC, mod 13

where the intra-cell feedback is broken upon receipt of
the final bit of each input word. Note, there is no inter-
word input delay.

Consider, now, the realisation of a 3 to 8 BC. A skew
parallel design is shown in Fig. 9 and is designed to
match the input and output BFs, as given by eqns. 21
and

i.e. from (17), 2{ -} + {O, 1) E {O, 1) + 3{ - }

Cell B: si E {O, 1) ci E {0, 1)

so E (0, 1, 2) CO E {O, 1)
IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 6, Nouenrber 1994

R, = 2, B = 8, d, = 2, js = 4, j; = 4

and

(22)

387

The cell parameters are

Cell A: si E { - } c i E { - l , o , l }

so E {-LO, 1) CO E I-}

32

J

83 82 8’ 80

Fig. 9

i.e. from (17),3{ -} + { - 1,0, 1) E { -1,O, 1) + 3{ -}

Skew parallel 3 to 8 BC, mod 13

Cell B: si E { - 1, 0, 1) ci E { - 4 0 , 1)
~ , ~ { - 6 , - 5 , - 4 , - 1 , 0 , 1) ~ , ~ { 0 , 2 }

i . e . f r o m (1 7) , 3 { - 1 , 0 , 1) + { - 1 , 0 , 1 } ~ { - 6 , - 5 , - 4 ,
- l , O , 1) + 8{0, 2}-{9, 10, 11, 12, 0, 1, 2, 3, 4) E (7, 8, 9,

CellC: s i ~ { - 6 , - 5 , -4, - l ,O, l} c i e { - l , 0 , l }

i.e. from (17), 3{-6, -5, -4, -1, 0, l }+{-1 , 0,
1) E {-1, 0, 1) + 8{0, 1, 2, 3) *{7, 8, 9, 10, 11, 12,0, 1, 2,
3,4} E {7,8,9, 10, 11, 12,0, 1,2, 3,4}

10, 11, 12,0, 1,2,3,4}

so E { - 1,0,1) C O E {O, 1,293)

Cell D: si€{-} ci E {O, 2)
Offset,k= -1 sos{- l ,O, l} c,E{-}

i.e. from (19), 3{ - } + {0,2} - 1 E { - 1,0,1} + 8{ - }
Cell E:
Offset, k = -3

si E { - 1, 0, 1) ci E (0, 1,2,3}

S, E { - 1,0, 1) C, E {0, 1,2,3)
i.e. from (19), 3{ - l,O, 1) + {O, 1, 2, 3) - 3 E { - l,O,
1)+8{0, 1, 2, 3)*{10, 11, 12, 0, 1, 2, 3, 4, 5,
6) - 3 E {7,8,9, 10, 11, 12,0, 1,2,3,4}

Cell F: % E { - } ci E io, 1,2,3)
Off&, k = - 1 S, E { - 1, 0 , l) C, E {0,2)

i.e. from (19), 3{ -} + {0, 1,2, 3) - 1 E { - 1, 0, 1) + 8{0,

The cumulative offsets sum as follows

2) *{O, 1,2,3) - 1 E {-l,O, 1,2, 3,4}

8 + 1 - (3.8) - (1.3.8) mod 13 = 0
so offset is eliminated.

388

The skew parallel form of Fig. 9 is not easily serialised
due to the non-identical nature of the cells in each
column. However a single skew parallel 3 to 8 BC can be
used to convert up to four power-of-3 multiples of the
input without limiting throughput. The inter-word delay
of 4 clock cycles ensures up to 4 BC conversions for every
word input using the skew parallel form. As a serial form
is not easily found, the BC is best suited to the combined
realisation of up to four independent bit-serial split
multipliers, mod 13, or a bit-serial 3-point or 12-point
NTT, mod 13, or some similar task, where the BCs of
Figs. 8 and 9 are interleaved with cyclic shifters (Fig. 3).
Alternatively, the BCs of Figs. 7 and 9 may be combined
to achieve a bit-parallel split-multiplier implementation.
Thus, although the emphasis in this paper is on bit-serial
solutions, skew parallel BCs can also be combined with
cyclic shifters to form competitive bit parallel solutions.

Finally, a 2 to 3 BC, suitable for inclusion within the
NTT example of Section 5 and Fig. 5, is shown in skew
parallel form in Fig. 10. The cell parameters are

J
3 4 33 32 3’ 30

Fig. 10 Skew pmallel2 to 3 BC, mod 61

Cell A: si = so E { - 1,0, 1) ci E {0, 1, 2)

CO E {-I, 0, 1)
Cell B: si = so E { - 1, 0, 1) ci = c, E { - 1,0, 1)

Cell C: si E { - } ci E {-l,O, 1)

S,E{-l,O, 1) CO€{-)
Note that cell A is adapted to accept two separate con-
ventional binary bit streams

2 = [:] = {O, 1,2)

and therefore incorporates the BDCS implementation of
power-of-2 multiplication, as explained in Appendix 10.2.

An important distinction between the BCs of Figs. 7,8
and 10, and the BC of Fig. 9 is that the former are
modulus independent BCs, incorporating only a few cell
types, and are readily expanded to higher moduli. On the

IEE Proc.-Comput. Digit. Tech., Vol. I l l , No. 6, November 1994

other hand, the BC of Fig. 9 is modulus dependent, is
much less regular, and is suited to only one modulus.
Modulus independent BCs will be characterised by input-
carry and output-state integer sets which span a and /I
respectively, for an a to /I BC. For instance, an example
of a modulus independent 11 to 7 BC could use the cell
type specified by

11 to 7 BC Cell: si = so E (0, 1,2, 3,4, 5,6}

ci = C,E {0, 1,2,3,4, 5,6,7,8,9, 10)

The modulus dependent BCs do not satisfy these criteria
and rely on offset modification for a localised intercon-
nection scheme. As modulus size increases, the modulus-
dependent solutions become increasingly difficult ’ to
design.

7 Area assessment of split-multipliers using
systolic basis converters

By assuming a ROM implementaton for each BC cell,
one can arrive at a figure for BC area cost for each of the
multiplier examples discussed. The split-multiplier area
cost can then be approximated to by its BC area cost,
ignoring the cost for cyclic shifts, and this figure can be
compared to a brute force implementation of fixed multi-
plication using a single ROM. A further comparison with
the figure for N simultaneous k e d multiplications using
N ROMs will then be quoted, to emphasise the suit-
ability of the split multiplier for simultaneous product-
generation tasks, such as the NTT. Note, for N
simultaneous multiplications, the BC figure remains
unchanged.

It should be remembered that, unlike the split multi-
plier, the ROM approach is essentially parallel, although
not easily pipelined, especially for large moduli. From
Table 1, the split-multiplier/systolic BC method would
Table 1 : Comparative area assessment for split-multipliers
using systolic basis convertars

Multiplier, mod 13 Area cost (bits)

serial 2 to 3 BC
skew parallel 3 to 8 BC

48
154

total 202

single ROM (one fixed mult) 64
12 ROMs (twelve fixed mults) 768

Multiplier, mod 61 Area cost (bits)

skew-parallel 2 to 3 BC 504
total 504

single ROM (one fixed mult) 384
6 0 ROMs lsixtv fixed mults) 23040

seem particularly suited to the case where many fixed
multiplications are required simultaneously, such as the
NTT. It is debatable whether the method is worth pur-
suing for moduli as small as 13, but for higher moduli the
BC cell dimensions can become very small in comparison
to the dimensions of the alternative ROM solutions. In
summary, the method achieves a relatively low area by
computing many products simultaneously, whilst also
attaining a high throughput by matching element orders
to the data wordlength.

8 Conclusion

In this paper we have considered the implementation of
bit-serial multiplication over a modulus, using number

IEE Proc.-Cornput. Digit. Tech., Vol. 141, No. 6, November I994

representations with increased redundancy. It is shown
that a reduction in throughput rate, i.e. increased word-
length, enables a simple multiplier implementation using
only cyclic shifts. To improve on this throughput rate,
whilst keeping the simplicity, the multiplier is split into
two multipliers, and, for suitable choices of roots of the
rindfield, the multiplier can be implemented using two
pipelined cyclic shifts of smaller orders, thereby increas-
ing the possible throughput rate. It is demonstrated how
this split-multiplier design can be incorporated within an
NTT design, enhancing its modularity and throughput,
whilst minimising its implementation complexity and
area. These benefits are made possible by the insertion of
basis converter@) (BC). Systolic BCs are briefly presented,
based on a simple cell rule, and BC solutions are given
for the multiplier examples presented earlier in the paper.
It is clear that this technique for bit-serial multiplication
can be generalised to more than two subcomputations,
for use within a larger rindfield, and the multipliers are
of particular use within the implementation of RNS-
based systems, cryptosystems, signal processing oper-
ations such as transforms over a finite field, [3, 14, 15,
171, and error-correction systems. The design rules,
developed herein, form a foundation for the synthesis of
high-throughput, VLSI circuits for finite field operations.

9 References

1 McCLELLAN, J.H., and RADER, C.M.: ‘Number theory in digital
signal processing’ (Prentice Hall, 1979)

2 JULLIEN, G.A.: ‘Implementation of multiplication, modulo a
prime number, with applications to number theoretic transforms’,
~ E E E Trans. Cornput., iGw, C-29, (IO), pp. 899-905

3 IULLIEN, G.A., BIRD, P.D., CARR, J.T., TAHERI, M., and
MILLER. W.C.: ‘An efficient bit-level systolic cell design for finile
ring digital signal processing applications’, J. VLSI Sig&l Process.,
1989.1, (3). pp. 189-208

4 SKAVANTZOS, A.: ‘New multipliers modulo 2N - 1’. IEEE Trans.
Cornput., 1992 41, (8). pp. 957-961

5 TAYLOR, F.J.: ‘Residue arithmetic: a tutorial with examples’, Com-
puter, 1983,17, (9, pp. 50-61

6 SODERSTRAND, M.A., JENKINS, W.K., JULLIEN, G.A., and
TAYLOR, F.J.: ‘Residue number system arithmetic: modem appli-
cations in digital signal prarssing’(1EEE Press, New York, 1986)

7 BAKER, P.W.: ‘Fast computation of an A * B modulo N’, Electron.

8 TAKAGI, N., and YAJIMA, S.: ‘Modular multiplication hardware
algorithms with a redundant representation and their application to
RSA cryptosystem’, IEEE Trans. Cornput., 1992,41, (7), pp. 887-891

9 BENAISSA, M., PAJAYAKRIT, A., DLAY, S.S., and HOLT,
A.G.J.: ‘VLSI design for diminished-1 multiplication of integers
modulo a fermat number’, IEE Proc. E, 1988,135, (3). pp. 161-164

10 BALLA, P.C., and ANTONIOU, A.: ‘Number-theoretic transform
based on ternary arithmetic and its application to cyclic convolu-
tion’, IEEE Trans. Circuits Syst., 1983.30, (7), pp. 504-505

11 HONDA, M., KAMEYAMA, M., and HIGUCHI, T.: ‘Residue
arithmetic based multiple-valued VLSI image processor’. Proc. of
22nd Int. Symp. on Multivalued Logic, 1992, pp. 330-336

12 TRUONG, T.K., REED, LS., HSU, IS., SHYU, H.C., and SHAO,
H.M.: ‘A pipeline design of a fast prime factor DFT on a finite field‘,
IEEE Trans. Cornput., 1988,37, (3), pp. 266-273

13 PARKER, M.G., and BENAISSA, M.: ‘Using redundant number
representations for efficient VLSI implementation of modular arith-
metic’. Proc. of IEE Coll. on Synthesis and Optirnisation of Logic
Systems, Savoy Place, London, March 1994

14 PARKER, M.G., and BENAISSA, M.: ‘A bit-serial, VLSI imple-
mentation of a Wpoint NTT using binary and ternary bases’. Inter-
national Conference on DSP for communications, Warwick, U.K.,
October 1992

15 PARKER, M.G., and BENAISSA, M.: ‘Bit-serial, VLSI architecture
for the implementation of maximum-length number-theoretic trans-
forms using mixed basis representations’. Roc. of ICASSP ’93, Min-
neapolis, USA, 1993, I, pp. 341-344

16 PARHAMI, B.: ‘Systolic number radix converters’, Cornput. J.,

17 POLLARD, J.M.: “The fast Fourier transform in a finite field’,

Lett., 1987,23, (15), pp. 794-795

1992 3, (4), PP. 40%40!3

Math. Cornput., 1971.25, (114), pp. 52&547

389

10 Appendix

10.1 Basis and basis flow (BF)
Basis refers to the weightings given to a group digits
which, when evaluated and summed, represent a number.
An a-basis means all weightings are successive powers of
a (sometimes referred to as a canonical or primal basis).
If R = 2, each digit is a binary digit, bit, having two
values, 0, 1, although the concept can be extended to any
digit range.

Basis flow (BF) refers to the flow characteristics of the
basis data and the weighting pattern is shown below for
one word, as a j ' * d vector,

0 ... 0 Woaj-' W & 2 . . .
0 ... 0 ~ ~ d - 1 ~ ~ j - 2 ...

0 ... O Wd_,aj-' Wd-laj-2 . . .

c j' clock cycles +
c jclockcycles +

with

WO a0
Wlao

Wd-,a0

Z= ["1
Wd-1

where the vector is assumed to be travelling right to left.
j' is the word period and j' - j is the inter-word delay,
both in clock cycles, and d is the data path width. With
no delay between successive words, j '= j and, when
d = 1, the data moves in a digit-serial fashion. Z is the
basis weights vector, and WO, . . . , Wd-l are the weight-
ings associated with each data line. In the text, the BF
will sometimes be loosely referred to as an a-BF. Each
word using the above BF will equate to

I - 1 j - 1 j - 1

* = O ,=O i = 0
Wo,C abi, + Wl ,I aiui, . . , + w,- 1 a'ui, d -

d - 1 j - 1

= 1 W, 1
k = O i = O

where ul, is the value (state) of each digit, and 0 < ul, <
R.

For a BF over a modulus M to span M, there must be
at least one representation of each of 0, . . . , M - 1 within
the basis. If there is only one representation for each of 0,

390

. . . , M - 1 then the basis is non-redundant, otherwise it
is redundant. j,,,, is the minimum value of j, for a given
BF, necessary for the BF to span the modulus.

As an example of a BF, consider the following BF
parameters,

Let us consider the i / p of the following R = 2, binary
digit, data word, using a d = 2-bit-wide data bus

0 0 1 0 1 0
0 0 0 1 1 0

c

If this is interpreted using the above BF, it evaluates to

l(a3 + a') + 2(a2 + a') = 130 + 60 = 190
Over a suitable modulus, m, this BF will span the range
0, ..., m - 1. For instance, if m = 29, the given BF spans
m, where jmi. = 4, and the above example equates to
(190)29 = 16.

The throughput for this example BF will be limited by
j'. In other words, one data word is passed every 6 clock
cycles.

102 Example BDCS block (see Section 5).
To clarify the function of the BDCS block, for the "IT
split-multiplier example of Section 5, we present the
format of the small power of 2 multiplications (SPMs),
mod 61, as performed within the BDCS block,

If x[n] is defined as x525 + x424 + ... + x02O and
represented by x5, x4, x j , x2, xl, xo we can define the
following

2Ox[n] = x[n]

2'xCnl = x4, x3, x2, xl , xo, x5 + 0, 440, x5, 0

22xCnl = x ~ , x ~ , x ~ , x ~ , x ~ , x ~ + ~ , ~ , O , X ~ , X ~ ~ O

%nI = x2, xl, xo, x5, x4, x3 + 0,0,x5, x4, x3, 0
24xCnl = xl, xo, x5, x4, x3, x2 + 0,x5, x4, x3, x2, 0
Z5xCnl = xo, x5, x4, x3, x2, x1 + x5, x4, x3, x2, xl, 0

and, instead of explicitly adding the shifted data, we can
pass each output out of the BDCS block as a 6 * 2-bit
data stream, (i.e. d = 2, j = j' = 6).

(all operations mod 61)

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 6, November I994

