Constructions for complementary and

 near-complementary arrays and sequencesusing MUBs and tight frames, respectively

Matthew G. Parker, Gaofei Wu

The Selmer Center, Department of Informatics, University of Bergen, Bergen, Norway,

matthew@ii.uib.no

January 29, 2015

Some history

peak factor problem:
Find large sequence set over small alphabet, e.g. biphase or more general PSK, where each member has low peak-to-average power ratio (PAR) wrt the continuous Fourier transform.
e.g. $s=1,1,1,-1,1,1,-1,1$ has $\operatorname{PAR}=2.0$.

More examples:

Figure 1: Power Spectra for Length 127 m -Sequence, Length 127 Shifted-Legendre, and Length 128 Rudin-Shapiro Sequences, (Power on y-axis, Spectral Index on x-axis)

. . . more precisely ...

peak factor problem (continued):

- Maximize sequence set size.
- Minimize sequence PAR.
- Maximize pairmise distance between
sequences, e.g. minimize the pairwise
inner product.
peak factor problem (continued):
- Maximize sequence set size.
- Minimize sequence PAR.
- Maximize pairwise distance between
sequences, e.g. minimize the pairwise
inner product.

. . . more precisely

peak factor problem (continued):

- Maximize sequence set size.
- Minimize sequence PAR.

Maximize pairwise distance between
sequences, e.g. minimize the pairwise
inner product.
peak factor problem (continued):

- Maximize sequence set size.
- Minimize sequence PAR.
- Maximize pairwise distance between sequences, e.g. minimize the pairwise inner product.

. . Solution by Jim and Jonathan

Important solution found by Jim Davis and Jonathan Jedwab:

Golay complementary sequences:

e.g.

$\frac{|s(\alpha)|^{2}}{2^{n}} \leq 2.0, \forall \alpha,|\alpha|=1 \Rightarrow \operatorname{PAR}(s) \leq 2.0$.
Size of quadratic codeset (path graphs) + affine offsets is $2^{n} n$!

Pairwise distance $\geq 2^{n-2}$ \Rightarrow pairwise inner product $\leq 2^{n-1}$

. . Solution by Jim and Jonathan

Important solution found by Jim Davis and Jonathan Jedwab:
Golay complementary sequences:
$s=(-1)^{f(x)}, \quad f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$.
e.g.
$f(x)=x_{0} x_{1}+x_{1} x_{2} \Rightarrow s=1,1,1,-1,1,1,-1,1$. Let $s(z)=1+z+z^{2}-z^{3}+z^{4}+z^{5}-z^{6}+z^{7}$. Then $\frac{|s(\alpha)|^{2}}{2^{n}} \leq 2.0, \forall \alpha,|\alpha|=1 \Rightarrow \operatorname{PAR}(s) \leq 2.0$.
Size of quadratic codeset (path graphs) + affine offsets is $2^{n} n$!.
Pairwise distance \Rightarrow pairwise inner product $\leq 2^{n-1}$

. . Solution by Jim and Jonathan

Important solution found by Jim Davis and Jonathan Jedwab:
Golay complementary sequences:
$s=(-1)^{f(x)}, \quad f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$.
e.g.
$f(x)=x_{0} x_{1}+x_{1} x_{2} \Rightarrow s=1,1,1,-1,1,1,-1,1$.
Let $s(z)=1+z+z^{2}-z^{3}+z^{4}+z^{5}-z^{6}+z^{7}$. Then

Size of quadratic codeset (path graphs) + affine offsets is $2^{n} n$!.
Pairwise distance $\geq 2^{n-2}$ \Rightarrow pairwise inner product $\leq 2^{n-1}$

. . Solution by Jim and Jonathan

Important solution found by Jim Davis and Jonathan Jedwab:
Golay complementary sequences:
$s=(-1)^{f(x)}, \quad f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$.
e.g.
$f(x)=x_{0} x_{1}+x_{1} x_{2} \Rightarrow s=1,1,1,-1,1,1,-1,1$.
Let $s(z)=1+z+z^{2}-z^{3}+z^{4}+z^{5}-z^{6}+z^{7}$. Then $\frac{|s(\alpha)|^{2}}{2^{n}} \leq 2.0, \forall \alpha,|\alpha|=1 \Rightarrow \operatorname{PAR}(s) \leq 2.0$.
Size of quadratic codeset (path graphs) + affine offsets is $2^{n} n$!.
Pairwise distance \Rightarrow pairwise inner

. . Solution by Jim and Jonathan

Important solution found by Jim Davis and Jonathan Jedwab:
Golay complementary sequences:
$s=(-1)^{f(x)}, \quad f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$.
e.g.
$f(x)=x_{0} x_{1}+x_{1} x_{2} \Rightarrow s=1,1,1,-1,1,1,-1,1$.
Let $s(z)=1+z+z^{2}-z^{3}+z^{4}+z^{5}-z^{6}+z^{7}$. Then $\frac{|s(\alpha)|^{2}}{2^{n}} \leq 2.0, \forall \alpha,|\alpha|=1 \Rightarrow \operatorname{PAR}(s) \leq 2.0$.
Size of quadratic codeset (path graphs) + affine offsets is $2^{n} n$!.
Pairwise distance

. . Solution by Jim and Jonathan

Important solution found by Jim Davis and Jonathan Jedwab:
Golay complementary sequences:
$s=(-1)^{f(x)}, \quad f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$.
e.g.
$f(x)=x_{0} x_{1}+x_{1} x_{2} \Rightarrow s=1,1,1,-1,1,1,-1,1$.
Let $s(z)=1+z+z^{2}-z^{3}+z^{4}+z^{5}-z^{6}+z^{7}$. Then $\frac{|s(\alpha)|^{2}}{2^{n}} \leq 2.0, \forall \alpha,|\alpha|=1 \Rightarrow \operatorname{PAR}(s) \leq 2.0$.
Size of quadratic codeset (path graphs) + affine offsets is $2^{n} n!$.
Pairwise distance $\geq 2^{n-2}$
\Rightarrow pairwise inner product $\leq 2^{n-1}$.

these are Golay complementary pairs

e.g. $\left(s, s^{\prime}\right)$ where
$s(z)=(-1)^{f(x)}$ and $s^{\prime}(z)=(-1)^{f^{\prime}(x)}$,
where
$f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$ and $f^{\prime}(x)=f(x)+x_{n-1}$.

Then $|s(\alpha)|^{2}+\left|s^{\prime}(\alpha)\right|^{2}=2^{n+1}$, $\Rightarrow \operatorname{PAR}(s), \operatorname{PAR}\left(s^{\prime}\right) \leq 2.0$.

these are Golay complementary pairs

e.g. $\left(s, s^{\prime}\right)$ where
$s(z)=(-1)^{f(x)}$ and $s^{\prime}(z)=(-1)^{f^{\prime}(x)}$,
where
$f(x)=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}$ and $f^{\prime}(x)=f(x)+x_{n-1}$.

Then $|s(\alpha)|^{2}+\left|s^{\prime}(\alpha)\right|^{2}=2^{n+1}$,
$\Rightarrow \operatorname{PAR}(s), \operatorname{PAR}\left(s^{\prime}\right) \leq 2.0$.

The Hadamard Transform

Let $s=a+b z$.
The Hadamard transform of the coefficient sequence, (a, b), of s is $(s(1), s(-1))$.
i.e.

$$
\binom{s(1)}{s(-1)}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{a}{b}=H\binom{a}{b} .
$$

This is a residue computation mod $z^{2}-1=(z-1)(z+1)$, i.e.
$s(1)=s(z) \bmod (z-1), \quad s(-1)=s(z) \quad \bmod (z+1)$.

Hadamard is Periodic

The length-2 Hadamard transform is a periodic Fourier transform, i.e. a cyclic modulus
$z^{2}-1=(z-1)(z+1)$.
A length-2 continuous Fourier transform evaluates $s(z)=a+b z$ at all $z=\alpha,|\alpha|=1$. One can do this via 2×2 matrix transforms of the form:

i.e. compute residues of $s(z)$ mod

Hadamard is Periodic

The length-2 Hadamard transform is a periodic Fourier transform, i.e. a cyclic modulus $z^{2}-1=(z-1)(z+1)$.
A length-2 continuous Fourier transform evaluates $s(z)=a+b z$ at all $z=\alpha,|\alpha|=1$. One can do this via 2×2 matrix transforms of the form:

$$
\binom{s(\alpha)}{s(-\alpha)}=\left(\begin{array}{rr}
1 & \alpha \\
1 & -\alpha
\end{array}\right)\binom{a}{b},
$$

i.e. compute residues of $s(z)$ mod $z^{2}-\alpha^{2}=(s-\alpha)(s+\alpha), \forall \alpha,|\alpha|=1$.

negaHadamard is negaperiodic

The length-2 negaHadamard transform is a negaperiodic (negacyclic) Fourier transform, i.e. a negacyclic modulus $z^{2}+1=(z-i)(z+i)$.

A length-2 negaHadamard transform evaluates $s(z)=a+b z$ at $z=i$ and $z=-i$. One can do this via a 2×2 matrix transform:

i.e. compute residues of $s(z) \bmod z^{2}+1$.

negaHadamard is negaperiodic

The length-2 negaHadamard transform is a negaperiodic (negacyclic) Fourier transform, i.e. a negacyclic modulus $z^{2}+1=(z-i)(z+i)$.
A length-2 negaHadamard transform evaluates $s(z)=a+b z$ at $z=i$ and $z=-i$. One can do this via a 2×2 matrix transform:

$$
\binom{s(i)}{s(-i)}=\left(\begin{array}{rr}
1 & i \\
1 & -i
\end{array}\right)\binom{a}{b}=N\binom{a}{b}
$$

i.e. compute residues of $s(z) \bmod z^{2}+1$.

Hadamard and negaHadamard represents aperiodic autocorrelation

$$
s(z)=a+b z
$$

Compute residues of $s(z) s^{*}\left(z^{-1}\right) \bmod \left(z^{2}-1\right)\left(z^{2}+1\right)=\left(z^{4}-1\right)$ is equivalent to computing residues of $s(z) s^{*}\left(z^{-1}\right)$.

For $s(z)=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}$, periodic autocorrelation is computed

from
and negaperiodic autocorrelation is computed from
to compute aperiodic aut., we need to compute

$$
f(x)+f(x+h)+(j \odot h) \cdot x, \quad \forall j, h, \in \mathbb{F}_{2}^{n},
$$

Hadamard and negaHadamard represents aperiodic autocorrelation

$s(z)=a+b z$.
Compute residues of $s(z) s^{*}\left(z^{-1}\right) \bmod \left(z^{2}-1\right)\left(z^{2}+1\right)=\left(z^{4}-1\right)$ is equivalent to computing residues of $s(z) s^{*}\left(z^{-1}\right)$.
For $s(z)=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}$, periodic autocorrelation is computed from

$$
f(x)+f(x+h), \quad \forall h \in \mathbb{F}_{2}^{n}
$$

and negaperiodic autocorrelation is computed from

$$
f(x)+f(x+h)+h \cdot x, \quad \forall h \in \mathbb{F}_{2}^{n} .
$$

to compute aperiodic aut., we need to compute

Hadamard and negaHadamard represents aperiodic autocorrelation

$s(z)=a+b z$.
Compute residues of $s(z) s^{*}\left(z^{-1}\right) \bmod \left(z^{2}-1\right)\left(z^{2}+1\right)=\left(z^{4}-1\right)$ is equivalent to computing residues of $s(z) s^{*}\left(z^{-1}\right)$.

For $s(z)=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}$, periodic autocorrelation is computed from

$$
f(x)+f(x+h), \quad \forall h \in \mathbb{F}_{2}^{n}
$$

and negaperiodic autocorrelation is computed from

$$
f(x)+f(x+h)+h \cdot x, \quad \forall h \in \mathbb{F}_{2}^{n}
$$

to compute aperiodic aut., we need to compute

$$
f(x)+f(x+h)+(j \odot h) \cdot x, \quad \forall j, h, \in \mathbb{F}_{2}^{n}
$$

where ' \odot ' means pointwise product.

$2 \times 2 \times \ldots 2$ array transform \Leftrightarrow multivariate

The n dimensional Hadamard (resp. negaHadamard) transform over $\left(\mathcal{C}^{2}\right)^{\otimes n}$ is given by the action of $H^{\otimes n}\left(\right.$ resp. $\left.N^{\otimes n}\right)$, Let $s(z)=s\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)=(-1)^{f}$ $s_{00 \ldots 0}+s_{10 \ldots 0} z_{0}+s_{01 \ldots 0} z_{1}+s_{11 \ldots 0} z_{0} z_{1}$ $S_{11} \ldots Z_{0} Z_{1} \ldots Z_{n-1}$

The Hadamard transform of $s=(-1)^{f}$ is

$2 \times 2 \times \ldots 2$ array transform \Leftrightarrow multivariate

The n dimensional Hadamard (resp. negaHadamard) transform over $\left(\mathcal{C}^{2}\right)^{\otimes n}$ is given by the action of $H^{\otimes n}\left(\right.$ resp. $\left.N^{\otimes n}\right)$, i.e.
Let $s(z)=s\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}=$ $s_{00 \ldots . .0}+s_{10 \ldots} . . z_{0}+s_{01 \ldots 0} z_{1}+s_{11 \ldots} . .0 z_{0} z_{1}+\ldots+$ $S_{11 \ldots 1} z_{0} z_{1} \ldots z_{n-1}$.

The Hadamard transform of $s=(-1)^{f}$ is

$2 \times 2 \times \ldots 2$ array transform \Leftrightarrow multivariate

The n dimensional Hadamard (resp. negaHadamard) transform over $\left(\mathcal{C}^{2}\right)^{\otimes n}$ is given by the action of $H^{\otimes n}\left(\right.$ resp. $\left.N^{\otimes n}\right)$, i.e.
Let $s(z)=s\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}=$ $s_{00 \ldots . .0}+s_{10 \ldots} . . z_{0}+s_{01 \ldots 0} z_{1}+s_{11 \ldots} . .0 z_{0} z_{1}+\ldots+$ $S_{11 \ldots 1} z_{0} z_{1} \ldots z_{n-1}$.

The Hadamard transform of $s=(-1)^{f}$ is

$$
\begin{gathered}
(s(1,1, \ldots, 1), s(-1,1, \ldots, 1), s(1,-1, \ldots, 1), s(-1,-1, \ldots, 1) \\
\ldots, s(-1,-1, \ldots,-1))
\end{gathered}
$$

$2 \times 2 \times \ldots 2$ array transform \Leftrightarrow multivariate

Similarly, the negaHadamard transform of $s=(-1)^{f}$ is given by

$$
\begin{gathered}
(s(i, i, \ldots, i), s(-i, i, \ldots, i), s(i,-i, \ldots, i), s(-i,-i, \ldots, i), \\
\ldots, s(-i,-i, \ldots,-i))
\end{gathered}
$$

$2 \times 2 \times \ldots 2$ array transform \Leftrightarrow multivariate

Similarly, the negaHadamard transform of $s=(-1)^{f}$ is given by

$$
\begin{gathered}
(s(i, i, \ldots, i), s(-i, i, \ldots, i), s(i,-i, \ldots, i), s(-i,-i, \ldots, i), \\
\ldots, s(-i,-i, \ldots,-i))
\end{gathered}
$$

... and the continuous n-variate Fourier transform of $s=(-1)^{f}$ is given by $\left(s\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right), s\left(-\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right), s\left(\alpha_{0},-\alpha_{1}, \ldots, \alpha_{n-1}\right), s\left(-\alpha_{C}\right.\right.$ $\left.\ldots, s\left(-\alpha_{0},-\alpha_{1}, \ldots,-\alpha_{n-1}\right)\right)$,
$\forall \alpha_{j},\left|\alpha_{j}\right|=1,0 \leq j<n$.
$2 \times 2 \times \ldots \times 2$ arrays with $\mathrm{PAR} \leq 2.0$ wrt the continuous Fourier transform?

Constructions? Well, actually ...er ...t the Davis-Jedwab construction again.
The pair $\left(s, s^{\prime}\right)$ in $\left(\mathcal{C}^{2}\right)^{\otimes n}$ of $2 \times 2 \times \ldots \times 2$ arrays are complementary with respect to the continuous multidimensional Fourier transform, where

A simple generalisation over \mathbb{Z}_{4} :
$s=i^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}, \quad s^{\prime}=i^{f^{\prime}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}$
$f=2\left(x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}\right)+\sum_{j=0}^{n-1} c_{j} x_{j}+d$,
$f^{\prime}=f+2 x_{0}$,
$c_{j}, d \in \mathbb{Z}_{4}$.

$2 \times 2 \times \ldots \times 2$ arrays with $\mathrm{PAR} \leq 2.0$ wrt the

 continuous Fourier transform?Constructions? Well, actually ...er ... the Davis-Jedwab construction again. The pair $\left(s, s^{\prime}\right)$ in $\left(C^{2}\right)^{\otimes n}$ of $2 \times 2 \times \ldots \times 2$ arrays are complementary with respect to the continuous multidimensional Fourier transform, where $S=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}$ $+x_{n-2} x_{n-1}, \quad f^{\prime}=f+x_{0}$

A simple generalisation over \mathbb{Z}_{4}

$2 \times 2 \times \ldots \times 2$ arrays with $P A R \leq 2.0$ wrt the

 continuous Fourier transform?Constructions? Well, actually ...er ... the Davis-Jedwab construction again.
The pair $\left(s, s^{\prime}\right)$ in $\left(\mathcal{C}^{2}\right)^{\otimes n}$ of $2 \times 2 \times \ldots \times 2$ arrays are complementary with respect to the continuous multidimensional Fourier transform, where

$$
\begin{aligned}
& s=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}, \quad s^{\prime}=(-1)^{f^{\prime}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)} \\
& f=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}, \quad f^{\prime}=f+x_{0} .
\end{aligned}
$$

A simple generalisation over \mathbb{Z}_{4}

$2 \times 2 \times \ldots \times 2$ arrays with $\mathrm{PAR} \leq 2.0$ wrt the

continuous Fourier transform?

Constructions? Well, actually ...er ... the Davis-Jedwab construction again.
The pair $\left(s, s^{\prime}\right)$ in $\left(\mathcal{C}^{2}\right)^{\otimes n}$ of $2 \times 2 \times \ldots \times 2$ arrays are complementary with respect to the continuous multidimensional Fourier transform, where

$$
\begin{aligned}
& s=(-1)^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}, \quad s^{\prime}=(-1)^{f^{\prime}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)} \\
& f=x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}, \quad f^{\prime}=f+x_{0} .
\end{aligned}
$$

A simple generalisation over \mathbb{Z}_{4} :

$$
\begin{aligned}
& s=i^{f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)}, \quad s^{\prime}=i^{f^{\prime}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)} \\
& f=2\left(x_{0} x_{1}+x_{1} x_{2}+\ldots+x_{n-2} x_{n-1}\right)+\sum_{j=0}^{n-1} c_{j} x_{j}+d, \\
& f^{\prime}=f+2 x_{0}, \quad c_{j}, d \in \mathbb{Z}_{4} .
\end{aligned}
$$

What is the complementary construction?

Let (A, B) and (C, D) be n and m-dimensional complementary pairs, respectively. Let

$$
\begin{aligned}
& F(z, y)=C(y) A(z)+D^{*}(y) B(z), \\
& G(z, y)=D(y) A(z)-C^{*}(y) B(z),
\end{aligned}
$$

where ' $*$ ' means complex conjugate,
$y=\left(y_{0}, y_{1}, \ldots, y_{m-1}\right)$ and $z=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)$.
Then (F, G) is an $n+m$-dimensional complementary pair.

In matrix form:

What is the complementary construction?

Let (A, B) and (C, D) be n and m-dimensional complementary pairs, respectively. Let

$$
\begin{aligned}
& F(z, y)=C(y) A(z)+D^{*}(y) B(z), \\
& G(z, y)=D(y) A(z)-C^{*}(y) B(z),
\end{aligned}
$$

where ' $*$ ' means complex conjugate,
$y=\left(y_{0}, y_{1}, \ldots, y_{m-1}\right)$ and $z=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)$.
Then (F, G) is an $n+m$-dimensional complementary pair.

In matrix form:

$$
\binom{F(z, y)}{G(z, y)}=\left(\begin{array}{rr}
C(y) & D^{*}(y) \\
D(y) & -C^{*}(y)
\end{array}\right)\binom{A(z)}{B(z)} .
$$

Why does the construction work?

$$
\binom{F(z, y)}{G(z, y)}=\left(\begin{array}{rr}
C(y) & D^{*}(y) \\
D(y) & -C^{*}(y)
\end{array}\right)\binom{A(z)}{B(z)} .
$$

Because (A, B) is a pair, $|A|^{2}+|B|^{2}=c$, a constant, and, up to normalisation, $\left(\begin{array}{cc}c(1) \\ D(v) & D^{*}(y) \\ -c^{*}(v)\end{array}\right)$ is unitary, because (C, D) is a pair. i.e. because $\left.C\right|^{2}+|B|^{2}=c^{\prime}$, a constant, so (F, G) is then a pair by Parseval, i.e. $|F|^{2}+|G|^{2}=c^{\prime \prime}$, a constant.

Why does the construction work?

$$
\binom{F(z, y)}{G(z, y)}=\left(\begin{array}{rr}
C(y) & D^{*}(y) \\
D(y) & -C^{*}(y)
\end{array}\right)\binom{A(z)}{B(z)} .
$$

Because (A, B) is a pair, $|A|^{2}+|B|^{2}=c$, a constant, and, up to normalisation, $\left(\begin{array}{cc}C(1) \\ D(y) & D^{*}(y) \\ -C^{*}(y)\end{array}\right)$ is unitary, because (C, D) is a pair. i.e. because $|C|^{2}+|B|^{2}=c^{\prime}$, a constant, so (F, G) is then a pair by Parseval, i.e. $|F|^{2}+|G|^{2}=c^{\prime \prime}$, a constant.

A general recursive form of the complementary set construction

$$
F_{j}\left(\mathbf{z}_{j}\right)=\mathcal{U}_{j}\left(\mathbf{y}_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right),
$$

where $\mathcal{U}_{j}\left(\mathbf{y}_{j}\right)$ is any $S \times S$ complex unitary,
$\mathbf{y}_{j}=\left(z_{\mu_{j}}, z_{\mu_{j}+1}, \ldots, z_{\mu_{j}+m_{j}-1}\right)$,
$\mathbf{z}_{j}=\left(z_{0}, z_{1}, \ldots, z_{\mu_{j}+m_{j}-1}\right), \mu_{j}=\sum_{i=0}^{j-1} m_{j}, \mu_{0}=0$, $F_{j}\left(\mathbf{z}_{j}\right)=\left(F_{j, 0}\left(\mathbf{z}_{j}\right), F_{j, 1}\left(\mathbf{z}_{j}\right), \ldots, F_{j, S-1}\left(\mathbf{z}_{j}\right)\right)^{T}$, and $F_{-1}=\frac{1}{\sqrt{5}}(1,1, \ldots, 1)$.
This is a very general recursive equation for the construction of complementary sets of arrays of size S. (see also Budisin and Spasojevic)

A general recursive form of the complementary set

 construction$$
F_{j}\left(\mathbf{z}_{j}\right)=\mathcal{U}_{j}\left(\mathbf{y}_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j}\left(\mathbf{y}_{j}\right)$ is any $S \times S$ complex unitary,
$\mathbf{y}_{j}=\left(z_{\mu_{j}}, z_{\mu_{j}+1}, \ldots, z_{\mu_{j}+m_{j}-1}\right)$,
$\mathbf{z}_{j}=\left(z_{0}, z_{1}, \ldots, z_{\mu_{j}+m_{j}-1}\right), \mu_{j}=\sum_{i=0}^{j-1} m_{j}, \mu_{0}=0$, $F_{j}\left(\mathbf{z}_{j}\right)=\left(F_{j, 0}\left(\mathbf{z}_{j}\right), F_{j, 1}\left(\mathbf{z}_{j}\right), \ldots, F_{j, S-1}\left(\mathbf{z}_{j}\right)\right)^{T}$, and $F_{-1}=\frac{1}{\sqrt{S}}(1,1, \ldots, 1)$.
This is a very general recursive equation for the construction of complementary sets of arrays of size S.

A general recursive form of the complementary set

 construction$$
F_{j}\left(\mathbf{z}_{j}\right)=\mathcal{U}_{j}\left(\mathbf{y}_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j}\left(\mathbf{y}_{j}\right)$ is any $S \times S$ complex unitary,
$\mathbf{y}_{j}=\left(z_{\mu_{j}}, z_{\mu_{j}+1}, \ldots, z_{\mu_{j}+m_{j}-1}\right)$,
$\mathbf{z}_{j}=\left(z_{0}, z_{1}, \ldots, z_{\mu_{j}+m_{j}-1}\right), \mu_{j}=\sum_{i=0}^{j-1} m_{j}, \mu_{0}=0$, $F_{j}\left(\mathbf{z}_{j}\right)=\left(F_{j, 0}\left(\mathbf{z}_{j}\right), F_{j, 1}\left(\mathbf{z}_{j}\right), \ldots, F_{j, S-1}\left(\mathbf{z}_{j}\right)\right)^{T}$, and $F_{-1}=\frac{1}{\sqrt{S}}(1,1, \ldots, 1)$.
This is a very general recursive equation for the construction of complementary sets of arrays of size S. (see also Budisin and Spasojevic).

A special case of the complementary pair construction for $2 \times 2 \times \ldots \times 2$ arrays

Setting $S=2$,

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $P_{j} \in\{I, X\}, I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$V_{j}\left(z_{j}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & z_{j}\end{array}\right)$,
For the array version of the Davis-Jedwab construction over \mathbb{Z}_{4} we choose $\mathcal{U}_{j} \in\{H, N\}$

A special case of the complementary pair construction for $2 \times 2 \times \ldots \times 2$ arrays

Setting $S=2$,

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $P_{j} \in\{I, X\}, I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$V_{j}\left(z_{j}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & z_{j}\end{array}\right)$,
For the array version of the Davis-Jedwab construction over \mathbb{Z}_{4} we choose $\mathcal{U}_{j} \in\{H, N\}$.
N generates a matrix group
$N=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right)$.

where $\omega=\frac{1+i}{\sqrt{2}}$.
$N^{3}=\omega 1$.
so, up to a leading diagonal matrix,

$$
\left\{I, N, N^{2}\right\} \equiv\{I, N, H\}
$$

Alternatively $\mathcal{N}=\mu N$ has order 3 , where $\mu=e^{\frac{23 \pi i}{12}}$.

N generates a matrix group

$N=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right)$.
$N^{2}=\frac{\omega}{\sqrt{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right)\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)=\frac{\omega}{\sqrt{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right) H$, where $\omega=\frac{1+i}{\sqrt{2}}$.
$N^{3}=\omega l$.
so, up to a leading diagonal matrix,

$$
\left\{I, N, N^{2}\right\} \equiv\{I, N, H\},
$$

N generates a matrix group

$N=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right)$.
$N^{2}=\frac{\omega}{\sqrt{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right)\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)=\frac{\omega}{\sqrt{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right) H$,
where $\omega=\frac{1+i}{\sqrt{2}}$.
$N^{3}=\omega l$.
so, up to a leading diagonal matrix,

$$
\left\{I, N, N^{2}\right\} \equiv\{I, N, H\},
$$

Alternatively $\mathcal{N}=\mu N$ has order 3 , where $\mu=e^{\frac{23 \pi i}{12}}$.

N generates a matrix group

$N=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right)$.
$N^{2}=\frac{\omega}{\sqrt{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right)\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)=\frac{\omega}{\sqrt{2}}\left(\begin{array}{rr}1 & 0 \\ 0 & -i\end{array}\right) H$,
where $\omega=\frac{1+i}{\sqrt{2}}$.
$N^{3}=\omega l$.
so, up to a leading diagonal matrix,

$$
\left\{I, N, N^{2}\right\} \equiv\{I, N, H\}
$$

Alternatively $\mathcal{N}=\mu N$ has order 3 , where $\mu=e^{\frac{23 \pi i}{12}}$.

$\{I, H, N\}$ is an optimal MUB

Denote the magnitude of the normalised pairwise inner product of two equal-length complex vectors, u and v, by

$$
\Delta(u, v)=\frac{|\langle u, v\rangle|}{|u| \cdot|v|}
$$

A pair of bases $u_{0}, \cdots, u_{\delta-1}$ and $v_{0}, \cdots, v_{\delta-1}$ in \mathbb{C}^{δ} is mutually unbiased if both are orthonormal and $\exists a$ such that $\Delta^{2}\left(u_{i}, v_{j}\right)=\left|\left\langle u_{i}, v_{j}\right\rangle\right|^{2}=a, \forall i, j$.

$\{I, H, N\}$ is an optimal MUB

Denote the magnitude of the normalised pairwise inner product of two equal-length complex vectors, u and v, by

$$
\Delta(u, v)=\frac{|\langle u, v\rangle|}{|u| \cdot|v|}
$$

A pair of bases $u_{0}, \cdots, u_{\delta-1}$ and $v_{0}, \cdots, v_{\delta-1}$ in \mathbb{C}^{δ} is mutually unbiased if both are orthonormal and $\exists a$ such that $\Delta^{2}\left(u_{i}, v_{j}\right)=\left|\left\langle u_{i}, v_{j}\right\rangle\right|^{2}=a, \forall i, j$. A set of bases is then called a set of mutually unbiased bases (MUB) if any pair of them is mutually unbiased. A MUB contains at most $\delta+1$ bases in \mathbb{C}^{δ}, in which case it is an optimal MUB and $a=\frac{1}{\delta}$.

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right),
$$

where $\mathcal{U}_{j} \in\{H, N\}$.
er . . . um any ideas?

Yes, well done, choose $\mathcal{U}_{j} \in\{I, H, N\}$.

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j} \in\{H, N\}$.

Yes, well done, choose $\mathcal{U}_{j} \in\{I, H, N\}$.

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j} \in\{H, N\}$.

Yes, well done, choose $\mathcal{U}_{j} \in\{I, H, N\}$.

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right),
$$

where $\mathcal{U}_{j} \in\{H, N\}$.

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j} \in\{H, N\}$.
.......erum ...
well done, choose $\mathcal{U}_{j} \in\{I, H, N\}$

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j} \in\{H, N\}$.
.......er ... um any ideas?

A MUB generalisation of array construction

$\{I, H, N\}$ is an optimal MUB for $\delta=2$.
Recap:
Davis-Jedwab complementary pair construction over \mathbb{Z}_{4} :

$$
F_{j}\left(\mathbf{z}_{j}\right)=P_{j} \mathcal{U}_{j} V_{j}\left(z_{j}\right) F_{j-1}\left(\mathbf{z}_{j-1}\right)
$$

where $\mathcal{U}_{j} \in\{H, N\}$.
....... er ... um any ideas?
Yes, well done, choose $\mathcal{U}_{j} \in\{I, H, N\}$.

Code parameters for $\delta=2$-MUB complementary pair construction

- array and sequence PAR ≤ 2.0.
- array enumeration IS

sequence enumeration is
$\left|\mathcal{B}_{1}\right|=2^{n 3} \sum_{k=0}^{n} 2^{k-2 k!}\left\{\begin{array}{c}n \\ k\end{array}\right\}+2^{n}-\frac{1}{2}$, where
$S_{2}(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n}$
Asymptotically, $\left|\mathcal{B}_{l n}\right|_{n \rightarrow \infty} \rightarrow \frac{2^{n-2} n!}{\ln ^{(3) n+1}}$
- squared inner product for sequence and array is $\Delta^{2}\left(\mathcal{B}_{n}\right)=\Delta^{2}\left(\mathcal{B}_{\downarrow, n}\right)=\frac{1}{2}$
DJ array/seq enumeration approaches $4^{n} / n!2^{2 n-1}$

Code parameters for $\delta=2$-MUB complementary pair construction

- array and sequence PAR ≤ 2.0.
- array enumeration is

$$
\left|\mathcal{B}_{n}\right|=\left\{\begin{array}{l}
2^{n-1} \cdot\left(3^{n}+3 \cdot 3^{\frac{n}{2}}-2\right), \text { for } n \text { even, } \\
2^{n-1} \cdot\left(3^{n}+5 \cdot 3^{\frac{n-1}{2}}-2\right), \text { for } n \text { odd, }
\end{array}\right.
$$

sequence enumeration is

$\left|\mathcal{B}_{\downarrow, n}\right|=2^{n} 3 \sum_{k=0}^{n} 2^{k-2} k!\left\{\begin{array}{c}n \\ k\end{array}\right\}+2^{n}-\frac{1}{2}$, where
$S_{2}(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n}$
Asymptotically, $\left|\mathcal{B}_{\downarrow, n}\right|_{n \rightarrow \infty} \rightarrow \frac{2^{n-2} n!}{\ln \left(\frac{3}{(2)} n+1\right.}$

- squared inner product for sequence and array is $\Delta^{2}\left(\mathcal{B}_{n}\right)=\Delta^{2}\left(\mathcal{B}_{\downarrow, n}\right)=\frac{1}{2}$
DJ array/seq enumeration approaches $4^{n} / n!2^{2 n-1}$

Code parameters for $\delta=2$-MUB complementary pair construction

- array and sequence PAR ≤ 2.0.
- array enumeration is

$$
\left|\mathcal{B}_{n}\right|=\left\{\begin{array}{l}
2^{n-1} \cdot\left(3^{n}+3 \cdot 3^{\frac{n}{2}}-2\right), \text { for } n \text { even, } \\
2^{n-1} \cdot\left(3^{n}+5 \cdot 3^{\frac{n-1}{2}}-2\right), \text { for } n \text { odd, }
\end{array}\right.
$$

sequence enumeration is

$$
\begin{aligned}
& \left|\mathcal{B}_{\downarrow, n}\right|=2^{n} 3 \sum_{k=0}^{n} 2^{k-2} k!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}+2^{n}-\frac{1}{2}, \text { where } \\
& S_{2}(n, k)=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n} .
\end{aligned}
$$

Asymptotically, $\left|\mathcal{B}_{\downarrow, n}\right|_{n \rightarrow \infty} \rightarrow \frac{2^{n-2} n!}{\ln \left(\frac{3}{2} n+1\right.}$.

- squared inner product for sequence and array is

$$
\Delta^{2}\left(\mathcal{B}_{n}\right)=\Delta^{2}\left(\mathcal{B}_{\downarrow, n}\right)=\frac{1}{2} .
$$

Code parameters for $\delta=2$-MUB complementary pair construction

- array and sequence PAR ≤ 2.0.
- array enumeration is

$$
\left|\mathcal{B}_{n}\right|=\left\{\begin{array}{l}
2^{n-1} \cdot\left(3^{n}+3 \cdot 3^{\frac{n}{2}}-2\right), \text { for } n \text { even, } \\
2^{n-1} \cdot\left(3^{n}+5 \cdot 3^{\frac{n-1}{2}}-2\right), \text { for } n \text { odd, }
\end{array}\right.
$$

sequence enumeration is

$$
\begin{aligned}
& \left|\mathcal{B}_{\downarrow, n}\right|=2^{n} 3 \sum_{k=0}^{n} 2^{k-2} k!\left\{\begin{array}{c}
n \\
k
\end{array}\right\}+2^{n}-\frac{1}{2}, \text { where } \\
& S_{2}(n, k)=\left\{\begin{array}{c}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n} .
\end{aligned}
$$

Asymptotically, $\left|\mathcal{B}_{\downarrow, n}\right|_{n \rightarrow \infty} \rightarrow \frac{2^{n-2} n!}{\ln \left(\frac{3}{2} n+1\right.}$.

- squared inner product for sequence and array is

$$
\Delta^{2}\left(\mathcal{B}_{n}\right)=\Delta^{2}\left(\mathcal{B}_{\downarrow, n}\right)=\frac{1}{2} .
$$

DJ array/seq enumeration approaches $4^{n} / n!2^{2 n-1}$,

Example 2-MUB sequences as graphs

(1) $\mathcal{U}=(H, H, H, H) \Rightarrow f_{3,0}(x)=i^{2\left(x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}\right)}$.
(2) $\mathcal{U}=(H, N, H, N) \Rightarrow f_{3,0}(\mathbf{x})=i^{2\left(x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}\right)+x_{1}+x_{3}}$.
(3) $\mathcal{U}=(H, I, I, N, I, N) \Rightarrow$

$$
f_{5,0}(\mathbf{x})=\left(x_{1}+x_{3}+1\right)\left(x_{2}+x_{3}+1\right)\left(x_{4}+x_{5}+1\right) i^{2\left(x_{0} x_{3}+x_{3} x_{5}\right)+x_{3}+x_{5}}
$$

(4) $\mathcal{U}=(N, I, H, I, I) \Rightarrow$

$$
f_{4, k}(\mathbf{x})=\left(x_{1}+x_{2}+1\right)\left(x_{3}+k+1\right)\left(x_{4}+k+1\right) i^{2\left(k x_{2}+x_{0} x_{2}\right)+x_{0}} .
$$

The MUB construction is very general

We are now working on generating array and sequence codesets with PAR ≤ 3.0 using the $\delta=3$ optimal MUB:

$$
\left\{I, F_{3}, D F_{3}, D^{2} F_{3}\right\}
$$

where $F_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & w\end{array}\right)$, and
$D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & w & 0 \\ 0 & 0 & w\end{array}\right)$, where $w=e^{\frac{2 \pi i}{3}}$.
The challenge is to enumerate and work out the maximum pairwise inner product.

The MUB construction is very general

We are now working on generating array and sequence codesets with PAR ≤ 3.0 using the $\delta=3$ optimal MUB:

$$
\left\{I, F_{3}, D F_{3}, D^{2} F_{3}\right\}
$$

where $F_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & w\end{array}\right)$, and
$D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & w & 0 \\ 0 & 0 & w\end{array}\right)$, where $w=e^{\frac{2 \pi i}{3}}$.
The challenge is to enumerate and work out the maximum pairwise inner product.

(Near)-complementary arrays/sequences from tight frames

A complementary construction using a δ-MUB comprises a set of unitary matrices with a fixed PAR bound of δ.
Using non-unitary matrices result in a PAR bound that increases on every iteration.

But what about using an equiangular tight-frame (ETF)?

The d-ETF comprises d^{2} length- d vectors with pairwise inner-product

(Near)-complementary arrays/sequences from tight frames

A complementary construction using a δ-MUB comprises a set of unitary matrices with a fixed PAR bound of δ.
Using non-unitary matrices result in a PAR bound that increases on every iteration.

But what about using an equiangular tight-frame (ETF)?

The d-ETF comprises d^{2} length- d vectors with pairwise inner-product

(Near)-complementary arrays/sequences from tight frames

A complementary construction using a δ-MUB comprises a set of unitary matrices with a fixed PAR bound of δ.
Using non-unitary matrices result in a PAR bound that increases on every iteration.

But what about using an equiangular tight-frame (ETF)?

The d-ETF comprises d^{2} length- d vectors with pairwise inner-product

(Near)-complementary arrays/sequences from tight frames

A complementary construction using a δ-MUB comprises a set of unitary matrices with a fixed PAR bound of δ.
Using non-unitary matrices result in a PAR bound that increases on every iteration.

But what about using an equiangular tight-frame (ETF)?

The d-ETF comprises d^{2} length- d vectors with pairwise inner-product $\frac{1}{\sqrt{d+1}}$.

(Near)-complementary arrays/sequences from tight

 framesThe 2-ETF comprises the four vectors $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$, where:
$\phi_{0}=\left(\sqrt{r_{+}}, \omega \sqrt{r_{-}}\right), \quad \phi_{1}=X \phi_{0}, \quad \phi_{2}=Y \phi_{0}, \quad \phi_{3}=Z \phi_{0}$,
where $\omega=e^{\frac{i \pi}{4}}, r_{ \pm}=\frac{1 \pm \frac{1}{\sqrt{3}}}{2}, X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

(Near)-complementary arrays/sequences from tight

 framesThree ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

First way:

constant.
A very large near-complementary construction as

distance, but a weak worst-case upper bound on PAR

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

First way:

- $\left\{U^{i j}, \quad 0 \leq i<j<4\right\}$, where $U_{i j}=\binom{\phi_{i}}{\phi_{j}}$. PAR $\leq 1.58^{t} \times T$ after t iterations $-T$ some constant.

distance, but a weak worst-case upper bound on PAR

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

First way:

- $\left\{U^{i j}, \quad 0 \leq i<j<4\right\}$, where $U_{i j}=\binom{\phi_{i}}{\phi_{j}}$. PAR $\leq 1.58^{t} \times T$ after t iterations $-T$ some constant.

distance, but a weak worst-case upper bound on PAR

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

First way:

- $\left\{U^{i j}, \quad 0 \leq i<j<4\right\}$, where $U_{i j}=\binom{\phi_{i}}{\phi_{j}}$. PAR $\leq 1.58^{t} \times T$ after t iterations - T some constant.

A very large near-complementary construction as $\left|\left\{U^{i j}, \quad 0 \leq i<j<4\right\}\right|=6$, with very high pairwise distance, but a weak worst-case upper bound on PAR.

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a (near)-complementary construction use the matrix sets:

Second way:

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a (near)-complementary construction use the matrix sets:

Second way:

> - $\left\{U_{j}, \quad 0 \leq j<4\right\}$, where $U_{j}=\binom{\phi_{j}}{\tilde{\phi}_{j}}$, where $\tilde{\phi}_{0}=\left(\sqrt{r_{+}}, \omega \sqrt{r_{-}}\right), \quad \tilde{\phi}_{1}=X \tilde{\phi}_{0}, \quad \phi_{2}=$
> $Y \tilde{\phi}_{0}, \quad \tilde{\phi}_{3}=Z \tilde{\phi}_{0}$.

A large complementary construction as $\left|\left\{U_{j}, \quad 0 \leq j<4\right\}\right|=4$, with quite high pairwise
distance, and $P A R \leq 2.0$.

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a (near)-complementary construction use the matrix sets:

Second way:

> - $\left\{U_{j}, \quad 0 \leq j<4\right\}$, where $U_{j}=\binom{\phi_{j}}{\tilde{\phi}_{j}}$, where $\tilde{\phi}_{0}=\left(\sqrt{r_{+}}, \omega \sqrt{r_{-}}\right), \quad \tilde{\phi}_{1}=X \tilde{\phi}_{0}, \quad \phi_{2}=$
> $Y \tilde{\phi}_{0}, \quad \tilde{\phi}_{3}=Z \tilde{\phi}_{0}$.

A large complementary construction as $\left|\left\{U_{j}, \quad 0 \leq j<4\right\}\right|=4$, with quite high pairwise
distance, and $P A R \leq 2.0$.

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a (near)-complementary construction use the matrix sets:

Second way:

$$
\begin{aligned}
& \text { - }\left\{U_{j}, \quad 0 \leq j<4\right\} \text {, where } U_{j}=\left(\begin{array}{c}
\text { 崇 } \\
\text {) }
\end{array}\right. \text {, where } \\
& \tilde{\phi}_{0}=\left(\sqrt{r_{+}}, \omega \sqrt{r_{-}}\right), \quad \tilde{\phi}_{1}=X \tilde{\phi}_{0}, \quad \tilde{\phi}_{2}= \\
& Y \tilde{\phi}_{0}, \quad \tilde{\phi}_{3}=Z \tilde{\phi}_{0} .
\end{aligned}
$$

A large complementary construction as $\left|\left\{U_{j}, \quad 0 \leq j<4\right\}\right|=4$, with quite high pairwise distance, and PAR ≤ 2.0.

(Near)-complementary arrays/sequences from tight

 framesThree ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

Third way:

A very large complementary construction as U has 4 rows, so $4!=24$ row permutations per iteration, with a very high pairwise distance, but a weak worst-case upper bound on PAR.

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

Third way:

- $\{U\}$, where $U=\left(\begin{array}{c}\phi_{0} \\ { }_{q} \\ \phi_{3}\end{array}\right)$.

A very large complementary construction as U has 4 rows, so $4!=24$ row permutations per iteration, with a very high pairwise distance, but a weak worst-case upper bound on PAR.

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

Third way:

- $\{U\}$, where $U=\left(\begin{array}{c}\phi_{0} \\ { }_{q} \\ \phi_{3}\end{array}\right)$.

A very large complementary construction as U has 4 rows, so $4!=24$ row permutations per iteration, with a very high pairwise distance, but a weak worst-case upper bound on PAR.

(Near)-complementary arrays/sequences from tight frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix sets:

Third way:

- $\{U\}$, where $U=\left(\begin{array}{l}\phi_{0} \\ \phi_{1} \\ \phi_{3}\end{array}\right)$.

A very large complementary construction as U has 4 rows, so $4!=24$ row permutations per iteration, with a very high pairwise distance, but a weak worst-case upper bound on PAR.

PAR with respect to continuous multivariate Fourier transform

$$
\text { e.g. } n=3 \text { so }(2 \times 2 \times 2 \text { Fourier }) \text { : }
$$

$$
\left(\begin{array}{rr}
1 & \alpha_{0} \\
1 & -\alpha_{0}
\end{array}\right) \otimes\left(\begin{array}{rr}
1 & \alpha_{1} \\
1 & -\alpha_{1}
\end{array}\right) \otimes\left(\begin{array}{rr}
1 & \alpha_{2} \\
1 & -\alpha_{2}
\end{array}\right)\left(\begin{array}{c}
s_{000} \\
s_{001} \\
s_{010} \\
\ldots \\
s_{111}
\end{array}\right)
$$

$\forall \alpha_{i}$ where $\left|\alpha_{i}\right|=1$.

PAR with respect to all local unitaries? $\left(\mathrm{PAR}_{U}\right)$

e.g. $n=3$ dimensions:
$\left(\begin{array}{rr}\cos \theta_{0} & \sin \theta_{0} \alpha_{0} \\ \sin \theta_{0} & -\cos \theta_{0} \alpha_{0}\end{array}\right) \otimes\left(\begin{array}{rr}\cos \theta_{1} & \sin \theta_{1} \alpha_{1} \\ \sin \theta_{1} & -\cos \theta_{1} \alpha_{1}\end{array}\right) \otimes\left(\begin{array}{rr}\cos \theta_{2} & \sin \theta_{2} \alpha_{2} \\ \sin \theta_{2} & -\cos \theta_{2} \alpha_{2}\end{array}\right)\left(\begin{array}{c}s_{000} \\ s_{001} \\ s_{010} \\ \ldots \\ s_{111}\end{array}\right)$,
$\forall \theta_{i}$ and $\forall \alpha_{i}$ where $\left|\alpha_{i}\right|=1$.

A quantum interlude - graph states

Pauli matrices: $I, X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.

Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$, is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$. Write operators as symmetric matrix:

Note also that the actions of $\{I, H, N\}$ stabilise $\{I, X, Z, Y\}$.

A quantum interlude - graph states

Pauli matrices: $I, X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.

Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$, is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$.
Write operators as symmetric matrix: $\left(\begin{array}{ccc}x & z & z \\ z & x & 1 \\ z & 1 & x\end{array}\right)$.

A quantum interlude - graph states

Pauli matrices: $l, X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.

Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$, is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$.
Write operators as symmetric matrix: $\left(\begin{array}{ccc}x & z & z \\ z & x & 1 \\ z & 1 & x\end{array}\right)$.
Note also that the actions of $\{I, H, N\}$ stabilise $\{I, X, Z, Y\}$.

A coding interlude - \mathbb{F}_{4}-additive self-dual codes

Pauli matrices: $I, X=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.

Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$ is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$.

Write operators as symmetric matrix:
Then generator $=$ parity check matrix for
\mathbb{F}_{4}-additive self-dual code is:
But \mathbb{F}_{4} interpretation does not consider commutation, e.g. $X Z=-Z X$, but $w .1=1 . w$.

A coding interlude - \mathbb{F}_{4}-additive self-dual codes

Pauli matrices: $I, X=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.

Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$, is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$.
Write operators as symmetric matrix: $\left(\begin{array}{ccc}x & z & z \\ z & x & 1 \\ z & 1 & x\end{array}\right)$.

Then generator $=$ parity check matrix for
\square
But \mathbb{F}_{4} internretation does not consider commutation, e.g. $X Z=-Z X$, but $w .1=1 . w$

A coding interlude - \mathbb{F}_{4}-additive self-dual codes

Pauli matrices: $I, X=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.

Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$, is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$.
Write operators as symmetric matrix: $\left(\begin{array}{ccc}x & z & z \\ z & x & 1 \\ z & 1 & x\end{array}\right)$.
Then generator $=$ parity check matrix for \mathbb{F}_{4}-additive self-dual code is: $\left(\begin{array}{ccc}w & 1 & 1 \\ 1 & w & 0 \\ 1 & 0 & w\end{array}\right)$.
But \mathbb{F}_{4} interpretation does not consider

A coding interlude $-\mathbb{F}_{4}$-additive self-dual codes

Pauli matrices: $I, X=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, $Y=i X Z$.
Example: 3-qubit graph state, $|\psi\rangle=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$, is unique joint eigenvector of operators $X \otimes Z \otimes Z$, $Z \otimes X \otimes I, Z \otimes I \otimes X$.
Write operators as symmetric matrix: $\left(\begin{array}{ccc}x & z & z \\ z & x & 1 \\ z & 1 & x\end{array}\right)$.
Then generator $=$ parity check matrix for \mathbb{F}_{4}-additive self-dual code is: $\left(\begin{array}{ccc}w & 1 & 1 \\ 1 & w & 0 \\ 1 & 0 & w\end{array}\right)$.
But \mathbb{F}_{4} interpretation does not consider commutation, e.g. $X Z=-Z X$, but $w .1=1 . w$.

PAR $_{U} \equiv$ Geometric Measure of Entanglement

Let \mathcal{P} be the set of tensor product states.

$\operatorname{PAR}_{U} \equiv$ Geometric Measure of Entanglement

Let \mathcal{P} be the set of tensor product states. Then

$$
\mathcal{G}(|\psi\rangle)=-\log _{2}\left(\max _{\phi \in \mathcal{P}}|\langle\phi \mid \psi\rangle|^{2}\right) .
$$

For $s=(-1)^{f}=|\psi\rangle$:

$$
\operatorname{PAR}_{U}(s)=2^{n-\mathcal{G}(|\psi\rangle)}
$$

$P^{2} R_{U}$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02\}$.
Max. peak wrt action of:

where $H=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$.
because graph is bipartite. (...umnot actually proved yet).
Note: If α is independence number of associated graph then $\mathrm{PAR} \geq 2^{\alpha}$

$P^{2} R_{U}$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02\}$.
Max. peak wrt action of:

$$
(I \otimes H \otimes H)
$$

where $H=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$.
because graph is bipartite. (... um ...not actually
proved yet).
Note: If α is independence number of associated graph then $P A R \geq 2^{\alpha}$.

$P^{P A R} U$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02\}$.
Max. peak wrt action of:

$$
(I \otimes H \otimes H)
$$

where $H=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$.
because graph is bipartite.
proved yet)
Note: If α is independence number of associated graph then $P A R \geq 2^{\alpha}$.

$P^{P A R} U$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02\}$.
Max. peak wrt action of:

$$
(I \otimes H \otimes H)
$$

where $H=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$.
because graph is bipartite. (. . um . . . not actually proved yet).
Note: If α is independence number of associated graph then PAR

$P^{P A R} U$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02\}$.
Max. peak wrt action of:

$$
(I \otimes H \otimes H)
$$

where $H=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$.
because graph is bipartite. (. . um . . . not actually proved yet).
Note: If α is independence number of associated graph then $\mathrm{PAR} \geq 2^{\alpha}$.

$P^{2} R_{U}$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02,12\}$.
Max. peak wrt action of:
because graph is not bipartite.

$P^{P A R} U$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02,12\}$.
Max. peak wrt action of:
????????
because graph is not bipartite.

Local unitary action \equiv local complementation

$$
N=\left(\begin{array}{cc}
1 & 1 \\
1 & -i
\end{array}\right), \quad D=\left(\begin{array}{cc}
1 & 0 \\
0+i
\end{array}\right), w=e^{\frac{\pi i}{4}}
$$

$$
\begin{aligned}
& w^{-1}(\text { ON D D D })(-1)^{x_{1} x_{1}+x_{0} x_{2}+x_{1} x_{2}}=(-1)^{x_{0} x_{1}+x_{0} x_{2}} \\
& \equiv C_{\text {caph operation: Local }} \text { complenentation } \\
& \text { at vertex } 0
\end{aligned}
$$

$P^{2} R_{U}$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02,12\}$.
Max. peak wrt action of:

$$
(D N \otimes H D \otimes H D)=(D N \otimes N \otimes N)
$$

where $N=$$\left(\begin{array}{cc}1 & i \\ 1 & -i\end{array}\right)$

because graph is in local complementation orbit ofbipartite graph.

$P^{2} R_{U}$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02,12\}$.
Max. peak wrt action of:

$$
(D N \otimes H D \otimes H D)=(D N \otimes N \otimes N)
$$

where $N=\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right)$.
because graph is in local complementation orbit of bipartite graph.

$P^{2} R_{U}$ of quadratic Boolean functions \equiv graphs

e.g. $s=(-1)^{x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}}$
\equiv vertices $\{0,1,2\}$, edges $\{01,02,12\}$.
Max. peak wrt action of:

$$
(D N \otimes H D \otimes H D)=(D N \otimes N \otimes N)
$$

where $N=\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right)$.
because graph is in local complementation orbit of bipartite graph.

More local complementation examples

So what is PAR_{U} of C_{5} ?

$s=(-1)^{x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{0}} \equiv C_{5} \quad$ (i.e. 5 -circle).
No bipartite member in local complementation orbit of C_{5}.
Introducing unitary $E=\left(\begin{array}{cc}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+}} \omega^{7} & -\sqrt{r_{-}}\end{array}\right)$, where
$r_{ \pm}=\frac{1 \pm \frac{1}{\sqrt{3}}}{2}$ and $\omega=e^{i 5 \pi}$
Conjecture: $\operatorname{PAR}_{E \otimes 5}(s)=\operatorname{PAR}_{U}\left(C_{5}\right) \approx 4.206267$.
Best nossible PAR for 5-vertex granh with binartite member in orbit is $2^{3}=8$.

So what is PAR_{U} of C_{5} ?

$s=(-1)^{x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{0}} \equiv C_{5} \quad$ (i.e. 5 -circle).
No bipartite member in local complementation orbit of C_{5}.

Conjecture: $\operatorname{PAR}_{E \otimes 5}(s)=\operatorname{PAR}_{U}\left(C_{5}\right) \approx 4.206267$.
Best nossible PAR for 5-vertex graph with bipartite member in orbit is $2^{3}=8$.

So what is PAR_{U} of C_{5} ?

$s=(-1)^{x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{0}} \equiv C_{5} \quad$ (i.e. 5 -circle).
No bipartite member in local complementation orbit of C_{5}.
Introducing unitary $E=\left(\begin{array}{cc}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+}} \omega^{7} & -\sqrt{r_{-}}\end{array}\right)$, where
$r_{ \pm}=\frac{1 \pm \frac{1}{\sqrt{3}}}{2}$ and $\omega=e^{\frac{i 5 \pi}{4}}$.
Conjecture: $\operatorname{PAR}_{E^{\otimes 5}}(s)=\operatorname{PAR}_{U}\left(C_{5}\right) \approx 4.206267$.
Best possible PAR for 5-vertex graph with bipartite member in orbit is $2^{3}=8$.

So what is PAR_{U} of C_{5} ?

$s=(-1)^{x_{0} x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{0}} \equiv C_{5} \quad$ (i.e. 5 -circle).
No bipartite member in local complementation orbit of C_{5}.
Introducing unitary $E=\left(\begin{array}{cc}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+}} \omega^{7} & -\sqrt{r_{-}}\end{array}\right)$, where
$r_{ \pm}=\frac{1 \pm \frac{1}{\sqrt{3}}}{2}$ and $\omega=e^{\frac{i 5 \pi}{4}}$.
Conjecture: $\operatorname{PAR}_{E^{\otimes 5}}(s)=\operatorname{PAR}_{U}\left(C_{5}\right) \approx 4.206267$.
Best possible PAR for 5-vertex graph with bipartite member in orbit is $2^{3}=8$.

Conjectured optimum due to Chen and Jiang

Chen and Jiang used iterative algorithm to ascertain geometric measure of entanglement of graph states (since 2009). More recently up by Chen and by Wang, Jiang, Wang.

Results are computational. Still no proof known. But see recent work by Chen, Aulbach, Hadjusek (2013) on the geometric measure, including for graph states.

More graphs requiring E

PAPR found wit

$$
E D \otimes E D \odot E D \otimes E Z \odot E Z \odot E Z
$$

where $D=H N=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right), ~ Z=D^{2}$ $E=\left(\begin{array}{l}\sqrt{n_{1}} \sqrt{2}^{2}+N_{n}^{N}\end{array}\right)$

PAPR found wot $H \oplus I \otimes E D \odot E D^{3} \otimes E D^{3} \odot E D^{3} \bullet E D^{3}$

Properties of E

$E=\left(\begin{array}{rr}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+} \omega^{7}} & -\sqrt{r_{-}}\end{array}\right) \quad$ Columns of E from 2-ETF.
For $N=\frac{u}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right), u=e^{\frac{-\pi i}{12}}$
$K=\left(\begin{array}{rr}\alpha^{2} & 0 \\ 0 & \alpha^{3}\end{array}\right), \alpha=e^{\frac{2 \pi i}{3}}$
$N^{2}=u^{-1} D^{3} H, \quad N^{3}=E^{2}=I, \quad N E=E K$,
meaning that the columns of E are eigenvectors of N

Properties of E

$E=\left(\begin{array}{rr}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+}} \omega^{7} & -\sqrt{r_{-}}\end{array}\right) \quad$ Columns of E from 2-ETF.
For $N=\frac{u}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right), u=e^{\frac{-\pi i}{12}}$,
$K=\left(\begin{array}{cc}\alpha^{2} & 0 \\ 0 & \alpha^{3}\end{array}\right), \alpha=e^{\frac{2 \pi i}{3}}$.

meaning that the columns of E are eigenvectors of N.

Properties of E

$E=\left(\begin{array}{rr}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+}} \omega^{7} & -\sqrt{r_{-}}\end{array}\right) \quad$ Columns of E from 2-ETF.
For $N=\frac{u}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right), u=e^{\frac{-\pi i}{12}}$,
$K=\left(\begin{array}{cc}\alpha^{2} & 0 \\ 0 & \alpha^{3}\end{array}\right), \alpha=e^{\frac{2 \pi i}{3}}$.

$$
N^{2}=u^{-1} D^{3} H, \quad N^{3}=E^{2}=I, \quad N E=E K,
$$

meaning that the columns of E are eigenvectors of N.

Properties of E

$E=\left(\begin{array}{rr}\sqrt{r_{-}} & \sqrt{r_{+}} \omega \\ \sqrt{r_{+}} \omega^{7} & -\sqrt{r_{-}}\end{array}\right) \quad$ Columns of E from 2-ETF.
For $N=\frac{u}{\sqrt{2}}\left(\begin{array}{rr}1 & i \\ 1 & -i\end{array}\right), u=e^{\frac{-\pi i}{12}}$,
$K=\left(\begin{array}{cc}\alpha^{2} & 0 \\ 0 & \alpha^{3}\end{array}\right), \alpha=e^{\frac{2 \pi i}{3}}$.

$$
N^{2}=u^{-1} D^{3} H, \quad N^{3}=E^{2}=I, \quad N E=E K,
$$

meaning that the columns of E are eigenvectors of N.

A COMPLETELY MASSIVE open problem

Let $s=(-1)^{f(x)}, f$ a quadratic Boolean function of n variables, representing graph G.

Conjecture:

- If the local complementation orbit of G contains a bipartite graph then $\operatorname{PAPR}_{U}(s)$ is contained in the $\left\{I, N, N^{2}\right\}^{\otimes n}$ transform set.
- If the local complementation orbit of G does not contain a bipartite graph then $\operatorname{PAPR}_{11}(s)$ is contained in the $\left\{I, N, N^{2}, E\right\}^{\otimes n}$ transform set.

First part almost certainly true but still not proved. Second part possibly true but how to prove it?

A COMPLETELY MASSIVE open problem

Let $s=(-1)^{f(x)}, f$ a quadratic Boolean function of n variables, representing graph G.

Conjecture:

- If the local complementation orbit of G contains a bipartite graph then $\operatorname{PAPR}_{U}(s)$ is contained in the $\left\{I, N, N^{2}\right\}^{\otimes n}$ transform set. (is there a proof in Chen, Aulbach, Hadjusek (2013)?).
- If the local complementation orbit of G does not contain a bipartite graph then $\operatorname{PAPR}_{U}(s)$ is contained in the $\left\{I, N, N^{2}, E\right\}^{\otimes n}$ transform set.
First part almost certainly true but still not proved. Second part possibly true but how to prove it?

A COMPLETELY MASSIVE open problem

Let $s=(-1)^{f(x)}, f$ a quadratic Boolean function of n variables, representing graph G.

Conjecture:

- If the local complementation orbit of G contains a bipartite graph then $\operatorname{PAPR}_{U}(s)$ is contained in the $\left\{I, N, N^{2}\right\}^{\otimes n}$ transform set. (is there a proof in Chen, Aulbach, Hadjusek (2013)?).
- If the local complementation orbit of G does not contain a bipartite graph then $\operatorname{PAPR}_{U}(s)$ is contained in the $\left\{I, N, N^{2}, E\right\}^{\otimes n}$ transform set.
First part almost certainly true but still not proved. Second part possibly true but how to prove it?

Summary

- Mutually unbiased bases for complementary sets.
- Equiangular tight frames for (near)-complementary sets.
- $P_{A P R} U$ of quadratics with respect to tensor products of local unitaries. \equiv geometric measure of entanglement of graph states. Do we just need $\left\{I, N, N^{2}, E\right\}$?

Summary

- Mutually unbiased bases for complementary sets.
- Equiangular tight frames for (near)-complementary sets.
> - $P_{A P R}$ of quadratics with respect to tensor products of local unitaries. \equiv geometric measure of entanglement of graph states. Do we just need $\left\{I, N, N^{2}, E\right\}$?

Summary

- Mutually unbiased bases for complementary sets.
- Equiangular tight frames for (near)-complementary sets.
- PAPR_{U} of quadratics with respect to tensor products of local unitaries. 三 geometric measure of entanglement of graph states. Do we just need $\left\{I, N, N^{2}, E\right\}$?

Summary

- Mutually unbiased bases for complementary sets.
- Equiangular tight frames for (near)-complementary sets.
- PAPR_{U} of quadratics with respect to tensor products of local unitaries. \equiv geometric measure of entanglement of graph states. Do we just need $\left\{I, N, N^{2}, E\right\}$?

