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Some history

peak factor problem:
Find large sequence set over small alphabet, e.g.
biphase or more general PSK, where each member
has low peak-to-average power ratio (PAR) wrt the
continuous Fourier transform.
e.g. s = 1, 1, 1,−1, 1, 1,−1, 1 has PAR = 2.0.
More examples:



. . . more precisely . . .

peak factor problem (continued):

Maximize sequence set size.

Minimize sequence PAR.

Maximize pairwise distance between

sequences, e.g. minimize the pairwise

inner product.
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. . . Solution by Jim and Jonathan . . .

Important solution found by Jim Davis and
Jonathan Jedwab:
Golay complementary sequences:

s = (−1)f (x), f (x) = x0x1 + x1x2 + . . .+ xn−2xn−1.
e.g.
f (x) = x0x1 + x1x2 ⇒ s = 1, 1, 1,−1, 1, 1,−1, 1.

Let s(z) = 1 + z + z2− z3 + z4 + z5− z6 + z7. Then
|s(α)|2

2n ≤ 2.0, ∀α, |α| = 1 ⇒ PAR(s) ≤ 2.0.

Size of quadratic codeset (path graphs) + affine
offsets is 2nn!.

Pairwise distance ≥ 2n−2

⇒ pairwise inner product ≤ 2n−1.
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these are Golay complementary pairs

e.g. (s, s ′) where

s(z) = (−1)f (x) and s ′(z) = (−1)f
′(x),

where

f (x) = x0x1 + x1x2 + . . . + xn−2xn−1 and
f ′(x) = f (x) + xn−1.

Then |s(α)|2 + |s ′(α)|2 = 2n+1,

⇒ PAR(s),PAR(s ′) ≤ 2.0.
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The Hadamard Transform

Let s = a + bz .
The Hadamard transform of the coefficient
sequence, (a, b), of s is (s(1), s(−1)).

i.e.(
s(1)

s(−1)

)
=

(
1 1
1 −1

)(
a
b

)
= H

(
a
b

)
.

This is a residue computation mod
z2 − 1 = (z − 1)(z + 1),
i.e.

s(1) = s(z) mod (z−1), s(−1) = s(z) mod (z+1).



Hadamard is Periodic

The length-2 Hadamard transform is a periodic
Fourier transform, i.e. a cyclic modulus
z2 − 1 = (z − 1)(z + 1).

A length-2 continuous Fourier transform evaluates
s(z) = a + bz at all z = α, |α| = 1. One can do
this via 2× 2 matrix transforms of the form:(

s(α)
s(−α)

)
=

(
1 α

1 −α

)(
a
b

)
,

i.e. compute residues of s(z) mod
z2 − α2 = (s − α)(s + α), ∀α, |α| = 1.
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negaHadamard is negaperiodic

The length-2 negaHadamard transform is a
negaperiodic (negacyclic) Fourier transform, i.e. a
negacyclic modulus z2 + 1 = (z − i)(z + i).

A length-2 negaHadamard transform evaluates
s(z) = a + bz at z = i and z = −i . One can do
this via a 2× 2 matrix transform:(

s(i)
s(−i)

)
=

(
1 i
1 −i

)(
a
b

)
= N

(
a
b

)
,
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Hadamard and negaHadamard represents aperiodic

autocorrelation

s(z) = a + bz .
Compute residues of s(z)s∗(z−1) mod (z2 − 1)(z2 + 1) = (z4 − 1)
is equivalent to computing residues of s(z)s∗(z−1).

For s(z) = (−1)f (x0,x1,...,xn−1), periodic autocorrelation is computed
from

f (x) + f (x + h), ∀h ∈ Fn
2,

and negaperiodic autocorrelation is computed from

f (x) + f (x + h) + h · x , ∀h ∈ Fn
2.

to compute aperiodic aut., we need to compute

f (x) + f (x + h) + (j � h) · x , ∀j , h,∈ Fn
2,

where ’�’ means pointwise product.
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2× 2× . . . 2 array transform ⇔ multivariate

The n dimensional Hadamard (resp.
negaHadamard) transform over (C2)⊗n is given by
the action of H⊗n (resp. N⊗n), i.e.
Let s(z) = s(z0, z1, . . . , zn−1) = (−1)f (x0,x1,...,xn−1) =
s00...0 + s10...0z0 + s01...0z1 + s11...0z0z1 + . . . +
s11...1z0z1 . . . zn−1.

The Hadamard transform of s = (−1)f is

(s(1, 1, . . . , 1), s(−1, 1, . . . , 1), s(1,−1, . . . , 1), s(−1,−1, . . . , 1),
. . . , s(−1,−1, . . . ,−1)).
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2× 2× . . . 2 array transform ⇔ multivariate

Similarly,
the negaHadamard transform of s = (−1)f is given
by

(s(i , i , . . . , i), s(−i , i , . . . , i), s(i ,−i , . . . , i), s(−i ,−i , . . . , i),
. . . , s(−i ,−i , . . . ,−i)).

. . . and the continuous n-variate Fourier transform
of s = (−1)f is given by

(s(α0, α1, . . . , αn−1), s(−α0, α1, . . . , αn−1), s(α0,−α1, . . . , αn−1), s(−α0,−α1, . . . , αn−1),
. . . , s(−α0,−α1, . . . ,−αn−1)),

∀αj , |αj | = 1, 0 ≤ j < n.
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2× 2× . . .× 2 arrays with PAR ≤ 2.0 wrt the

continuous Fourier transform?

Constructions? Well, actually . . . er . . . the
Davis-Jedwab construction again.

The pair (s, s ′) in (C2)⊗n of 2× 2× . . .× 2 arrays
are complementary with respect to the continuous
multidimensional Fourier transform, where

s = (−1)f (x0,x1,...,xn−1), s ′ = (−1)f
′(x0,x1,...,xn−1)

f = x0x1 + x1x2 + . . . + xn−2xn−1, f ′ = f + x0.

A simple generalisation over Z4:

s = i f (x0,x1,...,xn−1), s ′ = i f
′(x0,x1,...,xn−1)

f = 2(x0x1 + x1x2 + . . . + xn−2xn−1) +
∑n−1

j=0 cjxj + d ,

f ′ = f + 2x0, cj , d ∈ Z4.
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What is the complementary construction?

Let (A,B) and (C ,D) be n and m-dimensional
complementary pairs, respectively. Let

F (z , y) = C (y)A(z) + D∗(y)B(z),
G (z , y) = D(y)A(z)− C ∗(y)B(z),

where ’∗’ means complex conjugate,
y = (y0, y1, . . . , ym−1) and z = (z0, z1, . . . , zn−1).
Then (F ,G ) is an n + m-dimensional
complementary pair.

In matrix form:(
F (z , y)
G (z , y)

)
=

(
C (y) D∗(y)
D(y) −C ∗(y)

)(
A(z)
B(z)

)
.
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Why does the construction work?

(
F (z , y)
G (z , y)

)
=

(
C (y) D∗(y)
D(y) −C ∗(y)

)(
A(z)
B(z)

)
.

Because (A,B) is a pair, |A|2 + |B |2 = c , a
constant, and, up to normalisation,

(
C(y) D∗(y)
D(y) −C∗(y)

)
is

unitary, because (C ,D) is a pair. i.e. because
|C |2 + |B |2 = c ′, a constant, so (F ,G ) is then a
pair by Parseval, i.e. |F |2 + |G |2 = c ′′, a constant.
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A general recursive form of the complementary set
construction

Fj(zj) = Uj(yj)Fj−1(zj−1),

where Uj(yj) is any S × S complex unitary,
yj = (zµj

, zµj+1, . . . , zµj+mj−1),

zj = (z0, z1, . . . , zµj+mj−1), µj =
∑j−1

i=0 mj , µ0 = 0,
Fj(zj) = (Fj ,0(zj),Fj ,1(zj), . . . ,Fj ,S−1(zj))T , and
F−1 = 1√

S
(1, 1, . . . , 1).

This is a very general recursive equation for the
construction of complementary sets of arrays of size
S . (see also Budisin and Spasojevic).
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A special case of the complementary pair
construction for 2× 2× . . .× 2 arrays

Setting S = 2,

Fj(zj) = PjUjVj(zj)Fj−1(zj−1),

where Pj ∈ {I ,X}, I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
,

Vj(zj) =
(

1 0
0 zj

)
,

For the array version of the Davis-Jedwab
construction over Z4 we choose Uj ∈ {H ,N}.
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N generates a matrix group

N = 1√
2

(
1 i
1 −i

)
.

N2 = ω√
2

(
1 0
0 −i

)(
1 1
1 −1

)
= ω√

2

(
1 0
0 −i
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{I ,H ,N} is an optimal MUB

Denote the magnitude of the normalised pairwise
inner product of two equal-length complex vectors,
u and v , by

∆(u, v) =
|〈u, v〉|
|u| · |v |

.

A pair of bases u0, · · · , uδ−1 and v0, · · · , vδ−1 in Cδ

is mutually unbiased if both are orthonormal and ∃a
such that ∆2(ui , vj) = |〈ui , vj〉|2 = a, ∀i , j . A set of
bases is then called a set of mutually unbiased bases
(MUB) if any pair of them is mutually unbiased. A
MUB contains at most δ + 1 bases in Cδ, in which
case it is an optimal MUB and a = 1

δ .
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A MUB generalisation of array construction

{I ,H ,N} is an optimal MUB for δ = 2.

Recap:
Davis-Jedwab complementary pair construction over
Z4:

Fj(zj) = PjUjVj(zj)Fj−1(zj−1),

where Uj ∈ {H ,N}.

. . . . . . er . . . um . . . . . . any ideas?

Yes, well done, choose Uj ∈ {I ,H ,N}.
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Code parameters for δ = 2-MUB complementary

pair construction

array and sequence PAR ≤ 2.0.
array enumeration is

|Bn| =

{
2n−1 · (3n + 3 · 3

n
2 − 2), for n even,

2n−1 · (3n + 5 · 3
n−1
2 − 2), for n odd,

sequence enumeration is

|B↓,n| = 2n3
∑n

k=0 2k−2k!

{
n
k

}
+ 2n − 1

2 , where

S2(n, k) =

{
n
k

}
= 1

k!

∑k
j=0(−1)k−j

(k
j

)
jn.

Asymptotically, |B↓,n|n→∞ → 2n−2n!
ln( 3

2
)n+1 .

squared inner product for sequence and array is
∆2(Bn) = ∆2(B↓,n) = 1

2 .

DJ array/seq enumeration approaches 4n / n!22n−1,
resp.
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Example 2-MUB sequences as graphs

0 53

+++

0 1 2 3
(1)

0 1 2 3
(2)

1 2 4

(3)

0 32

++

1

(4)

4

+

(1) U = (H,H,H,H)⇒ f3,0(x) = i2(x0x1+x1x2+x2x3).

(2) U = (H,N,H,N)⇒ f3,0(x) = i2(x0x1+x1x2+x2x3)+x1+x3 .
(3) U = (H, I , I ,N, I ,N)⇒
f5,0(x) = (x1 + x3 + 1)(x2 + x3 + 1)(x4 + x5 + 1)i2(x0x3+x3x5)+x3+x5 .

(4) U = (N, I ,H, I , I )⇒
f4,k(x) = (x1 + x2 + 1)(x3 + k + 1)(x4 + k + 1)i2(kx2+x0x2)+x0 .



The MUB construction is very general

We are now working on generating array and
sequence codesets with PAR ≤ 3.0 using the δ = 3
optimal MUB:

{I ,F3,DF3,D
2F3},

where F3 = 1√
3

 1 1 1
1 w w 2

1 w 2 w

, and

D =

 1 0 0
0 w 0
0 0 w

, where w = e
2πi
3 .

The challenge is to enumerate and work out the
maximum pairwise inner product.
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(Near)-complementary arrays/sequences from tight

frames

A complementary construction using a δ-MUB
comprises a set of unitary matrices with a fixed
PAR bound of δ.
Using non-unitary matrices result in a PAR bound
that increases on every iteration.

But what about using an equiangular tight-frame
(ETF)?

The d-ETF comprises d2 length-d vectors with
pairwise inner-product 1√

d+1
.
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(Near)-complementary arrays/sequences from tight

frames

The 2-ETF comprises the four vectors φ0, φ1, φ2, φ3,
where:

φ0 = (
√
r+, ω
√
r−), φ1 = Xφ0, φ2 = Yφ0, φ3 = Zφ0,

where ω = e
iπ
4 , r± =

1± 1√
3

2 , X = ( 0 1
1 0 ),

Y = ( 0 −i
i 0 ), and Z = ( 1 0

0 −1 ).



(Near)-complementary arrays/sequences from tight

frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix
sets:

First way:

{U ij , 0 ≤ i < j < 4}, where Uij =

(
φi
φj

)
.

PAR ≤ 1.58t × T after t iterations - T some
constant.

A very large near-complementary construction as
|{U ij , 0 ≤ i < j < 4}| = 6, with very high pairwise
distance, but a weak worst-case upper bound on
PAR.
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distance, and PAR ≤ 2.0.
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(Near)-complementary arrays/sequences from tight

frames

Three ways to use the 2-ETF for a
(near)-complementary construction use the matrix
sets:

Third way:

{U}, where U =
(

φ0
φ1
φ2
φ3

)
.

A very large complementary construction as U has 4
rows, so 4! = 24 row permutations per iteration,
with a very high pairwise distance, but a weak
worst-case upper bound on PAR.
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PAR with respect to continuous multivariate

Fourier transform

e.g. n = 3 so (2× 2× 2 Fourier):

(
1 α0

1 −α0

)
⊗
(

1 α1

1 −α1

)
⊗
(

1 α2

1 −α2

)
s000

s001

s010

. . .
s111

 ,

∀αi where |αi | = 1.



PAR with respect to all local unitaries? (PARU)

e.g. n = 3 dimensions:

(
cos θ0 sin θ0α0

sin θ0 − cos θ0α0

)
⊗
(

cos θ1 sin θ1α1

sin θ1 − cos θ1α1

)
⊗
(

cos θ2 sin θ2α2

sin θ2 − cos θ2α2

)
s000
s001
s010
. . .
s111

 ,

∀θi and ∀αi where |αi | = 1.



A quantum interlude - graph states

Pauli matrices: I , X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

Y = iXZ .

Example: 3-qubit graph state, |ψ〉 = (−1)x0x1+x0x2,
is unique joint eigenvector of operators X ⊗ Z ⊗ Z ,
Z ⊗ X ⊗ I , Z ⊗ I ⊗ X .

Write operators as symmetric matrix:
(

X Z Z
Z X I
Z I X

)
.

Note also that the actions of {I ,H ,N} stabilise
{I ,X ,Z ,Y }.
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A coding interlude - F4-additive self-dual codes

Pauli matrices: I , X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

Y = iXZ .

Example: 3-qubit graph state, |ψ〉 = (−1)x0x1+x0x2,
is unique joint eigenvector of operators X ⊗ Z ⊗ Z ,
Z ⊗ X ⊗ I , Z ⊗ I ⊗ X .

Write operators as symmetric matrix:
(

X Z Z
Z X I
Z I X

)
.

Then generator = parity check matrix for

F4-additive self-dual code is:
(

w 1 1
1 w 0
1 0 w

)
.

But F4 interpretation does not consider
commutation, e.g. XZ = −ZX , but w .1 = 1.w .
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PARU ≡ Geometric Measure of Entanglement

Let P be the set of tensor product states. Then

G(|ψ〉) = − log2(maxφ∈P |〈φ|ψ〉|2).

For s = (−1)f = |ψ〉:

PARU(s) = 2n−G(|ψ〉).
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PARU of quadratic Boolean functions ≡ graphs

e.g. s = (−1)x0x1+x0x2
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Note: If α is independence number of associated
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Local unitary action ≡ local complementation
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.
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More local complementation examples



So what is PARU of C5?

s = (−1)x0x1+x1x2+x2x3+x3x4+x4x0 ≡ C5 (i.e. 5-circle).

No bipartite member in local complementation orbit of C5.

Introducing unitary E =

( √
r−
√
r+ω√

r+ω
7 −√r−

)
, where

r± =
1± 1√

3

2
and ω = e

i5π
4 .

Conjecture: PARE⊗5(s) = PARU(C5) ≈ 4.206267.

Best possible PAR for 5-vertex graph with bipartite member in
orbit is 23 = 8.
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Conjectured optimum due to Chen and Jiang

Chen and Jiang used iterative algorithm to ascertain geometric
measure of entanglement of graph states (since 2009). More
recently up by Chen and by Wang, Jiang, Wang.

Results are computational. Still no proof known. But see
recent work by Chen, Aulbach, Hadjusek (2013) on the
geometric measure, including for graph states.



More graphs requiring E



Properties of E

E =

( √
r−
√
r+ω√

r+ω
7 −√r−

)
Columns of E from 2-ETF.

For N = u√
2

(
1 i
1 −i

)
, u = e

−πi
12 ,

K =
(

α2 0
0 α3

)
, α = e

2πi
3 .

N2 = u−1D3H , N3 = E 2 = I , NE = EK ,

meaning that the columns of E are eigenvectors of N .



Properties of E

E =

( √
r−
√
r+ω√

r+ω
7 −√r−

)
Columns of E from 2-ETF.

For N = u√
2

(
1 i
1 −i

)
, u = e

−πi
12 ,

K =
(

α2 0
0 α3

)
, α = e

2πi
3 .

N2 = u−1D3H , N3 = E 2 = I , NE = EK ,

meaning that the columns of E are eigenvectors of N .



Properties of E

E =

( √
r−
√
r+ω√

r+ω
7 −√r−

)
Columns of E from 2-ETF.

For N = u√
2

(
1 i
1 −i

)
, u = e

−πi
12 ,

K =
(

α2 0
0 α3

)
, α = e

2πi
3 .

N2 = u−1D3H , N3 = E 2 = I , NE = EK ,

meaning that the columns of E are eigenvectors of N .



Properties of E

E =

( √
r−
√
r+ω√

r+ω
7 −√r−

)
Columns of E from 2-ETF.

For N = u√
2

(
1 i
1 −i

)
, u = e

−πi
12 ,

K =
(

α2 0
0 α3

)
, α = e

2πi
3 .

N2 = u−1D3H , N3 = E 2 = I , NE = EK ,

meaning that the columns of E are eigenvectors of N .



A COMPLETELY MASSIVE open problem

Let s = (−1)f (x), f a quadratic Boolean function of n
variables, representing graph G .

Conjecture:

If the local complementation orbit of G contains a
bipartite graph then PAPRU(s) is contained in the
{I ,N ,N2}⊗n transform set. (is there a proof in Chen,
Aulbach, Hadjusek (2013)?).

If the local complementation orbit of G does not contain
a bipartite graph then PAPRU(s) is contained in the
{I ,N ,N2,E}⊗n transform set.

First part almost certainly true but still not proved. Second
part possibly true but how to prove it?
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Summary

Mutually unbiased bases for complementary
sets.

Equiangular tight frames for
(near)-complementary sets.

PAPRU of quadratics with respect to tensor
products of local unitaries. ≡ geometric
measure of entanglement of graph states. Do
we just need {I ,N ,N2,E}?
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