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Abstract: Two architectures for carrying out bit- 
serial multiplication in GF(2m) are presented 
where the defining irreducible polynomial for the 
field is an all-one polynomial. The multipliers 
presented have low hardware requirements, 
regular structures and are therefore suitable for 
VLSl implementation. 

1 Introduction 

Finite fields of the form GF(2*) have found applica- 
tions to cryptography and error correcting codes such 
as Reed-Solomon (RS) codes [l]. RS codes are used in 
a variety of technologies such as CDs [ 2 ] ,  the Hubble 
space telescope [3] and channel coding for compressed 
video services [4]. RS codes operate over finite fields 
and correct, not individual bits, but symbols where 
each symbol is an element of GF(2") and hence is rep- 
resented by m bits. Because RS codes operate over 
finite fields there is a need for fast and hardware effi- 
cient arithmetic operators for GF(2") if RS encoders 
and decoders are to be efficiently implemented in hard- 
ware. 

Of the arithmetic operations required in the imple- 
mentation of RS codes, finite-field multiplication is the 
most frequently studied [5-121. This is because addition 
is trivial to implement in hardware and because opera- 
tions such as inversion and division can be decomposed 
into repeated multiplications. The two most well- 
known bit-serial architectures are the Berlekamp multi- 
plier (BM) [5] and the Massey-Omura multiplier 
(MOM) [6]. Of these, the BM has lower hardware 
requirements and an easy-to-derive structure based on 
the defining irreducible polynomial for the field f i x ) .  
The BM is also particularly suited to applications 
where constant multiplication is required such as RS 
encoders. The only dkadvantage of the BM is that it 
operates over two bases, the dual basis and the polyno- 
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mial basis [5]. The MOM operates over just one basis, 
the normal basis, which has the advantage that the 
square of a field element can be generated by a cyclic 
shift of the basis coefficients. However, the MOM 
requires more hardware than the BM, cannot effi- 
ciently carry out constant multiplication and, for a 
given normal basis, it is not obvious what the defining 
boolean function for the multiplier is [9]. 

In this brief contribution we consider bit-serial multi- 
plication in GF(2") for whichf(x) = xm + xm-l + ... + x 
+ 1, that is, where f ( x )  is an all-one polynomial (AOP). 
A number of hardware efficient bit-parallel architec- 
tures have been presented for those fields for which f i x )  
is an AOP [lo-121, however we are not aware of any 
bit-serial architectures being described. In this contri- 
bution two bit-serial multipliers are presented for which 
f(x) is an AOP. One of these operates over an extended 
basis of (m + 1) coefficients while the other operates 
over a basis comprising m elements. These approaches 
allowed us to derive regular and hardware-efficient 
structures which are also appropriate for carrying out 
constant multiplication. In one of these two cases, 
squaring can also be carried out by a reordering of 
basis coefficients and so the proposed multiplier dem- 
onstrates the advantages of both the BM and MOM 
without any of the disadvantages. 

2 Mathematical background 

Let f ( x )  = x" + xm-l + ... + x + 1 be an irreducible 
AOP over GF(2) and let a be a root off(x). cf(x) can 
only be chosen as an irreducible AOP for GF(2") if 2 is 
an element of order m modulo (m + l), where (m + 1) 
is prime [lo].) Then {l ,  a, ..., a"'-'} forms the 
polynomial basis for GF(2m) and any field element A E 
GF(2") can be represented as A = CgiAioll where Ai E 
GF(2) . If we now let (1, a, ..., Cc1'-', CP} be an 
'extended polynomial basis' the field element A can 
also be represented as A = C;:,a,ai where a, E GF(2). 
These Ai and ai values are related [lo] by the equation 

Over the extended polynomial basis, A' = a0 + amn+la 
+ ala2 + ... + u171n~lfl-2 + ~ ~ 0 C n - l  + amnoCn. Hence the 
extended basis representation of A' can be obtained 
from that of A with only a reordering of the basis 
coefficients. 

Now let a, 6, c E GF(2") such that a = bc and repre- 
sent these elements in the extended polynomial basis as 
a = Cz,aioll, b = C;:,bia' and c = C;,c,a". Then the fol- 

Ai = + U, (i = O , l , .  . . ,'m - 1) (1) 
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Eqn. 2 was implicitly used to derive the bit-parallel 
multiplier in [lo] and is now used in the design of two 
bit-serial multipliers. 

it-serial multiplication 

3. I Bit-serial AOP multipliers 
Consider eqn. 2 and Fig. 1. If the registers in Fig. 1 are 
initialised by y ,  = c, and x, = 6, for (i = 0, 1, ..., m) the 
first product bit a, will immediately be available on the 
output line. The remaining product bits a, (i = m - 1, m 

~ 2, ..., 1, 0) are obtained by clocking the upper shift 
register a further m times. 

The multiplier presented here has a very similar 
structure to the bit-serial BM [5] but requires two extra 
register elements and an extra AND gate. A BM will 
require at least as many XOR gates as the proposed 
architecture, if not more, depending on the complexity 
of the irreducible polynomial for the field. Also, 
because it operates over words of length (m + 1) bits 
rather than m bits, the proposed multiplier requires an 
extra clock cycle to yield a solution as compared to the 
BM. However, for large values of m these disadvan- 
tages are offset by the greater degree of regularity dis- 
played by the proposed architecture. 

Furthermore, like the BM, the proposed structure 
can efficiently carry out constant multiplication. This is 
because the c, values do not have to be shifted once 
loaded into the circuit and so the multiplier can be 
hardwired to carry out many constant multiplications. 

These multipliers are therefore highly suited to applica- 
tions where constant multiplication is required, such as 
in RS encoders and syndrome calculators. 

3.2 Bit-serial modified AOP multipliers 
We now show how to modify the structure to form an 
m-bit-serial multiplier. Let 6, = c, = 0 in eqn. 2. Then 

Eqn. 3 can be used to derive a structure in which both 
inputs contain m bits but the output contains (m + 1) 
bits. However, we require both the inputs and the out- 
puts to be represented by only m bits. To achieve this, 
note from eqn. 1 that A, = a, + a, (i = 0, 1, ..., m - 1) 
and from eqn. 3 a, = Cz-;lb,c,-,. Hence this value of 
a, can be generated and added to the a, values to form 
A, (i = 0, 1, ..., m - 1). A circuit implementing this mul- 
tiplier for GIQ4) is shown in Fig. 2. After four clock 
cycles the registers hold the values x, = 6, and y ,  = a, (i 
= 0, 1, ..., m - l), x4 = 0 and y4 = a4 = blc3 + bzcz + 
b3c,. The first product bit A, will be immediately avail- 
able on the output line and the remaining product bits 
Ak (k  = 2, 1, 0) are obtained by clocking the upper 
shift register a further three times. 

The MAOPM requires an extra (m ~ 2) AND gates 
and an extra (m - 2) XOR gates compared to the 
AOPM, or roughly double the number of combina- 
tional gates. However, the MAOPM operates on only 
M bits as opposed to the (m + 1) of the AOPM and 
therefore requires one less clock cycle to generate a 
result. A summary of the characteristics of the multipli- 
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Fig.2 Bit serial MAOPM for GF(2") 
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ers described here and those of the BM and the MOM 
are presented in Table 1. All four multipliers have 
approximately the same number of registers but the 
AOPM and BM require approximately half the number 
of XOR and AND g,ates as compared to the MOM 
and MAOPM. The main advantage offered by the 
AOPM and the MAOlPM over the other two multipli- 
ers is that the defining Massey-Omura function and 
dual basis do not hav: to be generated. This results in 
the multipliers presented having simple, more regular 
architectures. 

Table 1: Comparison oil characteristic of multipliers 

Multiplier 

Characteristic BM MOM AOPM MAOPM 

Registers 2m 2m 2m+2 2 m + 2  

AND gates m 2 2 m - 1  m + l  2m-1 

XOR gates 2 m  2 2 m - 2  m 2m-2  

Clock cycles to solution m m m + l  m 

It is worth noting rhat eqn. 3 can also be used to 
derive a bit-parallel inultiplier. This multiplier com- 
prises m identical modules consisting of (m - 1) AND 
gates and (m - 2) XOR gates and one further module 
comprising m AND gates and (m - 1) XOR gates. In 
addition, a further m XOR gates are required to add a, 
to a, (i = 0, 1, ..., m - 1). This multiplier therefore has 
exactly the same hardware requirements as the bit-par- 
allel multiplier presented in [12]. The delay of these two 
multipliers due to gate delays is also the same. 

4 Conclusions 

Bit-serial multiplication in the finite field GF(2m) has 
been considered. It has been shown that when the 
defining irreducible polynomial for the field is an all- 
one polynomial, hardware efficient and regular archi- 
tectures can be derived. One of these multipliers oper- 
ates over an extended basis of (m + 1) bits and has a 

particularly simple architecture. This basis also has the 
advantage that squaring can be carried out with only a 
reordering of basis coefficients. The disadvantage of 
this architecture compared with traditional bit-serial 
architectures is that, because it operates over an 
extended basis, it takes an extra clock cycle to yield a 
result. The second architecture presented has higher 
hardware requirements but only operates over a basis 
of m elements. Both multipliers can be hardwired to 
carry out constant multiplication and are expected to 
find applications in RS codecs. 
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